Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Anthracycline in Medicinal Chemistry: Mechanism of Cardiotoxicity, Preventive and Treatment Strategies

Author(s): Narmin Hamaamin Hussen, Aso Hameed Hasan*, Gashbeen Osman Muhammed, Akar Yousif Yassin, Roza Rafiq Salih, Parwa Ahmed Esmail, Mohammed M. Alanazi and Joazaizulfazli Jamalis

Volume 27, Issue 4, 2023

Published on: 19 May, 2023

Page: [363 - 377] Pages: 15

DOI: 10.2174/1385272827666230423144150

Price: $65

Abstract

Anthracyclines are one of the most effective cancer treatments ever created, but these compounds are somewhat cardiotoxic to some patients, causing heart failure. The likelihood of such adverse effects restricts the overall prescribed dose of anthracyclines for patients. Based on the pathophysiology of anthracycline-induced cardiotoxicity, the cardiotoxicity plausibly originates from a reduction reaction of a single electron in its structure to form surplus reactive oxygen species (ROS) or two electrons reducing and converting into C-13 alcohol metabolites. While excess ROS is the probable cause for acute cardiotoxicity brought on by anthracyclines, it is not all characteristic of progressive cardiomyopathy. The formed secondary alcohol metabolites could also profoundly accelerate cardiotoxicity, which then develops into cardiomyopathy and eventually congestive heart failure. This review offers an overview of the molecular pathways of anthracycline-induced cardiotoxicity, emphasizing the roles of secondary alcohol metabolites of anthracyclines and/or their morbific role as ROS. The most effective ways to minimize or terminate anthracycline-induced cardiotoxicity are also covered.

Keywords: Anthracycline, cardiotoxicity, reactive oxygen species, secondary alcohol metabolite, prevention, treatment.

« Previous
Graphical Abstract
[1]
Corremans, R.; Adão, R.; De Keulenaer, G.W.; Leite-Moreira, A.F.; Brás-Silva, C. Update on pathophysiology and preventive strategies of anthracycline-induced cardiotoxicity. Clin. Exp. Pharmacol. Physiol., 2019, 46(3), 204-215.
[http://dx.doi.org/10.1111/1440-1681.13036] [PMID: 30244497]
[2]
El-Bindary, M.A.; El-Bindary, A.A. Synthesis, characterization, DNA binding, and biological action of dimedone arylhydrazone chelates. Appl. Organomet. Chem., 2022, 36(4), e6576.
[http://dx.doi.org/10.1002/aoc.6576]
[3]
National Institute of Health. The NIH Almanac. Available from: https://www.nih.gov/about-nih/what-we-do/nih-almanac/national-cancer-institute-nci
[4]
El-Bindary, M.A.; El-Desouky, M.G.; El-Bindary, A.A. Metal–organic frameworks encapsulated with an anticancer compound as drug delivery system: Synthesis, characterization, antioxidant, anticancer, antibacterial, and molecular docking investigation. Appl. Organomet. Chem., 2022, 36(5), e6660.
[http://dx.doi.org/10.1002/aoc.6660]
[5]
Vejpongsa, P.; Yeh, E.T.H. Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. J. Am. Coll. Cardiol., 2014, 64(9), 938-945.
[http://dx.doi.org/10.1016/j.jacc.2014.06.1167] [PMID: 25169180]
[6]
Carrasco, R.; Castillo, R.L.; Gormaz, J.G.; Carrillo, M.; Thavendiranathan, P. Role of oxidative stress in the mechanisms of anthracycline-induced cardiotoxicity: Effects of preventive strategies. Oxid. Med. Cell. Longev., 2021, 2021, 8863789.
[http://dx.doi.org/10.1155/2021/8863789] [PMID: 33574985]
[7]
Kiwaan, H.A.; El-Mowafy, A.S.; El-Bindary, A.A. Synthesis, spectral characterization, DNA binding, catalytic and in vitro cytotoxicity of some metal complexes. J. Mol. Liq., 2021, 326, 115381.
[http://dx.doi.org/10.1016/j.molliq.2021.115381]
[8]
Martins-Teixeira, M.B.; Carvalho, I. Antitumour anthracyclines: Progress and perspectives. ChemMedChem, 2020, 15(11), 933-948.
[http://dx.doi.org/10.1002/cmdc.202000131] [PMID: 32314528]
[9]
Zhang, Z.; Yu, X.; Wang, Z.; Wu, P.; Huang, J. Anthracyclines potentiate anti-tumor immunity: A new opportunity for chemoimmunotherapy. Cancer Lett., 2015, 369(2), 331-335.
[http://dx.doi.org/10.1016/j.canlet.2015.10.002] [PMID: 26454214]
[10]
Micallef, I.; Baron, B. Doxorubicin: An overview of the anti-cancer and chemoresistance mechanisms. Ann. Clin. Toxicol., 2020, 3(2), 1031.
[11]
Salazar-Mendiguchía, J.; González-Costello, J.; Roca, J.; Ariza-Solé, A.; Manito, N.; Cequier, Á. Anthracycline-mediated cardiomyopathy: Basic molecular knowledge for the cardiologist. Arch. Cardiol. Mex., 2014, 84(3), 218-223.
[http://dx.doi.org/10.1016/j.acmx.2013.08.006] [PMID: 25001055]
[12]
Kitakata, H.; Endo, J.; Ikura, H.; Moriyama, H.; Shirakawa, K.; Katsumata, Y.; Sano, M. Therapeutic targets for DOX-induced cardiomyopathy: Role of apoptosis vs. ferroptosis. Int. J. Mol. Sci., 2022, 23(3), 1414.
[http://dx.doi.org/10.3390/ijms23031414] [PMID: 35163335]
[13]
Jasra, S.; Anampa, J. Anthracycline use for early stage breast cancer in the modern era: A review. Curr. Treat. Options Oncol., 2018, 19(6), 30.
[http://dx.doi.org/10.1007/s11864-018-0547-8] [PMID: 29752560]
[14]
Takemura, G.; Fujiwara, H. Doxorubicin-induced cardiomyopathy. Prog. Cardiovasc. Dis., 2007, 49(5), 330-352.
[http://dx.doi.org/10.1016/j.pcad.2006.10.002] [PMID: 17329180]
[15]
Abou-Melha, K.S.; Al-Hazmi, G.A.; Althagafi, I.; Alharbi, A.; Shaaban, F.; El-Metwaly, N.M.; El-Bindary, A.A.; El-Bindary, M.A. Synthesis, characterization, DFT calculation, DNA binding and antimicrobial activities of metal complexes of dimedone arylhydrazone. J. Mol. Liq., 2021, 334, 116498.
[http://dx.doi.org/10.1016/j.molliq.2021.116498]
[16]
Varela-López, A.; Battino, M.; Navarro-Hortal, M.D.; Giampieri, F.; Forbes-Hernández, T.Y.; Romero-Márquez, J.M.; Collado, R.; Quiles, J.L. An update on the mechanisms related to cell death and toxicity of doxorubicin and the protective role of nutrients. Food Chem. Toxicol., 2019, 134, 110834.
[http://dx.doi.org/10.1016/j.fct.2019.110834] [PMID: 31577924]
[17]
Jawad, B.; Poudel, L.; Podgornik, R.; Steinmetz, N.F.; Ching, W.Y. Molecular mechanism and binding free energy of doxorubicin intercalation in DNA. Phys. Chem. Chem. Phys., 2019, 21(7), 3877-3893.
[http://dx.doi.org/10.1039/C8CP06776G] [PMID: 30702122]
[18]
Yacoub, T.J.; Reddy, A.S.; Szleifer, I. Structural effects and translocation of doxorubicin in a DPPC/Chol bilayer: the role of cholesterol. Biophys. J., 2011, 101(2), 378-385.
[http://dx.doi.org/10.1016/j.bpj.2011.06.015] [PMID: 21767490]
[19]
Shaul, P.; Frenkel, M.; Goldstein, E.B.; Mittelman, L.; Grunwald, A.; Ebenstein, Y.; Tsarfaty, I.; Fridman, M. The structure of anthracycline derivatives determines their subcellular localization and cytotoxic activity. ACS Med. Chem. Lett., 2013, 4(3), 323-328.
[http://dx.doi.org/10.1021/ml3002852] [PMID: 24900668]
[20]
Dhakal, D.; Lim, S.K.; Kim, D.H.; Kim, B.G.; Yamaguchi, T.; Sohng, J.K. Complete genome sequence of Streptomyces peucetius ATCC 27952, the producer of anticancer anthracyclines and diverse secondary metabolites. J. Biotechnol., 2018, 267, 50-54.
[http://dx.doi.org/10.1016/j.jbiotec.2017.12.024] [PMID: 29307836]
[21]
Coufal, N.; Farnaes, L. Anthracyclines and anthracenediones. In: Cancer Management in Man: Chemotherapy, Biological Therapy, Hyperthermia and Supporting Measures; Minev, B.R., Ed.; Springer Netherlands: Dordrecht, 2011; pp. 87-102.
[http://dx.doi.org/10.1007/978-90-481-9704-0_5]
[22]
Laatsch, H.; Fotso, S. Naturally Occurring Anthracyclines.In: Anthracycline Chemistry and Biology I: Biological Occurence and Biosynthesis, Synthesis and Chemistry; Krohn, K., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2008, pp. 3-74.
[http://dx.doi.org/10.1007/128_2008_5]
[23]
Shi, J.; Abdelwahid, E.; Wei, L. Apoptosis in anthracycline cardiomyopathy. Curr. Pediatr. Rev., 2011, 7(4), 329-336.
[http://dx.doi.org/10.2174/157339611796892265] [PMID: 22212952]
[24]
Visone, V.; Szabó, I.; Perugino, G.; Hudecz, F.; Bánóczi, Z.; Valenti, A. Topoisomerases inhibition and DNA binding mode of daunomycin–oligoarginine conjugate. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1363-1371.
[http://dx.doi.org/10.1080/14756366.2020.1780226] [PMID: 32552137]
[25]
Marinello, J.; Delcuratolo, M.; Capranico, G. Anthracyclines as Topoisomerase II poisons: From early studies to new perspectives. Int. J. Mol. Sci., 2018, 19(11), 3480.
[http://dx.doi.org/10.3390/ijms19113480] [PMID: 30404148]
[26]
Hientz, K.; Mohr, A.; Bhakta-Guha, D.; Efferth, T. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget, 2017, 8(5), 8921-8946.
[http://dx.doi.org/10.18632/oncotarget.13475] [PMID: 27888811]
[27]
Cai, F.; Luis, M.; Lin, X.; Wang, M.; Cai, L.; Cen, C.; Biskup, E. Anthracycline induced cardiotoxicity in the chemotherapy treatment of breast cancer: Preventive strategies and treatment (Review). Mol. Clin. Oncol., 2019, 11(1), 15-23.
[http://dx.doi.org/10.3892/mco.2019.1854] [PMID: 31289672]
[28]
Von Hoff, D.D.; Layard, M.W.; Basa, P.; Davis, H.L., Jr; Von Hoff, A.L.; Rozencweig, M.; Muggia, F.M. Risk factors for doxorubicin-induced congestive heart failure. Ann. Intern. Med., 1979, 91(5), 710-717.
[http://dx.doi.org/10.7326/0003-4819-91-5-710] [PMID: 496103]
[29]
Ryberg, M.; Nielsen, D.; Cortese, G.; Nielsen, G.; Skovsgaard, T.; Andersen, P.K. New insight into epirubicin cardiac toxicity: competing risks analysis of 1097 breast cancer patients. J. Natl. Cancer Inst., 2008, 100(15), 1058-1067.
[http://dx.doi.org/10.1093/jnci/djn206] [PMID: 18664656]
[30]
Chatterjee, K.; Zhang, J.; Honbo, N.; Karliner, J.S. Doxorubicin cardiomyopathy. Cardiology, 2010, 115(2), 155-162.
[http://dx.doi.org/10.1159/000265166] [PMID: 20016174]
[31]
Yeh, E.T.H.; Bickford, C.L. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J. Am. Coll. Cardiol., 2009, 53(24), 2231-2247.
[http://dx.doi.org/10.1016/j.jacc.2009.02.050] [PMID: 19520246]
[32]
Giordano, S.H.; Lin, Y.L.; Kuo, Y.F.; Hortobagyi, G.N.; Goodwin, J.S. Decline in the use of anthracyclines for breast cancer. J. Clin. Oncol., 2012, 30(18), 2232-2239.
[http://dx.doi.org/10.1200/JCO.2011.40.1273] [PMID: 22614988]
[33]
Gianni, L.; Herman, E.H.; Lipshultz, S.E.; Minotti, G.; Sarvazyan, N.; Sawyer, D.B. Anthracycline cardiotoxicity: from bench to bedside. J. Clin. Oncol., 2008, 26(22), 3777-3784.
[http://dx.doi.org/10.1200/JCO.2007.14.9401] [PMID: 18669466]
[34]
Geisberg, C.A.; Sawyer, D.B. Mechanisms of anthracycline cardiotoxicity and strategies to decrease cardiac damage. Curr. Hypertens. Rep., 2010, 12(6), 404-410.
[http://dx.doi.org/10.1007/s11906-010-0146-y] [PMID: 20842465]
[35]
Murabito, A.; Hirsch, E.; Ghigo, A. Mechanisms of anthracycline-induced cardiotoxicity: is mitochondrial dysfunction the answer? Front. Cardiovasc. Med., 2020, 7, 35.
[http://dx.doi.org/10.3389/fcvm.2020.00035] [PMID: 32226791]
[36]
Doroshow, J.H. Mechanisms of anthracycline-enhanced reactive oxygen metabolism in tumor cells. Oxid. Med. Cell. Longev., 2019, 2019, 1-14.
[http://dx.doi.org/10.1155/2019/9474823] [PMID: 31885826]
[37]
Cappetta, D.; De Angelis, A.; Sapio, L.; Prezioso, L.; Illiano, M.; Quaini, F.; Rossi, F.; Berrino, L.; Naviglio, S.; Urbanek, K. Oxidative stress and cellular response to doxorubicin: A common factor in the complex milieu of anthracycline cardiotoxicity. Oxid. Med. Cell. Longev., 2017, 2017, 1521020.
[http://dx.doi.org/10.1155/2017/1521020] [PMID: 29181122]
[38]
Sabbatino, F.; Conti, V.; Liguori, L.; Polcaro, G.; Corbi, G.; Manzo, V.; Tortora, V.; Carlomagno, C.; Vecchione, C.; Filippelli, A.; Pepe, S. Molecules and mechanisms to overcome oxidative stress inducing cardiovascular disease in cancer patients. Life (Basel), 2021, 11(2), 105.
[http://dx.doi.org/10.3390/life11020105] [PMID: 33573162]
[39]
Mordente, A.; Meucci, E.; Silvestrini, A.; Martorana, G.; Giardina, B. New developments in anthracycline-induced cardiotoxicity. Curr. Med. Chem., 2009, 16(13), 1656-1672.
[http://dx.doi.org/10.2174/092986709788186228] [PMID: 19442138]
[40]
Qin, Y.; Guo, T.; Wang, Z.; Zhao, Y. The role of iron in doxorubicin-induced cardiotoxicity: recent advances and implication for drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(24), 4793-4803.
[http://dx.doi.org/10.1039/D1TB00551K] [PMID: 34059858]
[41]
Robinson, E.L.; Azodi, M.; Heymans, S.; Heggermont, W. Anthracycline-related heart failure: Certain knowledge and open questions. Curr. Heart Fail. Rep., 2020, 17(6), 357-364.
[http://dx.doi.org/10.1007/s11897-020-00489-5] [PMID: 32964378]
[42]
Halliwell, B.; Adhikary, A.; Dingfelder, M.; Dizdaroglu, M. Hydroxyl radical is a significant player in oxidative DNA damage In vivo. Chem. Soc. Rev., 2021, 50(15), 8355-8360.
[http://dx.doi.org/10.1039/D1CS00044F] [PMID: 34128512]
[43]
Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int. J. Mol. Sci., 2021, 22(9), 4642.
[http://dx.doi.org/10.3390/ijms22094642] [PMID: 33924958]
[44]
Murphy, M.P.; Bayir, H.; Belousov, V.; Chang, C.J.; Davies, K.J.A.; Davies, M.J.; Dick, T.P.; Finkel, T.; Forman, H.J.; Janssen-Heininger, Y.; Gems, D.; Kagan, V.E.; Kalyanaraman, B.; Larsson, N.G.; Milne, G.L.; Nyström, T.; Poulsen, H.E.; Radi, R.; Van Remmen, H.; Schumacker, P.T.; Thornalley, P.J.; Toyokuni, S.; Winterbourn, C.C.; Yin, H.; Halliwell, B. Guidelines for measuring reactive oxygen species and oxidative damage in cells and In vivo. Nat. Metab., 2022, 4(6), 651-662.
[http://dx.doi.org/10.1038/s42255-022-00591-z] [PMID: 35760871]
[45]
McSweeney, K.M.; Bozza, W.P.; Alterovitz, W.L.; Zhang, B. Transcriptomic profiling reveals p53 as a key regulator of doxorubicin-induced cardiotoxicity. Cell Death Discov., 2019, 5(1), 102.
[http://dx.doi.org/10.1038/s41420-019-0182-6] [PMID: 31231550]
[46]
Tantawy, M.; Pamittan, F.G.; Singh, S.; Gong, Y. Epigenetic changes associated with anthracycline‐induced cardiotoxicity. Clin. Transl. Sci., 2021, 14(1), 36-46.
[http://dx.doi.org/10.1111/cts.12857] [PMID: 32770710]
[47]
Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[48]
Edwardson, D.; Narendrula, R.; Chewchuk, S.; Mispel-Beyer, K.; Mapletoft, J.; Parissenti, A. Role of drug metabolism in the cytotoxicity and clinical efficacy of anthracyclines. Curr. Drug Metab., 2015, 16(6), 412-426.
[http://dx.doi.org/10.2174/1389200216888150915112039] [PMID: 26321196]
[49]
Krishnamurthy, K.; Kanagasabai, R.; Druhan, L.J.; Ilangovan, G. Small heat shock proteins and doxorubicin-induced oxidative stress in the heart.In: Studies on Experimental Models; Basu, S.; Wiklund, L., Eds.; Humana Press: Totowa, NJ, 2011, pp. 105-130.
[http://dx.doi.org/10.1007/978-1-60761-956-7_5]
[50]
Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci., 2014, 2, 2.
[http://dx.doi.org/10.3389/fenvs.2014.00053]
[51]
Tomin, T.; Schittmayer, M.; Honeder, S.; Heininger, C.; Birner-Gruenberger, R. Irreversible oxidative post-translational modifications in heart disease. Expert Rev. Proteomics, 2019, 16(8), 681-693.
[http://dx.doi.org/10.1080/14789450.2019.1645602] [PMID: 31361162]
[52]
Mancilla, T.R; Iskra, B; Aune, G.J Doxorubicin-induced cardiomyopathy in children. Compr. Physiol., 2019, 9(3), 905-931.
[http://dx.doi.org/10.1002/cphy.c180017]
[53]
Volkova, M.; Russell, R. III Anthracycline cardiotoxicity: Prevalence, pathogenesis and treatment. Curr. Cardiol. Rev., 2012, 7(4), 214-220.
[http://dx.doi.org/10.2174/157340311799960645] [PMID: 22758622]
[54]
De Angelis, A.; Urbanek, K.; Cappetta, D.; Piegari, E.; Ciuffreda, L.P.; Rivellino, A.; Russo, R.; Esposito, G.; Rossi, F.; Berrino, L. Doxorubicin cardiotoxicity and target cells: a broader perspective. Cardiooncology, 2016, 2(1), 2.
[http://dx.doi.org/10.1186/s40959-016-0012-4] [PMID: 33530140]
[55]
Fabiani, I.; Aimo, A.; Grigoratos, C.; Castiglione, V.; Gentile, F.; Saccaro, L.F.; Arzilli, C.; Cardinale, D.; Passino, C.; Emdin, M. Oxidative stress and inflammation: determinants of anthracycline cardiotoxicity and possible therapeutic targets. Heart Fail. Rev., 2021, 26(4), 881-890.
[http://dx.doi.org/10.1007/s10741-020-10063-9] [PMID: 33319255]
[56]
Menna, P; Gonzalez, P.O; Chello, M; Covino, E; Salvatorelli, E; Minotti, G Anthracycline cardiotoxicity. Expert Opin. Drug Saf., 2012, 11(S1), S21-S36.
[http://dx.doi.org/10.1517/14740338.2011.589834]
[57]
Mordente, A.; Silvestrini, A.; Martorana, G.E.; Tavian, D.; Meucci, E. Inhibition of anthracycline alcohol metabolite formation in human heart cytosol: a potential role for several promising drugs. Drug Metab. Dispos., 2015, 43(11), 1691-1701.
[http://dx.doi.org/10.1124/dmd.115.065110] [PMID: 26265744]
[58]
Al-Hazmi, G.A.A.; Abou-Melha, K.S.; Althagafi, I.; El-Metwaly, N.; Shaaban, F.; Abdul Galil, M.S.; El-Bindary, A.A. Synthesis and structural characterization of oxovanadium(IV) complexes of dimedone derivatives. Appl. Organomet. Chem., 2020, 34(8), e5672.
[http://dx.doi.org/10.1002/aoc.5672]
[59]
Podyacheva, E.Y.; Kushnareva, E.A.; Karpov, A.A.; Toropova, Y.G. Analysis of models of doxorubicin-induced cardiomyopathy in rats and mice. a modern view from the perspective of the pathophysiologist and the clinician. Front. Pharmacol., 2021, 12, 670479.
[http://dx.doi.org/10.3389/fphar.2021.670479] [PMID: 34149423]
[60]
Mitry, M.A.; Edwards, J.G. Doxorubicin induced heart failure: Phenotype and molecular mechanisms. Int. J. Cardiol. Heart Vasc., 2016, 10, 17-24.
[http://dx.doi.org/10.1016/j.ijcha.2015.11.004] [PMID: 27213178]
[61]
Salvatorelli, E.; Guarnieri, S.; Menna, P.; Liberi, G.; Calafiore, A.M.; Mariggiò, M.A.; Mordente, A.; Gianni, L.; Minotti, G. Defective one- or two-electron reduction of the anticancer anthracycline epirubicin in human heart. Relative importance of vesicular sequestration and impaired efficiency of electron addition. J. Biol. Chem., 2006, 281(16), 10990-11001.
[http://dx.doi.org/10.1074/jbc.M508343200] [PMID: 16423826]
[62]
Angsutararux, P.; Luanpitpong, S.; Issaragrisil, S. Chemotherapy-induced cardiotoxicity: Overview of the roles of oxidative stress. Oxid. Med. Cell. Longev., 2015, 2015, 1-13.
[http://dx.doi.org/10.1155/2015/795602] [PMID: 26491536]
[63]
Piska, K.; Koczurkiewicz, P.; Bucki, A. Wójcik-Pszczoła, K.; Kołaczkowski, M.; Pękala, E. Metabolic carbonyl reduction of anthracyclines — role in cardiotoxicity and cancer resistance. Reducing enzymes as putative targets for novel cardioprotective and chemosensitizing agents. Invest. New Drugs, 2017, 35(3), 375-385.
[http://dx.doi.org/10.1007/s10637-017-0443-2] [PMID: 28283780]
[64]
Reinbolt, R.E.; Patel, R.; Pan, X.; Timmers, C.D.; Pilarski, R.; Shapiro, C.L.; Lustberg, M.B. Risk factors for anthracycline-associated cardiotoxicity. Support. Care Cancer, 2016, 24(5), 2173-2180.
[http://dx.doi.org/10.1007/s00520-015-3008-y] [PMID: 26563179]
[65]
Wu, B.B.; Leung, K.T.; Poon, E.N.Y. Mitochondrial-targeted therapy for doxorubicin-induced cardiotoxicity. Int. J. Mol. Sci., 2022, 23(3), 1912.
[http://dx.doi.org/10.3390/ijms23031912] [PMID: 35163838]
[66]
Al-Otaibi, T.K.; Weitzman, B.; Tahir, U.A.; Asnani, A. Genetics of anthracycline-associated cardiotoxicity. Front. Cardiovasc. Med., 2022, 9, 867873.
[http://dx.doi.org/10.3389/fcvm.2022.867873] [PMID: 35528837]
[67]
Liu, Y.; Fang, J.; Kim, Y.J.; Wong, M.K.; Wang, P. Codelivery of doxorubicin and paclitaxel by cross-linked multilamellar liposome enables synergistic antitumor activity. Mol. Pharm., 2014, 11(5), 1651-1661.
[http://dx.doi.org/10.1021/mp5000373] [PMID: 24673622]
[68]
Morelli, M.B.; Bongiovanni, C.; Da Pra, S.; Miano, C.; Sacchi, F.; Lauriola, M.; D’Uva, G. Cardiotoxicity of anticancer drugs: Molecular mechanisms and strategies for cardioprotection. Front. Cardiovasc. Med., 2022, 9, 847012.
[http://dx.doi.org/10.3389/fcvm.2022.847012] [PMID: 35497981]
[69]
Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev., 2004, 56(2), 185-229.
[http://dx.doi.org/10.1124/pr.56.2.6] [PMID: 15169927]
[70]
Huang, J.; Wu, R.; Chen, L.; Yang, Z.; Yan, D.; Li, M. Understanding anthracycline cardiotoxicity from mitochondrial aspect. Front. Pharmacol., 2022, 13, 811406.
[http://dx.doi.org/10.3389/fphar.2022.811406] [PMID: 35211017]
[71]
Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int. J. Mol. Med., 2019, 44(1), 3-15.
[http://dx.doi.org/10.3892/ijmm.2019.4188] [PMID: 31115493]
[72]
Pizzimenti, S.; Toaldo, C.; Pettazzoni, P.; Dianzani, M.U.; Barrera, G. The “two-faced” effects of reactive oxygen species and the lipid peroxidation product 4-hydroxynonenal in the hallmarks of cancer. Cancers (Basel), 2010, 2(2), 338-363.
[http://dx.doi.org/10.3390/cancers2020338] [PMID: 24281073]
[73]
Barrera, G.; Pizzimenti, S.; Dianzani, M.U. Lipid peroxidation: control of cell proliferation, cell differentiation and cell death. Mol. Aspects Med., 2008, 29(1-2), 1-8.
[http://dx.doi.org/10.1016/j.mam.2007.09.012] [PMID: 18037483]
[74]
Barrera, G. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol., 2012, 2012, 137289.
[http://dx.doi.org/10.5402/2012/137289] [PMID: 23119185]
[75]
Menna, P.; Salvatorelli, E. Primary prevention strategies for anthracycline cardiotoxicity: A brief overview. Chemotherapy, 2017, 62(3), 159-168.
[http://dx.doi.org/10.1159/000455823] [PMID: 28122377]
[76]
Cardinale, D.; Iacopo, F.; Cipolla, C.M. Cardiotoxicity of anthracyclines. Front. Cardiovasc. Med., 2020, 7, 26.
[http://dx.doi.org/10.3389/fcvm.2020.00026] [PMID: 32258060]
[77]
Bansal, N.; Adams, M.J.; Ganatra, S.; Colan, S.D.; Aggarwal, S.; Steiner, R.; Amdani, S.; Lipshultz, E.R.; Lipshultz, S.E. Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardiooncology, 2019, 5(1), 18.
[http://dx.doi.org/10.1186/s40959-019-0054-5] [PMID: 32154024]
[78]
Shah, A.N.; Gradishar, W.J. Adjuvant anthracyclines in breast cancer: What is their role? Oncologist, 2018, 23(10), 1153-1161.
[http://dx.doi.org/10.1634/theoncologist.2017-0672] [PMID: 30120159]
[79]
Bloom, M.W.; Hamo, C.E.; Cardinale, D.; Ky, B.; Nohria, A.; Baer, L.; Skopicki, H.; Lenihan, D.J.; Gheorghiade, M.; Lyon, A.R.; Butler, J. Cancer Therapy–Related cardiac dysfunction and heart failure. Circ. Heart Fail., 2016, 9(1), e002661.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.115.002661] [PMID: 26747861]
[80]
Cardinale, D.; Biasillo, G.; Cipolla, C.M. Curing cancer, saving the heart: A challenge that cardioncology should not miss. Curr. Cardiol. Rep., 2016, 18(6), 51.
[http://dx.doi.org/10.1007/s11886-016-0731-z] [PMID: 27108361]
[81]
Sadurska, E. Current views on anthracycline cardiotoxicity in childhood cancer survivors. Pediatr. Cardiol., 2015, 36(6), 1112-1119.
[http://dx.doi.org/10.1007/s00246-015-1176-7] [PMID: 25939787]
[82]
Franco, V.I.; Henkel, J.M.; Miller, T.L.; Lipshultz, S.E. Cardiovascular effects in childhood cancer survivors treated with anthracyclines. Cardiol. Res. Pract., 2011, 2011, 1-13.
[http://dx.doi.org/10.4061/2011/134679] [PMID: 21331374]
[83]
Huang, W.; Xu, R.; Zhou, B.; Lin, C.; Guo, Y.; Xu, H.; Guo, X. Clinical manifestations, monitoring, and prognosis: A review of cardiotoxicity after antitumor strategy. Front. Cardiovasc. Med., 2022, 9, 912329.
[http://dx.doi.org/10.3389/fcvm.2022.912329] [PMID: 35757327]
[84]
Alkofide, H.; Alnaim, L.; Alorf, N.; Alessa, W.; Bawazeer, G. Cardiotoxicity and cardiac monitoring among anthracycline-treated cancer patients: A retrospective cohort study. Cancer Manag. Res., 2021, 13, 5149-5159.
[http://dx.doi.org/10.2147/CMAR.S313874] [PMID: 34234558]
[85]
Abu Lila, A.S.; Ishida, T. Liposomal delivery systems: Design optimization and current applications. Biol. Pharm. Bull., 2017, 40(1), 1-10.
[http://dx.doi.org/10.1248/bpb.b16-00624] [PMID: 28049940]
[86]
Makwana, V.; Karanjia, J.; Haselhorst, T.; Anoopkumar-Dukie, S.; Rudrawar, S. Liposomal doxorubicin as targeted delivery platform: Current trends in surface functionalization. Int. J. Pharm., 2021, 593, 120117.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120117] [PMID: 33259901]
[87]
Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics, 2017, 9(4), 12.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[88]
Barenholz, Y.C. Doxil® — The first FDA-approved nano-drug: Lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[89]
Cao, Y.; Dong, X.; Chen, X. Polymer-modified liposomes for drug delivery: from fundamentals to applications. Pharmaceutics, 2022, 14(4), 778.
[http://dx.doi.org/10.3390/pharmaceutics14040778] [PMID: 35456613]
[90]
Rivankar, S. An overview of doxorubicin formulations in cancer therapy. J. Cancer Res. Ther., 2014, 10(4), 853-858.
[http://dx.doi.org/10.4103/0973-1482.139267] [PMID: 25579518]
[91]
Dong, M.; Luo, L.; Ying, X.; Lu, X.; Shen, J.; Jiang, Z.; Wang, L. Comparable efficacy and less toxicity of pegylated liposomal doxorubicin versus epirubicin for neoadjuvant chemotherapy of breast cancer: a case-control study. OncoTargets Ther., 2018, 11, 4247-4252.
[http://dx.doi.org/10.2147/OTT.S162003] [PMID: 30087568]
[92]
Petre, C.E.; Dittmer, D.P. Liposomal daunorubicin as treatment for Kaposi’s sarcoma. Int. J. Nanomedicine, 2007, 2(3), 277-288.
[PMID: 18019828]
[93]
Deshpande, P.P.; Biswas, S.; Torchilin, V.P. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond.), 2013, 8(9), 1509-1528.
[http://dx.doi.org/10.2217/nnm.13.118] [PMID: 23914966]
[94]
Xing, M.; Yan, F.; Yu, S.; Shen, P. Efficacy and cardiotoxicity of liposomal doxorubicin-based chemotherapy in advanced breast cancer: A meta-analysis of ten randomized controlled trials. PLoS One, 2015, 10(7), e0133569.
[http://dx.doi.org/10.1371/journal.pone.0133569] [PMID: 26204517]
[95]
Strother, R.; Matei, D. Pegylated liposomal doxorubicin in ovarian cancer. Ther. Clin. Risk Manag., 2009, 5(3), 639-650.
[PMID: 19707541]
[96]
Leonard, R.C.F.; Williams, S.; Tulpule, A.; Levine, A.M.; Oliveros, S. Improving the therapeutic index of anthracycline chemotherapy: Focus on liposomal doxorubicin (Myocet™). Breast, 2009, 18(4), 218-224.
[http://dx.doi.org/10.1016/j.breast.2009.05.004] [PMID: 19656681]
[97]
Rahman, A.M.; Yusuf, S.W.; Ewer, M.S. Anthracycline-induced cardiotoxicity and the cardiac-sparing effect of liposomal formulation. Int. J. Nanomedicine, 2007, 2(4), 567-583.
[PMID: 18203425]
[98]
Yost, S.; Konal, J.L.; Hoekstra, A.V. Prolonged use of pegylated liposomal doxorubicin in gynecologic malignancies. Gynecol. Oncol. Rep., 2019, 29, 89-93.
[http://dx.doi.org/10.1016/j.gore.2019.07.012] [PMID: 31467958]
[99]
Christodoulou, C.; Kostopoulos, I.; Kalofonos, H.P.; Lianos, E.; Bobos, M.; Briasoulis, E.; Gogas, H.; Razis, E.; Skarlos, D.V.; Fountzilas, G. Trastuzumab combined with pegylated liposomal doxorubicin in patients with metastatic breast cancer. phase II Study of the Hellenic Cooperative Oncology Group (HeCOG) with biomarker evaluation. Oncology, 2009, 76(4), 275-285.
[http://dx.doi.org/10.1159/000207504] [PMID: 19262067]
[100]
Schettini, F.; Giuliano, M.; Lambertini, M.; Bartsch, R.; Pinato, D.J.; Onesti, C.E.; Harbeck, N.; Lüftner, D.; Rottey, S.; van Dam, P.A.; Zaman, K.; Mustacchi, G.; Gligorov, J.; Awada, A.; Campone, M.; Wildiers, H.; Gennari, A.; Tjan-Heijnen, V.C.G.; Cortes, J.; Locci, M.; Paris, I.; Del Mastro, L.; De Placido, S.; Martín, M.; Jerusalem, G.; Venturini, S.; Curigliano, G.; Generali, D. Anthracyclines strike back: rediscovering non-pegylated liposomal doxorubicin in current therapeutic scenarios of breast cancer. Cancers (Basel), 2021, 13(17), 4421.
[http://dx.doi.org/10.3390/cancers13174421] [PMID: 34503231]
[101]
Macedo, A.V.S.; Hajjar, L.A.; Lyon, A.R.; Nascimento, B.R.; Putzu, A.; Rossi, L.; Costa, R.B.; Landoni, G.; Nogueira-Rodrigues, A.; Ribeiro, A.L.P. Efficacy of dexrazoxane in preventing anthracycline cardiotoxicity in breast cancer. JACC: CardioOncology, 2019, 1(1), 68-79.
[http://dx.doi.org/10.1016/j.jaccao.2019.08.003] [PMID: 34396164]
[102]
Ganatra, S.; Nohria, A.; Shah, S.; Groarke, J.D.; Sharma, A.; Venesy, D.; Patten, R.; Gunturu, K.; Zarwan, C.; Neilan, T.G.; Barac, A.; Hayek, S.S.; Dani, S.; Solanki, S.; Mahmood, S.S.; Lipshultz, S.E. Upfront dexrazoxane for the reduction of anthracycline-induced cardiotoxicity in adults with preexisting cardiomyopathy and cancer: A consecutive case series. Cardiooncology, 2019, 5(1), 1.
[http://dx.doi.org/10.1186/s40959-019-0036-7] [PMID: 32154008]
[103]
Sangweni, N.F.; van Vuuren, D.; Mabasa, L.; Gabuza, K.; Huisamen, B.; Naidoo, S.; Barry, R.; Johnson, R. Prevention of anthracycline-induced cardiotoxicity: The good and bad of current and alternative therapies. Front. Cardiovasc. Med., 2022, 9, 907266.
[http://dx.doi.org/10.3389/fcvm.2022.907266] [PMID: 35811736]
[104]
Herman, E.H.; Hasinoff, B.B.; Steiner, R.; Lipshultz, S.E. A review of the preclinical development of dexrazoxane. Prog. Pediatr. Cardiol., 2014, 36(1-2), 33-38.
[http://dx.doi.org/10.1016/j.ppedcard.2014.09.006]
[105]
Jirkovská, A.; Karabanovich, G.; Kubeš, J.; Skalická, V.; Melnikova, I. Korábečný, J.; Kučera, T.; Jirkovský, E.; Nováková, L.; Bavlovič Piskáčková, H.; Škoda, J.; Štěrba, M.; Austin, C.A.; Šimůnek, T.; Roh, J. Structure–Activity Relationship Study of Dexrazoxane Analogues Reveals ICRF-193 as the Most Potent Bisdioxopiperazine against Anthracycline Toxicity to Cardiomyocytes Due to Its Strong Topoisomerase IIβ Interactions. J. Med. Chem., 2021, 64(7), 3997-4019.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02157] [PMID: 33750129]
[106]
Kopp, L.M.; Womer, R.B.; Schwartz, C.L.; Ebb, D.H.; Franco, V.I.; Hall, D.; Barkauskas, D.A.; Krailo, M.D.; Grier, H.E.; Meyers, P.A.; Wexler, L.H.; Marina, N.M.; Janeway, K.A.; Gorlick, R.; Bernstein, M.L.; Lipshultz, S.E. Effects of dexrazoxane on doxorubicin-related cardiotoxicity and second malignant neoplasms in children with osteosarcoma: a report from the Children’s Oncology Group. Cardiooncology, 2019, 5(1), 15.
[http://dx.doi.org/10.1186/s40959-019-0050-9] [PMID: 32154021]
[107]
Hurvitz, S.A.; McAndrew, N.P.; Bardia, A.; Press, M.F.; Pegram, M.; Crown, J.P.; Fasching, P.A.; Ejlertsen, B.; Yang, E.H.; Glaspy, J.A.; Slamon, D.J. A careful reassessment of anthracycline use in curable breast cancer. NPJ Breast Cancer, 2021, 7(1), 134.
[http://dx.doi.org/10.1038/s41523-021-00342-5] [PMID: 34625570]
[108]
Langer, S. Dexrazoxane for the treatment of chemotherapy-related side effects. Cancer Manag. Res., 2014, 6, 357-363.
[http://dx.doi.org/10.2147/CMAR.S47238] [PMID: 25246808]
[109]
Mordente, A.; Meucci, E.; Martorana, G.E.; Tavian, D.; Silvestrini, A. Topoisomerases and Anthracyclines: Recent Advances and Perspectives in Anticancer Therapy and Prevention of Cardiotoxicity. Curr. Med. Chem., 2017, 24(15), 1607-1626.
[PMID: 27978799]
[110]
Barry, E.; Alvarez, J.A.; Scully, R.E.; Miller, T.L.; Lipshultz, S.E. Anthracycline-induced cardiotoxicity: course, pathophysiology, prevention and management. Expert Opin. Pharmacother., 2007, 8(8), 1039-1058.
[http://dx.doi.org/10.1517/14656566.8.8.1039] [PMID: 17516870]
[111]
Khasraw, M.; Bell, R.; Dang, C. Epirubicin: Is it like doxorubicin in breast cancer? A clinical review. Breast, 2012, 21(2), 142-149.
[http://dx.doi.org/10.1016/j.breast.2011.12.012] [PMID: 22260846]
[112]
Boekel, N.B.; Duane, F.K.; Jacobse, J.N.; Hauptmann, M.; Schaapveld, M.; Sonke, G.S.; Gietema, J.A.; Hooning, M.J.; Seynaeve, C.M.; Maas, A.H.E.M.; Darby, S.C.; Aleman, B.M.P.; Taylor, C.W.; Leeuwen, F.E. Heart failure after treatment for breast cancer. Eur. J. Heart Fail., 2020, 22(2), 366-374.
[http://dx.doi.org/10.1002/ejhf.1620] [PMID: 31721395]
[113]
McGowan, J.V.; Chung, R.; Maulik, A.; Piotrowska, I.; Walker, J.M.; Yellon, D.M. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc. Drugs Ther., 2017, 31(1), 63-75.
[http://dx.doi.org/10.1007/s10557-016-6711-0] [PMID: 28185035]
[114]
Goida, A.; Kuzin, Y.; Evtugyn, V.; Porfireva, A.; Evtugyn, G.; Hianik, T. Electrochemical sensing of idarubicin—DNA interaction using electropolymerized azure B and methylene blue mediation. Chemosensors (Basel), 2022, 10(1), 33.
[http://dx.doi.org/10.3390/chemosensors10010033]
[115]
Caspi, O.; Aronson, D. Surviving cancer without a broken heart. Rambam Maimonides Med. J., 2019, 10(2), e0012.
[http://dx.doi.org/10.5041/RMMJ.10366] [PMID: 31002639]
[116]
Hulst, M.B.; Grocholski, T.; Neefjes, J.J.C.; van Wezel, G.P.; Metsä-Ketelä, M. Anthracyclines: biosynthesis, engineering and clinical applications. Nat. Prod. Rep., 2022, 39(4), 814-841.
[http://dx.doi.org/10.1039/D1NP00059D] [PMID: 34951423]
[117]
Dinney, C.P.N.; Greenberg, R.E.; Steinberg, G.D. Intravesical valrubicin in patients with bladder carcinoma in situ and contraindication to or failure after bacillus Calmette-Guérin. Urol. Oncol., 2013, 31(8), 1635-1642.
[http://dx.doi.org/10.1016/j.urolonc.2012.04.010] [PMID: 22575238]
[118]
El-Gammal, O.A.; El-Bindary, A.A.Sh.; Mohamed, F.; Rezk, G.N.; El-Bindary, M.A. Synthesis, characterization, design, molecular docking, anti COVID-19 activity, DFT calculations of novel Schiff base with some transition metal complexes. J. Mol. Liq., 2022, 346, 117850.
[http://dx.doi.org/10.1016/j.molliq.2021.117850]
[119]
Murakami, H.; Yamamoto, N.; Shibata, T.; Takeda, K.; Ichinose, Y.; Ohe, Y.; Yamamoto, N.; Takeda, Y.; Kudoh, S.; Atagi, S.; Satouchi, M.; Kiura, K.; Nogami, N.; Endo, M.; Watanabe, H.; Tamura, T. A single-arm confirmatory study of amrubicin therapy in patients with refractory small-cell lung cancer: Japan Clinical Oncology Group Study (JCOG0901). Lung Cancer, 2014, 84(1), 67-72.
[http://dx.doi.org/10.1016/j.lungcan.2014.01.012] [PMID: 24530204]
[120]
Kurata, T.; Okamoto, I.; Tamura, K.; Fukuoka, M. Amrubicin for non-small-cell lung cancer and small-cell lung cancer. Invest. New Drugs, 2007, 25(5), 499-504.
[http://dx.doi.org/10.1007/s10637-007-9069-0] [PMID: 17628745]
[121]
Inoue, A.; Sugawara, S.; Yamazaki, K.; Maemondo, M.; Suzuki, T.; Gomi, K.; Takanashi, S.; Inoue, C.; Inage, M.; Yokouchi, H.; Watanabe, H.; Tsukamoto, T.; Saijo, Y.; Ishimoto, O.; Hommura, F.; Nukiwa, T. Randomized phase II trial comparing amrubicin with topotecan in patients with previously treated small-cell lung cancer: North Japan Lung Cancer Study Group Trial 0402. J. Clin. Oncol., 2008, 26(33), 5401-5406.
[http://dx.doi.org/10.1200/JCO.2008.18.1974] [PMID: 18854562]
[122]
Ettinger, D.S. Amrubicin for the treatment of small cell lung cancer: does effectiveness cross the Pacific? J. Thorac. Oncol., 2007, 2(2), 160-165.
[http://dx.doi.org/10.1097/JTO.0b013e31802f1cd9] [PMID: 17410034]
[123]
Lothstein, L.; Soberman, J.; Parke, D.; Gandhi, J.; Sweatman, T.; Seagroves, T. Pivarubicin is more effective than doxorubicin against triple-negative breast cancer In vivo. Oncol. Res., 2020, 28(5), 451-465.
[http://dx.doi.org/10.3727/096504020X15898794315356] [PMID: 32430093]
[124]
Wander, D.P.A.; van der Zanden, S.Y.; van der Marel, G.A.; Overkleeft, H.S.; Neefjes, J.; Codée, J.D.C. Doxorubicin and Aclarubicin: Shuffling anthracycline glycans for improved anticancer agents. J. Med. Chem., 2020, 63(21), 12814-12829.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01191] [PMID: 33064004]
[125]
Sabatino, M.A.; Marabese, M.; Ganzinelli, M.; Caiola, E.; Geroni, C.; Broggini, M. Down-regulation of the Nucleotide Excision Repair gene XPG as a new mechanism of drug resistance in human and murine cancer cells. Mol. Cancer, 2010, 9(1), 259.
[http://dx.doi.org/10.1186/1476-4598-9-259] [PMID: 20868484]
[126]
Mehta, L.S.; Watson, K.E.; Barac, A.; Beckie, T.M.; Bittner, V.; Cruz-Flores, S.; Dent, S.; Kondapalli, L.; Ky, B.; Okwuosa, T.; Piña, I.L.; Volgman, A.S. Cardiovascular disease and breast cancer: where these entities intersect: a scientific statement from the american heart association. Circulation, 2018, 137(8), e30-e66.
[http://dx.doi.org/10.1161/CIR.0000000000000556] [PMID: 29437116]
[127]
Vuong, J.T.; Stein-Merlob, A.F.; Cheng, R.K.; Yang, E.H. Novel therapeutics for anthracycline induced cardiotoxicity. Front. Cardiovasc. Med., 2022, 9, 863314.
[http://dx.doi.org/10.3389/fcvm.2022.863314] [PMID: 35528842]
[128]
Sacco, G.; Bigioni, M.; Lopez, G.; Evangelista, S.; Manzini, S.; Maggi, C.A. ACE inhibition and protection from doxorubicin-induced cardiotoxicity in the rat. Vascul. Pharmacol., 2009, 50(5-6), 166-170.
[http://dx.doi.org/10.1016/j.vph.2009.01.001] [PMID: 19344651]
[129]
Zhang, Y.; Liu, J.; Li, Y.; Tan, N.; Du, K.; Zhao, H.; Wang, J.; Zhang, J.; Wang, W.; Wang, Y. Protective role of enalapril in anthracycline-induced cardiotoxicity: a systematic review. Front. Pharmacol., 2020, 11, 788.
[http://dx.doi.org/10.3389/fphar.2020.00788] [PMID: 32536868]
[130]
Blanter, J.B.; Frishman, W.H. The Preventive Role of Angiotensin Converting Enzyme Inhibitors/Angiotensin-II Receptor Blockers and β -Adrenergic Blockers in Anthracycline- and Trastuzumab-Induced Cardiotoxicity. Cardiol. Rev., 2019, 27(5), 256-259.
[http://dx.doi.org/10.1097/CRD.0000000000000252] [PMID: 31008768]
[131]
Saidi, A.; Alharethi, R. Management of chemotherapy induced cardiomyopathy. Curr. Cardiol. Rev., 2012, 7(4), 245-249.
[http://dx.doi.org/10.2174/157340311799960681] [PMID: 22758625]
[132]
Abuosa, A.M.; Elshiekh, A.H.; Qureshi, K.; Abrar, M.B.; Kholeif, M.A.; Kinsara, A.J.; Andejani, A.; Ahmed, A.H.; Cleland, J.G.F. Prophylactic use of carvedilol to prevent ventricular dysfunction in patients with cancer treated with doxorubicin. Indian Heart J., 2018, 70(Suppl 3)(Suppl. 3), S96- S100.
[http://dx.doi.org/10.1016/j.ihj.2018.06.011] [PMID: 30595329]
[133]
Ajami, G.H.; Amoozgar, H.; Borzouee, M.; Karimi, M.; Piravian, F.; Ashrafi, A.; Kheirandish, Z. Efficacy of carvedilol in patients with dilated cardiomyopathy due to beta-thalassemia major; a double-blind randomized controlled trial. Iran. J. Pediatr., 2010, 20(3), 277-283.
[PMID: 23056717]
[134]
Alanazi, A.M.; Fadda, L.; Alhusaini, A.; Ahmad, R.; Hasan, I.H.; Mahmoud, A.M. Liposomal resveratrol and/or carvedilol attenuate doxorubicin-induced cardiotoxicity by modulating inflammation, oxidative stress and S100A1 in rats. Antioxidants, 2020, 9(2), 159.
[http://dx.doi.org/10.3390/antiox9020159] [PMID: 32079097]
[135]
Guglin, M.; Krischer, J.; Tamura, R.; Fink, A.; Bello-Matricaria, L.; McCaskill-Stevens, W.; Munster, P.N. Randomized trial of lisinopril versus carvedilol to prevent trastuzumab cardiotoxicity in patients with breast cancer. J. Am. Coll. Cardiol., 2019, 73(22), 2859-2868.
[http://dx.doi.org/10.1016/j.jacc.2019.03.495] [PMID: 31171092]
[136]
Curigliano, G.; Lenihan, D.; Fradley, M.; Ganatra, S.; Barac, A.; Blaes, A.; Herrmann, J.; Porter, C.; Lyon, A.R.; Lancellotti, P.; Patel, A.; DeCara, J.; Mitchell, J.; Harrison, E.; Moslehi, J.; Witteles, R.; Calabro, M.G.; Orecchia, R.; de Azambuja, E.; Zamorano, J.L.; Krone, R.; Iakobishvili, Z.; Carver, J.; Armenian, S.; Ky, B.; Cardinale, D.; Cipolla, C.M.; Dent, S.; Jordan, K. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann. Oncol., 2020, 31(2), 171-190.
[http://dx.doi.org/10.1016/j.annonc.2019.10.023] [PMID: 31959335]
[137]
Zhang, J.; Cui, X.; Yan, Y.; Li, M.; Yang, Y.; Wang, J.; Zhang, J. Research progress of cardioprotective agents for prevention of anthracycline cardiotoxicity. Am. J. Transl. Res., 2016, 8(7), 2862-2875.
[PMID: 27508008]
[138]
Seicean, S.; Seicean, A.; Plana, J.C.; Budd, G.T.; Marwick, T.H. Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study. J. Am. Coll. Cardiol., 2012, 60(23), 2384-2390.
[http://dx.doi.org/10.1016/j.jacc.2012.07.067] [PMID: 23141499]
[139]
Chotenimitkhun, R.; D’Agostino, R., Jr; Lawrence, J.A.; Hamilton, C.A.; Jordan, J.H.; Vasu, S.; Lash, T.L.; Yeboah, J.; Herrington, D.M.; Hundley, W.G. Chronic statin administration may attenuate early anthracycline-associated declines in left ventricular ejection function. Can. J. Cardiol., 2015, 31(3), 302-307.
[http://dx.doi.org/10.1016/j.cjca.2014.11.020] [PMID: 25662284]
[140]
Acar, Z.; Kale, A.; Turgut, M.; Demircan, S.; Durna, K.; Demir, S.; Meriç, M. Meriç, M.; Ağaç, M.T. Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J. Am. Coll. Cardiol., 2011, 58(9), 988-989.
[http://dx.doi.org/10.1016/j.jacc.2011.05.025] [PMID: 21851890]
[141]
Lloyd-Jones, D.M.; Goff, D.; Stone, N.J. Statins, risk assessment, and the new American prevention guidelines. Lancet, 2014, 383(9917), 600-602.
[http://dx.doi.org/10.1016/S0140-6736(13)62348-X] [PMID: 24315619]
[142]
Hunyadi, A. The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med. Res. Rev., 2019, 39(6), 2505-2533.
[http://dx.doi.org/10.1002/med.21592] [PMID: 31074028]
[143]
Senoner, T.; Dichtl, W. Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients, 2019, 11(9), 2090.
[http://dx.doi.org/10.3390/nu11092090] [PMID: 31487802]
[144]
Rawat, P.S.; Jaiswal, A.; Khurana, A.; Bhatti, J.S.; Navik, U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed. Pharmacother., 2021, 139, 111708.
[http://dx.doi.org/10.1016/j.biopha.2021.111708] [PMID: 34243633]
[145]
Leopold, J.A. Antioxidants and coronary artery disease. Coron. Artery Dis., 2015, 26(2), 176-183.
[http://dx.doi.org/10.1097/MCA.0000000000000187] [PMID: 25369999]
[146]
Goszcz, K.; Deakin, S.J.; Duthie, G.G.; Stewart, D.; Leslie, S.J.; Megson, I.L. Antioxidants in cardiovascular therapy: Panacea or false hope? Front. Cardiovasc. Med., 2015, 2, 29.
[http://dx.doi.org/10.3389/fcvm.2015.00029] [PMID: 26664900]
[147]
Elbaky, N.A.A.; El-Orabi, N.F.; Fadda, L.M.; Abd-Elkader, O.H.; Ali, H.M. Role of N-acetylcysteine and coenzyme Q10 in the amelioration of myocardial energy expenditure and oxidative stress, induced by carbon tetrachloride intoxication in rats. Dose Response, 2018, 16(3), 1559325818790158.
[http://dx.doi.org/10.1177/1559325818790158] [PMID: 30116167]
[148]
Baker, W.L.; Anglade, M.W.; Baker, E.L.; White, C.M.; Kluger, J.; Coleman, C.I. Use of N-acetylcysteine to reduce post-cardiothoracic surgery complications: a meta-analysis. Eur. J. Cardiothorac. Surg., 2009, 35(3), 521-527.
[http://dx.doi.org/10.1016/j.ejcts.2008.11.027] [PMID: 19147369]
[149]
Kumar, A.; Kaur, H.; Devi, P.; Mohan, V. Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome. Pharmacol. Ther., 2009, 124(3), 259-268.
[http://dx.doi.org/10.1016/j.pharmthera.2009.07.003] [PMID: 19638284]
[150]
Kaiserová, H. Šimůnek, T.; van der Vijgh, W.J.F.; Bast, A.; Kvasničková, E. Flavonoids as protectors against doxorubicin cardiotoxicity: Role of iron chelation, antioxidant activity and inhibition of carbonyl reductase. Biochim. Biophys. Acta Mol. Basis Dis., 2007, 1772(9), 1065-1074.
[http://dx.doi.org/10.1016/j.bbadis.2007.05.002] [PMID: 17572073]
[151]
Gorini, S.; Kim, S.K.; Infante, M.; Mammi, C.; La Vignera, S.; Fabbri, A.; Jaffe, I.Z.; Caprio, M. Role of aldosterone and mineralocorticoid receptor in cardiovascular aging. Front. Endocrinol. (Lausanne), 2019, 10, 584.
[http://dx.doi.org/10.3389/fendo.2019.00584] [PMID: 31507534]
[152]
Liu, G.; Liu, Y.; Wang, R.; Hou, T.; Chen, C.; Zheng, S.; Dong, Z. Spironolactone attenuates doxorubicin-induced cardiotoxicity in rats. Cardiovasc. Ther., 2016, 34(4), 216-224.
[http://dx.doi.org/10.1111/1755-5922.12189] [PMID: 27097055]
[153]
Yavas, G.; Celik, E.; Yavas, C.; Elsurer, C.; Afsar, R.E. Spironolactone ameliorates the cardiovascular toxicity induced by concomitant trastuzumab and thoracic radiotherapy. Rep. Pract. Oncol. Radiother., 2017, 22(4), 295-302.
[http://dx.doi.org/10.1016/j.rpor.2017.01.004] [PMID: 28507459]
[154]
Lipshultz, S.E.; Herman, E.H. Anthracycline cardiotoxicity: the importance of horizontally integrating pre-clinical and clinical research. Cardiovasc. Res., 2018, 114(2), 205-209.
[http://dx.doi.org/10.1093/cvr/cvx246] [PMID: 29272330]
[155]
Akpek, M.; Ozdogru, I.; Sahin, O.; Inanc, M.; Dogan, A.; Yazici, C.; Berk, V.; Karaca, H.; Kalay, N.; Oguzhan, A.; Ergin, A. Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur. J. Heart Fail., 2015, 17(1), 81-89.
[http://dx.doi.org/10.1002/ejhf.196] [PMID: 25410653]
[156]
Bosch, X.; Rovira, M.; Sitges, M.; Domènech, A.; Ortiz-Pérez, J.T.; de Caralt, T.M.; Morales-Ruiz, M.; Perea, R.J.; Monzó, M.; Esteve, J. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J. Am. Coll. Cardiol., 2013, 61(23), 2355-2362.
[http://dx.doi.org/10.1016/j.jacc.2013.02.072] [PMID: 23583763]
[157]
Gulati, G.; Heck, S.L.; Røsjø, H.; Ree, A.H.; Hoffmann, P.; Hagve, T.A.; Norseth, J.; Gravdehaug, B.; Steine, K.; Geisler, J.; Omland, T. Neurohormonal blockade and circulating cardiovascular biomarkers during anthracycline therapy in breast cancer patients: results from the PRADA (prevention of cardiac dysfunction during adjuvant breast cancer therapy) Study. J. Am. Heart Assoc., 2017, 6(11), e006513.
[http://dx.doi.org/10.1161/JAHA.117.006513] [PMID: 29118031]
[158]
Carrasco, R.; Ramirez, M.C.; Nes, K.; Schuster, A.; Aguayo, R.; Morales, M.; Ramos, C.; Hasson, D.; Sotomayor, C.G.; Henriquez, P.; Cortés, I.; Erazo, M.; Salas, C.; Gormaz, J.G. Prevention of doxorubicin-induced Cardiotoxicity by pharmacological non-hypoxic myocardial preconditioning based on Docosahexaenoic Acid (DHA) and carvedilol direct antioxidant effects: study protocol for a pilot, randomized, double-blind, controlled trial (CarDHA trial). Trials, 2020, 21(1), 137.
[http://dx.doi.org/10.1186/s13063-019-3963-6] [PMID: 32019575]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy