Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Organic Chemistry

Cyclization of 2-Aminopyridines as Binucleophile and Mucobromic Acid as C3 Synthon: A New Access to Imidazo[1,2-a]Pyridines

Author(s): Qi Chen, Huan-Qing Li, Zhao-Hua Chen, Zu-Jia Chen, Kai Yang*, You-Cai Zhang and Zhao-Yang Wang*

Volume 3, Issue 4, 2023

Published on: 10 May, 2023

Page: [309 - 319] Pages: 11

DOI: 10.2174/2210298103666230419084204

conference banner
Abstract

For the first time, we have developed a strategy that provides an access to imidazo[ 1,2-a] pyridines via the cyclization of 2-aminopyridine with mucobromic acid as C3 synthon. In the combination with theoretical calculation, the reaction mechanism is proposed.

Background: 2-Aminopyridines are the typical pyridine α-site derivatives, which have received growing interest in using as a kind of synthons in organic synthesis and drug synthesis because of their special binucleophilic framework.

Methods: All these obtained compounds were characterized by NMR. Among them, 3a was characterized by single-crystal X-ray analysis. All the theoretical calculation works were performed by Gaussian software.

Results: A series of the desired compounds can be synthesized at room temperature via a mild procedure under the promotion of simple inorganic base K2CO3.

Conclusion: This mild strategy fits the concept of green chemistry, providing a novel idea for the construction of nitrogen-containing polyheterocyclic compounds.

Keywords: Imidazo[1, 2-a]pyridines, 2-aminopyridines, mucobromic acid, cyclization, binucleophile, green synthesis.

« Previous
Graphical Abstract
[1]
Almousa, R.; Wen, X.; Na, S.; Anderson, G.; Xie, D. A modified polyvinylchloride surface with antibacterial and antifouling functions. Polym. Adv. Technol., 2019, 30(5), 1216-1225.
[http://dx.doi.org/10.1002/pat.4554]
[2]
Chang, Y.; Wang, P.C.; Ma, H.M.; Chen, S.Y.; Fu, Y.H.; Liu, Y.Y.; Wang, X.; Yu, G.C.; Huang, T.; Hibbs, D.E.; Zhou, H.B.; Chen, W.M.; Lin, J.; Wang, C.; Zheng, J.X.; Sun, P.H. Design, synthesis and evaluation of halogenated furanone derivatives as quorum sensing inhibitors in Pseudomonas aeruginosa. Eur. J. Pharm. Sci., 2019, 140, 105058.
[http://dx.doi.org/10.1016/j.ejps.2019.105058] [PMID: 31472255]
[3]
Humphreys, P.G.; Bamborough, P.; Chung, C.; Craggs, P.D.; Gordon, L.; Grandi, P.; Hayhow, T.G.; Hussain, J.; Jones, K.L.; Lindon, M.; Michon, A.M.; Renaux, J.F.; Suckling, C.J.; Tough, D.F.; Prinjha, R.K. Discovery of a potent, cell penetrant, and selective p300/CBP-associated factor (PCAF)/general control nonderepressible 5 (GCN5) bromodomain chemical probe. J. Med. Chem., 2017, 60(2), 695-709.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01566] [PMID: 28002667]
[4]
Byczek-Wyrostek, A.; Kitel, R.; Rumak, K.; Skonieczna, M.; Kasprzycka, A.; Walczak, K. Simple 2(5H)-furanone derivatives with selective cytotoxicity towards non-small cell lung cancer cell line A549 – Synthesis, structure-activity relationship and biological evaluation. Eur. J. Med. Chem., 2018, 150, 687-697.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.021] [PMID: 29571156]
[5]
Chu, S.; Münster, N.; Balan, T.; Smith, M.D. A cascade strategy enables a total synthesis of (±)-morphine. Angew. Chem. Int. Ed., 2016, 55(46), 14306-14309.
[http://dx.doi.org/10.1002/anie.201608526] [PMID: 27735107]
[6]
Ahoulou, E.O.; Drinkard, K.K.; Basnet, K.; St Lorenz, A.; Taratula, O.; Henary, M.; Grant, K.B. DNA Photocleavage in the near-infrared wavelength range by 2-quinolinium dicarbocyanine dyes. Molecules, 2020, 25(12), 2926.
[http://dx.doi.org/10.3390/molecules25122926] [PMID: 32630496]
[7]
Huo, J.; Hu, Z.; Chen, D.; Luo, S.; Wang, Z.; Gao, Y.; Zhang, M.; Chen, H. Preparation and characterization of poly-1,2,3-triazole with chiral 2(5H)-furanone moiety as potential optical brightening agents2520. ACS Omega, 2017, 2(9), 5557-5564.
[http://dx.doi.org/10.1021/acsomega.7b00196] [PMID: 31457821]
[8]
Horvath, K.L.; Magann, N.L.; Sowden, M.J.; Gardiner, M.G.; Sherburn, M.S. Unlocking acyclic π-bond rich structure space with tetraethynylethylene-tetravinylethylene hybrids. J. Am. Chem. Soc., 2019, 141(50), 19746-19753.
[http://dx.doi.org/10.1021/jacs.9b08885] [PMID: 31747753]
[9]
Yang, K.; Chen, Z.X.; Zhou, Y.J.; Chen, Q.; Yu, S.W.; Luo, S.H.; Wang, Z.Y. Simple inorganic base promoted polycyclic construction using mucohalic acid as a C3 synthon: synthesis and AIE probe application of benzo[4,5]imidazo[1,2- a]pyridines. Org. Chem. Front., 2022, 9(4), 1127-1136.
[http://dx.doi.org/10.1039/D1QO01753E]
[10]
Ma, S.; Hill, C.K.; Olen, C.L.; Hartwig, J.F. Ruthenium-catalyzed hydroamination of unactivated terminal alkenes with stoichiometric amounts of alkene and an ammonia surrogate by sequential oxidation and reduction. J. Am. Chem. Soc., 2021, 143(1), 359-368.
[http://dx.doi.org/10.1021/jacs.0c11043] [PMID: 33356181]
[11]
Khatua, H.; Das, S.K.; Roy, S.; Chattopadhyay, B. Dual reactivity of 1,2,3,4-tetrazole: Manganese-catalyzed click reaction and denitrogenative annulation. Angew. Chem. Int. Ed., 2021, 60(1), 304-312.
[http://dx.doi.org/10.1002/anie.202009078] [PMID: 32929858]
[12]
Muthengi, A.; Wimalasena, V.K.; Yosief, H.O.; Bikowitz, M.J.; Sigua, L.H.; Wang, T.; Li, D.; Gaieb, Z.; Dhawan, G.; Liu, S.; Erickson, J.; Amaro, R.E.; Schönbrunn, E.; Qi, J.; Zhang, W. Development of dimethylisoxazole-attached imidazo[1,2-a]pyridines as potent and selective CBP/P300 inhibitors. J. Med. Chem., 2021, 64(9), 5787-5801.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02232] [PMID: 33872011]
[13]
Chen, Q.; Chen, S.; Wu, H.; Zeng, X.; Chen, W.; Sun, G.; Wang, Z. Application of 2-aminopyridines in the synthesis of five- and six-membered azaheterocycles. Youji Huaxue, 2021, 41(9), 3482-3491.
[http://dx.doi.org/10.6023/cjoc202104011]
[14]
Yang, Z.; Zhan, Y.; Qiu, Z.; Zeng, J.; Guo, J.; Hu, S.; Zhao, Z.; Li, X.; Ji, S.; Huo, Y.; Su, S. Stimuli-responsive aggregation-induced delayed fluorescence emitters featuring the asymmetric D-A structure with a novel diarylketone acceptor toward efficient OLEDs with negligible efficiency roll-off. ACS Appl. Mater. Interfaces, 2020, 12(26), acsami.0c07612.
[http://dx.doi.org/10.1021/acsami.0c07612] [PMID: 32508095]
[15]
Mutai, T.; Sasaki, T.; Sakamoto, S.; Yoshikawa, I.; Houjou, H.; Takamizawa, S. A superelastochromic crystal. Nat. Commun., 2020, 11(1), 1824.
[http://dx.doi.org/10.1038/s41467-020-15663-5] [PMID: 32286312]
[16]
Rödström, K.E.J.; Kiper, A.K.; Zhang, W.; Rinné, S.; Pike, A.C.W.; Goldstein, M.; Conrad, L.J.; Delbeck, M.; Hahn, M.G.; Meier, H.; Platzk, M.; Quigley, A.; Speedman, D.; Shrestha, L.; Mukhopadhyay, S.M.M.; Burgess-Brown, N.A.; Tucker, S.J.; Müller, T.; Decher, N.; Carpenter, E.P. A lower X-gate in TASK channels traps inhibitors within the vestibule. Nature, 2020, 582(7812), 443-447.
[http://dx.doi.org/10.1038/s41586-020-2250-8] [PMID: 32499642]
[17]
Liu, H.; Qian, C.; Yang, T.; Wang, Y.; Luo, J.; Zhang, C.; Wang, X.; Wang, X.; Guo, Z. Small molecule-mediated co-assembly of amyloid-β oligomers reduces neurotoxicity through promoting non-fibrillar aggregation. Chem. Sci., 2020, 11(27), 7158-7169.
[http://dx.doi.org/10.1039/D0SC00392A] [PMID: 34123000]
[18]
Sugihara, N.; Suzuki, K.; Nishimoto, Y.; Yasuda, M. Photoredox-catalyzed C-F bond allylation of per-fluoroalkylarenes at the benzylic position. J. Am. Chem. Soc., 2021, 143(25), 9308-9313.
[http://dx.doi.org/10.1021/jacs.1c03760] [PMID: 34075740]
[19]
Lv, S.; Han, X.; Wang, J.Y.; Zhou, M.; Wu, Y.; Ma, L.; Niu, L.; Gao, W.; Zhou, J.; Hu, W.; Cui, Y.; Chen, J. Tunable electrochemical C-N versus N-N bond formation of nitrogen-centered radicals enabled by dehydrogenative dearomatization: Biological applications. Angew. Chem. Int. Ed., 2020, 59(28), 11583-11590.
[http://dx.doi.org/10.1002/anie.202001510] [PMID: 32203637]
[20]
Luo, D.; Guo, S.; He, F.; Chen, S.; Dai, A.; Zhang, R.; Wu, J. Design, synthesis, and bioactivity of α-ketoamide derivatives bearing a vanillin skeleton for crop diseases. J. Agric. Food Chem., 2020, 68(27), 7226-7234.
[http://dx.doi.org/10.1021/acs.jafc.0c00724] [PMID: 32530620]
[21]
Fersing, C.; Boudot, C.; Castera-Ducros, C.; Pinault, E.; Hutter, S.; Paoli-Lombardo, R.; Primas, N.; Pedron, J.; Seguy, L.; Bourgeade-Delmas, S.; Sournia-Saquet, A.; Stigliani, J.L.; Brossas, J.Y.; Paris, L.; Valentin, A.; Wyllie, S.; Fairlamb, A.H.; Boutet-Robinet, É.; Corvaisier, S.; Since, M.; Malzert-Fréon, A.; Destere, A.; Mazier, D.; Rathelot, P.; Courtioux, B.; Azas, N.; Verhaeghe, P.; Vanelle, P. 8-Alkynyl-3-nitroimidazopyridines display potent antitrypanosomal activity against both T. b. brucei and cruzi. Eur. J. Med. Chem., 2020, 202, 112558.
[http://dx.doi.org/10.1016/j.ejmech.2020.112558] [PMID: 32652409]
[22]
Alzain, A.A.; Brisson, L.; Delaye, P.O.; Pénichon, M.; Chadet, S.; Besson, P.; Chevalier, S.; Allouchi, H.; Mohamed, M.A.; Roger, S.; Enguehard-Gueiffier, C. Bioinspired imidazo[1,2-a:4,5-c′]dipyridines with dual antiproliferative and anti-migrative properties in human cancer cells: The SAR investigation. Eur. J. Med. Chem., 2021, 218, 113258.
[http://dx.doi.org/10.1016/j.ejmech.2021.113258] [PMID: 33813152]
[23]
Ghashghaei, O.; Pedrola, M.; Seghetti, F.; Martin, V.V.; Zavarce, R.; Babiak, M.; Novacek, J.; Hartung, F.; Rolfes, K.M.; Haarmann-Stemmann, T.; Lavilla, R. Extended multicomponent reactions with indole aldehydes: access to unprecedented polyheterocyclic scaffolds, ligands of the aryl hydrocarbon receptor. Angew. Chem. Int. Ed., 2021, 60(5), 2603-2608.
[http://dx.doi.org/10.1002/anie.202011253] [PMID: 33048416]
[24]
Chen, W.; Li, Z. One-pot synthesis of 3-methyl-2-arylimidazo[1,2-a]pyridines using calcium carbide as an alkyne source. J. Org. Chem., 2022, 87(1), 76-84.
[http://dx.doi.org/10.1021/acs.joc.1c01877] [PMID: 34933559]
[25]
Kusy, D.; Maniukiewicz, W. Błażewska, K.M. Microwave-assisted synthesis of 3-formyl substituted imidazo[1,2-a]pyridines. Tetrahedron Lett., 2019, 60(45), 151244.
[http://dx.doi.org/10.1016/j.tetlet.2019.151244]
[26]
Zhan, H.; Zhao, L.; Liao, J.; Li, N.; Chen, Q.; Qiu, S.; Cao, H. Gold-catalyzed synthesis of 3-acylimidazo[1,2-a]pyridines via carbene oxidation. Adv. Synth. Catal., 2015, 357(1), 46-50.
[http://dx.doi.org/10.1002/adsc.201400605]
[27]
Rao, C.; Mai, S.; Song, Q. Cu-Catalyzed synthesis of 3-formyl imidazo[1,2-a]pyridines and imidazo[1,2-a]pyrimidines by employing ethyl tertiary amines as carbon sources. Org. Lett., 2017, 19(18), 4726-4729.
[http://dx.doi.org/10.1021/acs.orglett.7b02015] [PMID: 28849656]
[28]
Wu, H-Q.; Luo, S-H.; Cao, L.; Shi, H-N.; Wang, B-W.; Wang, Z-Y. DABCO-catalyzed C-O bond formation from Csp2-X (X=Br, Cl) compounds and alkyl alcohol. Asian J. Org. Chem., 2018, 7(12), 2479-2483.
[http://dx.doi.org/10.1002/ajoc.201800517]
[29]
Wu, Y.C.; Luo, S.H.; Mei, W.J.; Cao, L.; Wu, H.Q.; Wang, Z.Y. Synthesis and biological evaluation of 4-biphenylamino-5-halo-2(5H)-furanones as potential anticancer agents. Eur. J. Med. Chem., 2017, 139, 84-94.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.005] [PMID: 28800460]
[30]
Yang, K.; Gao, J.J.; Luo, S.H.; Wu, H.Q.; Pang, C.M.; Wang, B.W.; Chen, X.Y.; Wang, Z.Y. Quick construction of a C–N bond from arylsulfonyl hydrazides and C sp2 –X compounds promoted by DMAP at room temperature. RSC Advances, 2019, 9(35), 19917-19923.
[http://dx.doi.org/10.1039/C9RA03403J] [PMID: 35514736]
[31]
Shi, J.; Tang, X.D.; Wu, Y.C.; Li, H.N.; Song, L.J.; Wang, Z.Y. Palladium-catalyzed desulfitative aryl-ation of 5-alkoxy-3,4-dibromo-2(5H)-furanone with sodium arylsulfinates. Eur. J. Org. Chem., 2015, 2015(6), 1193-1197.
[http://dx.doi.org/10.1002/ejoc.201403404]
[32]
Wu, H.Q.; Yang, K.; Luo, S.H.; Wu, X.Y.; Wang, N.; Chen, S.H.; Wang, Z.Y. 4-Selective synthesis of vinyl thiocyanates and selenocyanates through 3,4-dihalo-2(5H)-furanones. Eur. J. Org. Chem., 2019, 2019(28), 4572-4580.
[http://dx.doi.org/10.1002/ejoc.201900749]
[33]
Cao, L.; Li, J.X.; Wu, H.Q.; Jiang, K.; Hao, Z.F.; Luo, S.H.; Wang, Z.Y. Metal-free sulfonylation of 3,4-dihalo-2(5H)-furanones (X = Cl, Br) with sodium sulfinates under air atmosphere in aqueous media via a radical pathway. ACS Sustain. Chem.& Eng., 2018, 6(3), 4147-4153.
[http://dx.doi.org/10.1021/acssuschemeng.7b04564]
[34]
Cao, L.; Luo, S.H.; Wu, H.Q.; Chen, L.Q.; Jiang, K.; Hao, Z.F.; Wang, Z.Y. Copper(I)-catalyzed alkyl- and arylsulfenylation of 3,4-dihalo-2(5H)-furanones (X = Br, Cl) with sulfoxides under mild conditions. Adv. Synth. Catal., 2017, 359(17), 2961-2971.
[http://dx.doi.org/10.1002/adsc.201700600]
[35]
Wu, H.Q.; Yang, K.; Chen, X.Y.; Arulkumar, M.; Wang, N.; Chen, S.H.; Wang, Z.Y.A. 3,4-dihalo-2(5 H)-furanone initiated ring-opening reaction of DABCO in the absence of a metal catalyst and additive and its application in a one-pot two-step reaction. Green Chem., 2019, 21(14), 3782-3788.
[http://dx.doi.org/10.1039/C9GC01740B]
[36]
Yang, K.; Yang, J.Q.; Luo, S.H.; Mei, W.J.; Lin, J.Y.; Zhan, J.Q.; Wang, Z.Y. Synthesis of N-2(5H)-furanonyl sulfonyl hydrazone derivatives and their biological evaluation in vitro and in vivo activity against MCF-7 breast cancer cells. Bioorg. Chem., 2021, 107, 104518.
[http://dx.doi.org/10.1016/j.bioorg.2020.104518] [PMID: 33303210]
[37]
Luo, S.H.; Yang, K.; Lin, J.Y.; Gao, J.J.; Wu, X.Y.; Wang, Z.Y. Synthesis of amino acid derivatives of 5-alkoxy-3,4-dihalo-2(5 H)-furanones and their preliminary bioactivity investigation as linkers. Org. Biomol. Chem., 2019, 17(20), 5138-5147.
[http://dx.doi.org/10.1039/C9OB00736A] [PMID: 31073571]
[38]
Wu, Y.C.; Cao, L.; Mei, W.J.; Wu, H.Q.; Luo, S.H.; Zhan, H.Y.; Wang, Z.Y. Bis-2(5 H)-furanone derivatives as new anticancer agents: Design, synthesis, biological evaluation, and mechanism studies. Chem. Biol. Drug Des., 2018, 92(1), 1232-1240.
[http://dx.doi.org/10.1111/cbdd.13183] [PMID: 29469985]
[39]
Saha, D.; Kharbanda, A.; Essien, N.; Zhang, L.; Cooper, R.; Basak, D.; Kendrick, S.; Frett, B.; Li, H. Intramolecular cyclization of imidazo[1,2- a]pyridines via a silver mediated/palladium catalyzed C–H activation strategy. Org. Chem. Front., 2019, 6(13), 2234-2239.
[http://dx.doi.org/10.1039/C9QO00389D]
[40]
Pandey, K.; Kaswan, P. Saroj; Kumar, A. Synthesis of 2-carbonylimidazo[1,2-a] pyridines via Iodine-mediated intramolecular cyclization of 2-amino-N-propargylpyridinium bromides. ChemestrySelect, 2016, 1(21), 6669-6672.
[http://dx.doi.org/10.1002/slct.201601294]
[41]
Jahan, K.; Sofi, F.A.; Salim, S.A.; Bharatam, P.V. NIS mediated dehydrogenative-cyclocondensation in aqueous medium towards the synthesis of 2-arylimidazo[1,2-a]pyridines and their 3-formylated derivatives. Tetrahedron, 2022, 112, 132715.
[http://dx.doi.org/10.1016/j.tet.2022.132715]
[42]
Irudaya Jothi, A.; Rajarathinam, C.; Arun Viveke, A.; Bosco Paul, M.W. Substituent effects on the mesogenic benzylidenes of 4-methylaniline: Synthesis, characterization, DFT, NLO, photophysical, molecular docking, and antibacterial studies. J. Mol. Liq., 2022, 347, 117980.
[http://dx.doi.org/10.1016/j.molliq.2021.117980]
[43]
Tian, L.U.; Fei-Wu, C.H.E.N. Comparison of computational methods for atomic charges. Wuli Huaxue Xuebao, 2012, 28(1), 1-18.
[http://dx.doi.org/10.3866/PKU.WHXB2012281]
[44]
Jeelani, A.; Muthu, S.; Ramesh, P.; Irfan, A. Experimental spectroscopic, molecular structure, electronic solvation, biological prediction and topological analysis of 2, 4, 6-tri (propan-2-yl) benzenesulfonyl chloride: An antidepressant agent. J. Mol. Liq., 2022, 358, 119166.
[http://dx.doi.org/10.1016/j.molliq.2022.119166]
[45]
Nayebzadeh, B.; Amiri, K.; Khosravi, H.; Mirzaei, S.; Rominger, F.; Dar’in, D.; Krasavin, M.; Bijanzadeh, H.R.; Balalaie, S. Synthesis of Spiro[chromene-imidazo[1,2- a]pyridin]-3′-imines via 6- exo -dig Cyclization Reaction. J. Org. Chem., 2021, 86(19), 13693-13701.
[http://dx.doi.org/10.1021/acs.joc.1c01789] [PMID: 34529434]
[46]
Salamatmanesh, A.; Heydari, A. Magnetic nano-structure-anchored mixed-donor ligand system based on carboxamide and Nheterocyclic thiones: An efficient support of CuI catalyst for synthesis of imidazo[1,2-a]pyridines in eutectic medium. Appl. Catal., A, 2021, 624, 118306.
[http://dx.doi.org/10.1016/j.apcata.2021.118306]

© 2024 Bentham Science Publishers | Privacy Policy