Research Article

ATF3通过促进RGS1转录调节关节镜检查后滑膜成纤维细胞的增殖、迁移和凋亡

卷 23, 期 9, 2023

发表于: 31 May, 2023

页: [981 - 990] 页: 10

弟呕挨: 10.2174/1566524023666230417084150

价格: $65

conference banner
摘要

背景:骨关节炎(OA)是一种涉及软骨和滑膜的退行性关节疾病。据报道,OA 中激活转录因子 3 (ATF3) 和 G 蛋白信号传导调节因子 1 (RGS1) 上调。然而,人们对这两个基因之间的关系以及这种关系在 OA 发展中的机制知之甚少。因此,本研究探讨ATF3介导的RGS1在滑膜成纤维细胞增殖、迁移和凋亡中的机制。 方法:通过TGF-β1诱导构建OA细胞模型后,单独转染ATF3 shRNA或RGS1 shRNA或共转染ATF3 shRNA和pcDNA3.1-RGS1的人成纤维样滑膜细胞(HFLS)。然后,测量增殖、迁移、凋亡以及 ATF3、RGS1、α-SMA、BCL-2、caspase3 和 cleaved-caspase3 的表达。同时,预测并验证了ATF3和RGS1之间的潜在关系。 结果与讨论:GSE185059 数据集的分析表明,RGS1 在 OA 滑液外泌体中上调。此外,ATF3和RGS1在TGF-β1诱导的HFLS中均高表达。 ATF3 shRNA 或 RGS1 shRNA 的转染显着减少了 TGF-β1 诱导的 HFLS 的增殖和迁移,并促进了细胞凋亡。从机制上讲,ATF3 与 RGS1 启动子结合并升高 RGS1 表达。沉默 ATF3 可通过下调 RGS1 抑制 TGF-β1 诱导的 HFLS 的增殖和迁移并增强细胞凋亡。 结论:在TGF-β1诱导的滑膜成纤维细胞中,ATF3与RGS1启动子结合并增强RGS1表达,加速细胞增殖并阻断细胞凋亡。

关键词: 骨关节炎,激活转录因子3,G蛋白信号调节因子1,成纤维细胞,纤维化,增殖,迁移,凋亡。

« Previous
[1]
Ghouri A, Conaghan PG. Prospects for therapies in osteoarthritis. Calcif Tissue Int 2021; 109(3): 339-50.
[http://dx.doi.org/10.1007/s00223-020-00672-9] [PMID: 32055890]
[2]
Hunter DJ, March L, Chew M. Osteoarthritis in 2020 and beyond: A lancet commission. Lancet 2020; 396(10264): 1711-2.
[http://dx.doi.org/10.1016/S0140-6736(20)32230-3] [PMID: 33159851]
[3]
Sircana G, Passiatore M, Capasso L, Saccomanno MF, Maccauro G. Infections in arthroscopy. Eur Rev Med Pharmacol Sci 2019; 23(S2): 279-87.
[PMID: 30977895]
[4]
Jamil M, Dandachli W, Noordin S, Witt J. Hip arthroscopy: Indications, outcomes and complications. Int J Surg 2018; 54(Pt B): 341-4.
[http://dx.doi.org/10.1016/j.ijsu.2017.08.557] [PMID: 28823795]
[5]
Nha KW, Kim HS, Cho ST, Bae JH, Jang KM, Kim SG. Arthroscopy‐controlled medial reefing and lateral release for recurrent patellar dislocation: Clinical, radiologic outcomes and complications. BMC Musculoskelet Disord 2021; 22(1): 430.
[http://dx.doi.org/10.1186/s12891-021-04300-x] [PMID: 33971864]
[6]
Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: Current understanding with therapeutic implications. Arthritis Res Ther 2017; 19(1): 18.
[http://dx.doi.org/10.1186/s13075-017-1229-9] [PMID: 28148295]
[7]
Zhang L, Li M, Li X, et al. Characteristics of sensory innervation in synovium of rats within different knee osteoarthritis models and the correlation between synovial fibrosis and hyperalgesia. J Adv Res 2022; 35: 141-51.
[http://dx.doi.org/10.1016/j.jare.2021.06.007] [PMID: 35003798]
[8]
Zhang L, Xing R, Huang Z, et al. Synovial fibrosis involvement in osteoarthritis. Front Med 2021; 8: 684389.
[http://dx.doi.org/10.3389/fmed.2021.684389]
[9]
Liu S, Cao C, Zhang Y, et al. PI3K/Akt inhibitor partly decreases TNF-α-induced activation of fibroblast-like synoviocytes in osteoarthritis. J Orthop Surg Res 2019; 14(1): 425.
[http://dx.doi.org/10.1186/s13018-019-1394-4] [PMID: 31829201]
[10]
Maglaviceanu A, Wu B, Kapoor M. Fibroblast‐like synoviocytes: Role in synovial fibrosis associated with osteoarthritis. Wound Repair Regen 2021; 29(4): 642-9.
[http://dx.doi.org/10.1111/wrr.12939] [PMID: 34021514]
[11]
Li J, Peng L, Bai W, et al. Biliverdin protects against cerebral ischemia/reperfusion injury by regulating the miR-27a-3p/Rgs1 Axis. Neuropsychiatr Dis Treat 2021; 17: 1165-81.
[http://dx.doi.org/10.2147/NDT.S300773] [PMID: 33911865]
[12]
Feng Z, Zhou J, Liu Y, et al. Epithelium- and endothelium-derived exosomes regulate the alveolar macrophages by targeting RGS1 mediated calcium signaling-dependent immune response. Cell Death Differ 2021; 28(7): 2238-56.
[http://dx.doi.org/10.1038/s41418-021-00750-x] [PMID: 33753901]
[13]
Elter E, Wagner M, Buchenauer L, Bauer M, Polte T. Phthalate exposure during the prenatal and lactational period increases the susceptibility to rheumatoid arthritis in mice. Front Immunol 2020; 11: 550.
[http://dx.doi.org/10.3389/fimmu.2020.00550]
[14]
Hu X, Tang J, Zeng G, et al. RGS1 silencing inhibits the inflammatory response and angiogenesis in rheumatoid arthritis rats through the inactivation of Toll‐like receptor signaling pathway. J Cell Physiol 2019; 234(11): 20432-42.
[http://dx.doi.org/10.1002/jcp.28645] [PMID: 31012109]
[15]
Katoh M. Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β catenin signaling activation (Review). Int J Mol Med 2018; 42(2): 713-25.
[http://dx.doi.org/10.3892/ijmm.2018.3689] [PMID: 29786110]
[16]
Ku H C, Cheng C F. Master regulator ACTIVATING TRANSCRIPTION FACTOR 3 (ATF3) in metabolic homeostasis and cancer. Front Endocrinol 2020; 11: 556.
[http://dx.doi.org/10.3389/fendo.2020.00556] [PMID: 32922364]
[17]
Hu H, Zhang F, Li L, et al. Identification and validation of ATF3 serving as a potential biomarker and correlating with pharmacotherapy response and immune infiltration characteristics in rheumatoid arthritis. Front Mol Biosci 2021; 8: 761841.
[http://dx.doi.org/10.3389/fmolb.2021.761841]
[18]
Li X, Li Y, Yang X, et al. PR11‐364P22.2/ATF3 protein interaction mediates IL‐1β‐induced catabolic effects in cartilage tissue and chondrocytes. J Cell Mol Med 2021; 25(13): 6188-202.
[http://dx.doi.org/10.1111/jcmm.16561] [PMID: 34037306]
[19]
Chan CM, Macdonald CD, Litherland GJ, et al. Cytokine-induced MMP13 expression in human chondrocytes is dependent on activating transcription factor 3 (ATF3) regulation. J Biol Chem 2017; 292(5): 1625-36.
[http://dx.doi.org/10.1074/jbc.M116.756601] [PMID: 27956552]
[20]
Qadri MM, Jay GD, Ostrom RS, Zhang LX, Elsaid KA. cAMP attenuates TGF-β’s profibrotic responses in osteoarthritic synoviocytes: Involvement of hyaluronan and PRG4. Am J Physiol Cell Physiol 2018; 315(3): C432-43.
[http://dx.doi.org/10.1152/ajpcell.00041.2018] [PMID: 29898378]
[21]
Kuo SJ, Yang WH, Liu SC, Tsai CH, Hsu HC, Tang CH. TRANSFORMING GROWTH FACTOR β1 enhances heme oxygenase 1 expression in human synovial fibroblasts by inhibiting microRNA 519b synthesis. PLoS One 2017; 12(4): e0176052.
[http://dx.doi.org/10.1371/journal.pone.0176052] [PMID: 28423042]
[22]
Feng D, Yu J, Bao L, Fan D, Zhang B. Inhibiting RGS1 attenuates secondary inflammation response and tissue degradation via the TLR/TRIF/NF-kappaB pathway in macrophage post spinal cord injury. Neurosci Lett 2022; 768: 136374.
[http://dx.doi.org/10.1016/j.neulet.2021.136374] [PMID: 34852285]
[23]
Patel J, McNeill E, Douglas G, et al. RGS1 regulates myeloid cell accumulation in atherosclerosis and aortic aneurysm rupture through altered chemokine signalling. Nat Commun 2015; 6: 6614.
[http://dx.doi.org/10.1038/ncomms7614]
[24]
Wu C, Lin H, Zhang X. Inhibitory effects of pirfenidone on fibroblast to myofibroblast transition in rheumatoid arthritis-associated interstitial lung disease via the downregulation of ACTIVATING TRANSCRIPTION FACTOR 3 (ATF3). Int Immunopharmacol 2019; 74: 105700.
[http://dx.doi.org/10.1016/j.intimp.2019.105700] [PMID: 31228816]
[25]
Kim DE, Procopio MG, Ghosh S, et al. Convergent roles of ATF3 and CSL in chromatin control of cancer-associated fibroblast activation. J Exp Med 2017; 214(8): 2349-68.
[http://dx.doi.org/10.1084/jem.20170724] [PMID: 28684431]
[26]
Wang XM, Liu XM, Wang Y, Chen ZY. ACTIVATING TRANSCRIPTION FACTOR 3 (ATF3) regulates cell growth, apoptosis, invasion and collagen synthesis in keloid fibroblast through TRANSFORMING GROWTH FACTOR beta (TGF-beta)/SMAD signaling pathway. Bioengineered 2021; 12(1): 117-26.
[http://dx.doi.org/10.1080/21655979.2020.1860491] [PMID: 33315500]
[27]
Li H, Yang HH, Sun ZG, Tang HB, Min JK. Whole-transcriptome sequencing of knee joint cartilage from osteoarthritis patients. Bone Joint Res 2019; 8(7): 290-303.
[http://dx.doi.org/10.1302/2046-3758.87.BJR-2018-0297.R1] [PMID: 31463037]
[28]
Li Z, Wang Q, Chen G, et al. Integration of gene expression profile data to screen and verify hub genes involved in osteoarthritis. Biomed Res Int 2018; 2018: 9482726.
[http://dx.doi.org/10.1155/2018/9482726]
[29]
Gao X, Sun Y, Li X. Identification of key gene modules and transcription factors for human osteoarthritis by weighted gene co-expression network analysis. Exp Ther Med 2019; 18(4): 2479-90.
[http://dx.doi.org/10.3892/etm.2019.7848] [PMID: 31572500]
[30]
Iezaki T, Ozaki K, Fukasawa K, et al. ATF3 deficiency in chondrocytes alleviates osteoarthritis development. J Pathol 2016; 239(4): 426-37.
[http://dx.doi.org/10.1002/path.4739] [PMID: 27159257]
[31]
Ferreira-Gomes J, Garcia M M, Nascimento D, et al. TLR4 antagonism reduces movement-induced nociception and atf-3 expression in experimental osteoarthritis. J Pain Re 2021; 14: 2615-27.
[http://dx.doi.org/10.2147/JPR.S317877] [PMID: 34466029]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy