Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

CsHscB Derived from a Liver Fluke Clonorchis sinensis Ameliorates Cholestatic Hepatic Fibrosis in a Mouse Model of Sclerosing Cholangitis

Author(s): Qian Yu, Stephane Koda, Na Xu, Jing Li, Jian-Ling Wang, Man Liu, Ji-Xin Liu, Yu Zhang, Hui-Min Yang, Bei-Bei Zhang, Xiang-Yang Li, Xiao-Cui Li, Ren-Xian Tang, Kui-Yang Zheng* and Chao Yan*

Volume 24, Issue 4, 2024

Published on: 17 May, 2023

Page: [505 - 515] Pages: 11

DOI: 10.2174/1566524023666230418111949

Price: $65

conference banner
Abstract

Background: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by inflammatory fibrosis usually involving the whole biliary tree. However, there are very limited treatment options to treat this disease. Our previous study found a lipid-protein rCsHscB from a liver fluke - Clonorchis sinensis, which had full capacities of immune regulation. Therefore, we investigated the role of rCsHscB in a mouse model of sclerosing cholangitis induced by xenobiotic 3,5- diethoxycarbonyl-1,4-dihydrocollidine (DDC) to explore whether this protein had potential therapeutic value for PSC.

Methods: Mice were fed 0.1% DDC for 4 weeks and treated with CsHscB (30 μg/mouse, intraperitoneal injection, once every 3 days); the control group was given an equal amount of PBS or CsHscB under normal diet conditions. All the mice were sacrificed at 4 weeks for the evaluation of biliary proliferation, fibrosis, and inflammation.

Results: rCsHscB treatment attenuated DDC-induced liver congestion and enlargement and significantly decreased the upregulation of serum AST and ALT levels. The administration of rCsHscB to DDC-fed mice significantly decreased cholangiocyte proliferation and pro-inflammatory cytokine production compared to mice fed with DDC alone. Also, rCsHscB treatment showed a decreased expression of α-SMA in the liver and other markers of liver fibrosis (Masson staining, Hydroxyproline content, and collagen deposit). More interestingly, DDC-fed mice treated with rCsHscB showed a significant up-regulation of PPAR-γ expression, which was similar to control mice, indicating the involvement of PPAR-γ signaling in the protective action of rCsHscB.

Conclusion: Overall, our data show that rCsHscB attenuates the progression of cholestatic fibrosis induced by DDC and supports the potential for manipulating the parasite-derived molecule to treat certain immune-mediated disorders.

Keywords: Protein CsHscB, Clonorchis sinensis, DDC, Cholestatic liver fibrosis, PPAR-γ, Immune regulation.

[1]
Dyson JK, Beuers U, Jones DEJ, Lohse AW, Hudson M. Primary sclerosing cholangitis. Lancet 2018; 391(10139): 2547-59.
[http://dx.doi.org/10.1016/S0140-6736(18)30300-3] [PMID: 29452711]
[2]
Iwaisako K, Jiang C, Zhang M, et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci 2014; 111(32): E3297-305.
[http://dx.doi.org/10.1073/pnas.1400062111] [PMID: 25074909]
[3]
Fickert P, Stöger U, Fuchsbichler A, et al. A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Am J Pathol 2007; 171(2): 525-36.
[http://dx.doi.org/10.2353/ajpath.2007.061133] [PMID: 17600122]
[4]
Mariotti V, Strazzabosco M, Fabris L, Calvisi DF. Animal models of biliary injury and altered bile acid metabolism. Biochim Biophys Acta Mol Basis Dis 2018; 1864(4) (4 Pt B): 1254-61.
[http://dx.doi.org/10.1016/j.bbadis.2017.06.027] [PMID: 28709963]
[5]
Sawant DV, Gravano DM, Vogel P, Giacomin P, Artis D, Vignali DAA. Regulatory T cells limit induction of protective immunity and promote immune pathology following intestinal helminth infection. J Immunol 2014; 192(6): 2904-12.
[http://dx.doi.org/10.4049/jimmunol.1202502] [PMID: 24532574]
[6]
Stiemsma L, Reynolds L, Turvey S, Finlay B. The hygiene hypothesis: Current perspectives and future therapies. ImmunoTargets Ther 2015; 4: 143-57.
[http://dx.doi.org/10.2147/ITT.S61528] [PMID: 27471720]
[7]
Summers RW, Elliott DE, Urban JF Jr, Thompson RA, Weinstock JV. Trichuris suis therapy for active ulcerative colitis: A randomized controlled trial. Gastroenterology 2005; 128(4): 825-32.
[http://dx.doi.org/10.1053/j.gastro.2005.01.005] [PMID: 15825065]
[8]
Sandborn WJ, Elliott DE, Weinstock J, et al. Randomised clinical trial: The safety and tolerability of Trichuris suis ova in patients with Crohn’s disease. Aliment Pharmacol Ther 2013; 38(3): 255-63.
[http://dx.doi.org/10.1111/apt.12366] [PMID: 23730956]
[9]
Huang X, Zeng LR, Chen FS, Zhu JP, Zhu MH. Trichuris suis ova therapy in inflammatory bowel disease. Medicine 2018; 97(34): e12087.
[http://dx.doi.org/10.1097/MD.0000000000012087] [PMID: 30142867]
[10]
Croese J, O’neil J, Masson J, et al. A proof of concept study establishing Necator americanus in Crohn’s patients and reservoir donors. Gut 2006; 55(1): 136-7.
[http://dx.doi.org/10.1136/gut.2005.079129] [PMID: 16344586]
[11]
Helmby H. Human helminth therapy to treat inflammatory disorders- where do we stand? BMC Immunol 2015; 16(1): 12.
[http://dx.doi.org/10.1186/s12865-015-0074-3] [PMID: 25884706]
[12]
Yordanova IA, Ebner F, Schulz AR, et al. The worm-specific immune response in multiple sclerosis patients Receiving controlled trichuris suis ova immunotherapy. Life 2021; 11(2): 101.
[http://dx.doi.org/10.3390/life11020101] [PMID: 33572978]
[13]
McSorley HJ, Maizels RM. Helminth infections and host immune regulation. Clin Microbiol Rev 2012; 25(4): 585-608.
[http://dx.doi.org/10.1128/CMR.05040-11] [PMID: 23034321]
[14]
Wang L, Xie H, Xu L, et al. rSj16 Protects against DSS-Induced Colitis by Inhibiting the PPAR-α Signaling Pathway. Theranostics 2017; 7(14): 3446-60.
[http://dx.doi.org/10.7150/thno.20359] [PMID: 28912887]
[15]
Nascimento Santos L, Carvalho Pacheco LG, Silva Pinheiro C, Alcantara-Neves NM. Recombinant proteins of helminths with immunoregulatory properties and their possible therapeutic use. Acta Trop 2017; 166: 202-11.
[http://dx.doi.org/10.1016/j.actatropica.2016.11.016] [PMID: 27871775]
[16]
Zhang BB, Yan C, Fang F, et al. Increased hepatic Th2 and Treg subsets are associated with biliary fibrosis in different strains of mice caused by Clonorchis sinensis. PLoS One 2017; 12(2): e0171005.
[http://dx.doi.org/10.1371/journal.pone.0171005] [PMID: 28151995]
[17]
Yan C, Fang F, Zhang YZ, et al. Recombinant CsHscB of carcinogenic liver fluke Clonorchis sinensis induces IL-10 production by binding with TLR2. PLoS Negl Trop Dis 2020; 14(10): e0008643.
[http://dx.doi.org/10.1371/journal.pntd.0008643] [PMID: 33044969]
[18]
Won KY, Kim GY, Kim YW, Song JY, Lim SJ. Clinicopathologic correlation of beclin-1 and bcl-2 expression in human breast cancer. Hum Pathol 2010; 41(1): 107-12.
[http://dx.doi.org/10.1016/j.humpath.2009.07.006] [PMID: 19762066]
[19]
Wu H, Chen C, Ziani S, et al. Fibrotic events in the progression of cholestatic liver disease. Cells 2021; 10(5): 1107.
[http://dx.doi.org/10.3390/cells10051107] [PMID: 34062960]
[20]
Mariotti V, Cadamuro M, Spirli C, Fiorotto R, Strazzabosco M, Fabris L. Animal models of cholestasis: An update on inflammatory cholangiopathies. Biochim Biophys Acta Mol Basis Dis 2019; 1865(5): 954-64.
[http://dx.doi.org/10.1016/j.bbadis.2018.07.025] [PMID: 30398152]
[21]
Sharma S, Rana S, Patial V, Gupta M, Bhushan S, Padwad YS. Antioxidant and hepatoprotective effect of polyphenols from apple pomace extract via apoptosis inhibition and Nrf2 activation in mice. Hum Exp Toxicol 2016; 35(12): 1264-75.
[http://dx.doi.org/10.1177/0960327115627689] [PMID: 26811344]
[22]
Fickert P, Thueringer A, Moustafa T, et al. The role of osteopontin and tumor necrosis factor alpha receptor-1 in xenobiotic-induced cholangitis and biliary fibrosis in mice. Lab Invest 2010; 90(6): 844-52.
[http://dx.doi.org/10.1038/labinvest.2010.61] [PMID: 20368698]
[23]
Nishio T, Hu R, Koyama Y, et al. Activated hepatic stellate cells and portal fibroblasts contribute to cholestatic liver fibrosis in MDR2 knockout mice. J Hepatol 2019; 71(3): 573-85.
[http://dx.doi.org/10.1016/j.jhep.2019.04.012] [PMID: 31071368]
[24]
Dewidar B, Meyer C, Dooley S, Meindl-Beinker AN. TGF-β in hepatic stellate cell activation and liver fibrogenesis—updated 2019. Cells 2019; 8(11): 1419.
[http://dx.doi.org/10.3390/cells8111419] [PMID: 31718044]
[25]
Ma T, Cai X, Wang Z, et al. miR-200c accelerates hepatic stellate cell-induced liver fibrosis via targeting the FOG2/PI3K pathway. BioMed Res Int 2017; 2017: 1-8.
[http://dx.doi.org/10.1155/2017/2670658] [PMID: 28691020]
[26]
Hellerbrand C, Stefanovic B, Giordano F, Burchardt ER, Brenner DA. The role of TGFβ1 in initiating hepatic stellate cell activation in vivo. J Hepatol 1999; 30(1): 77-87.
[http://dx.doi.org/10.1016/S0168-8278(99)80010-5] [PMID: 9927153]
[27]
Liu X, Xu J, Rosenthal S, et al. Identification of lineage-specific transcription factors that prevent activation of hepatic stellate cells and promote fibrosis resolution. Gastroenterology 2020; 158(6): 1728-1744.e14.
[http://dx.doi.org/10.1053/j.gastro.2020.01.027] [PMID: 31982409]
[28]
Hazra S, Xiong S, Wang J, et al. Peroxisome proliferator-activated receptor gamma induces a phenotypic switch from activated to quiescent hepatic stellate cells. J Biol Chem 2004; 279(12): 11392-401.
[http://dx.doi.org/10.1074/jbc.M310284200] [PMID: 14702344]
[29]
Zhang F, Kong D, Lu Y, Zheng S. Peroxisome proliferator-activated receptor-γ as a therapeutic target for hepatic fibrosis: From bench to bedside. Cell Mol Life Sci 2013; 70(2): 259-76.
[http://dx.doi.org/10.1007/s00018-012-1046-x] [PMID: 22699820]
[30]
Zhang F, Lu Y, Zheng S. Peroxisome proliferator-activated receptor-γ cross-regulation of signaling events implicated in liver fibrogenesis. Cell Signal 2012; 24(3): 596-605.
[http://dx.doi.org/10.1016/j.cellsig.2011.11.008] [PMID: 22108088]
[31]
Vetuschi A, Pompili S, Gaudio E, Latella G, Sferra R. PPAR-γ with its anti-inflammatory and anti-fibrotic action could be an effective therapeutic target in IBD. Eur Rev Med Pharmacol Sci 2018; 22(24): 8839-48.
[PMID: 30575926]
[32]
Miyahara T, Schrum L, Rippe R, et al. Peroxisome proliferator-activated receptors and hepatic stellate cell activation. J Biol Chem 2000; 275(46): 35715-22.
[http://dx.doi.org/10.1074/jbc.M006577200] [PMID: 10969082]
[33]
Zhao C, Chen W, Yang L, Chen L, Stimpson SA, Diehl AM. PPARγ agonists prevent TGFβ1/Smad3-signaling in human hepatic stellate cells. Biochem Biophys Res Commun 2006; 350(2): 385-91.
[http://dx.doi.org/10.1016/j.bbrc.2006.09.069] [PMID: 17010940]
[34]
Planagumà A, Clària J, Miquel R, et al. The selective cyclooxygenase‐2 inhibitor SC‐236 reduces liver fibrosis by mechanisms involving non‐parenchymal cell apoptosis and PPARγ activation. FASEB J 2005; 19(9): 1120-2.
[http://dx.doi.org/10.1096/fj.04-2753fje] [PMID: 15876570]
[35]
Li J, Guo C, Wu J. The agonists of peroxisome proliferator-activated receptor-γ for liver fibrosis. Drug Des Devel Ther 2021; 15: 2619-28.
[http://dx.doi.org/10.2147/DDDT.S310163] [PMID: 34168433]
[36]
Wu L, Guo C, Wu J. Therapeutic potential of PPARγ natural agonists in liver diseases. J Cell Mol Med 2020; 24(5): 2736-48.
[http://dx.doi.org/10.1111/jcmm.15028] [PMID: 32031298]
[37]
Choi MJ, Park JS, Park JE, Kim HS, Kim HS. Galangin suppresses pro-inflammatory gene expression in polyinosinic-polycytidylic acid-stimulated microglial cells. Biomol Ther 2017; 25(6): 641-7.
[http://dx.doi.org/10.4062/biomolther.2017.173] [PMID: 29081092]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy