Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

新梭状芽胞杆菌在癌症中的治疗潜力:目前的知识和未来的展望

卷 23, 期 9, 2023

发表于: 11 May, 2023

页: [682 - 696] 页: 15

弟呕挨: 10.2174/1568009623666230413094253

价格: $65

conference banner
摘要

对常规抗肿瘤治疗的耐药性和晚期实体瘤患者的缺氧是常规抗肿瘤治疗失败的两个主要原因。因此,寻找一种新的治疗方法来克服这些问题是很重要的。一种减毒的厌氧菌,新梭菌- nt,可以靶向肿瘤缺氧和坏死区域,引起肿瘤溶解并刺激宿主抗肿瘤免疫反应。据我们所知,细菌抗肿瘤治疗与化疗、放疗和免疫治疗相结合,可能会促进肿瘤消退,抑制转移,为实体瘤的治疗开辟新的策略。然而,联合治疗的可能分子机制仍然是最大的挑战。本文综述了细菌性癌症治疗的历史和一种非致死性新梭状芽孢杆菌的发展。以下是实体瘤组织缺氧条件的精确定义。为了了解新梭状芽孢杆菌孢子的抗癌作用,总结了新梭状芽孢杆菌孢子在肿瘤组织中萌发后分泌的磷脂酶C (nt01cx0979)可能的细胞死亡机制。本文综述了新梭菌-NT孢子在刺激宿主免疫系统引起抗肿瘤反应中的作用。然后,对基于新梭菌- NT孢子的抗肿瘤联合治疗的结果进行汇总。确定Clostridium novyi-NT治疗肿瘤和诱导侵袭性癌细胞细胞死亡并最终导致肿瘤消退的分子机制,可能为实体肿瘤的联合治疗制定有希望的临床策略。

关键词: 溶瘤菌,缺氧,实体瘤,新梭菌,磷脂酶C,肿瘤消退。

图形摘要
[1]
Kumar, D. Prospects and challenges in the treatment of solid tumors. In: Polymeric nanoparticles for the treatment of solid tumors; Springer: Berlin, 2022; pp. 489-508.
[http://dx.doi.org/10.1007/978-3-031-14848-4_18]
[2]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[3]
Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J., 2022, 135(5), 584-590.
[http://dx.doi.org/10.1097/CM9.0000000000002108] [PMID: 35143424]
[4]
Mariotto, A.B.; Enewold, L.; Zhao, J.; Zeruto, C.A.; Yabroff, K.R. Medical care costs associated with cancer survivorship in the United States. Cancer Epidemiol. Biomarkers Prev., 2020, 29(7), 1304-1312.
[http://dx.doi.org/10.1158/1055-9965.EPI-19-1534] [PMID: 32522832]
[5]
Najafi, M.; Majidpoor, J.; Toolee, H.; Mortezaee, K. The current knowledge concerning solid cancer and therapy. J. Biochem. Mol. Toxicol., 2021, 35(11), e22900.
[http://dx.doi.org/10.1002/jbt.22900] [PMID: 34462987]
[6]
Sørensen, B.S.; Horsman, M.R. Tumor Hypoxia: Impact on radiation therapy and molecular pathways. Front. Oncol., 2020, 10(562), 562.
[http://dx.doi.org/10.3389/fonc.2020.00562] [PMID: 32373534]
[7]
Muz, B.; de la Puente, P.; Azab, F.; Azab, A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia, 2015, 3, 83-92.
[http://dx.doi.org/10.2147/HP.S93413] [PMID: 27774485]
[8]
Horsman, M.R.; Vaupel, P. Pathophysiological basis for the formation of the tumor microenvironment. Front. Oncol., 2016, 6, 66.
[http://dx.doi.org/10.3389/fonc.2016.00066] [PMID: 27148472]
[9]
Apilan, A.G.; Mothersill, C. Targeted and non-targeted mechanisms for killing hypoxic tumour cells—are there new avenues for treatment? Int. J. Mol. Sci., 2021, 22(16), 8651.
[http://dx.doi.org/10.3390/ijms22168651] [PMID: 34445354]
[10]
Noori-Daloii, M.R.; Ebadi, N. Pharmacogenomics and cancer stem cells. Med. Sci. J. Islamic Azad Univesity-Tehran Medical Branch, 2015, 25(1), 1-15.
[11]
Maleki, E.H.; Bahrami, A.R.; Matin, M.M. Cancer cell cycle heterogeneity as a critical determinant of therapeutic resistance. Genes Dis., 2023, 1-16.
[http://dx.doi.org/10.1016/j.gendis.2022.11.025]
[12]
Tang, M.; Bolderson, E.; O’Byrne, K.J.; Richard, D.J. Tumor hypoxia drives genomic instability. Front. Cell Dev. Biol., 2021, 9(430), 626229.
[http://dx.doi.org/10.3389/fcell.2021.626229] [PMID: 33796526]
[13]
Farina, A.R.; Cappabianca, L.; Sebastiano, M.; Zelli, V.; Guadagni, S.; Mackay, A.R. Hypoxia-induced alternative splicing: The 11th Hallmark of Cancer. J. Exp. Clin. Cancer Res., 2020, 39(1), 110.
[http://dx.doi.org/10.1186/s13046-020-01616-9] [PMID: 32536347]
[14]
Shi, Q.; Ji, T.; Tang, X.; Guo, W. The role of tumor-platelet interplay and micro tumor thrombi during hematogenous tumor metastasis. Cell Oncol., 2023, 1-12.
[http://dx.doi.org/10.1007/s13402-023-00773-1] [PMID: 36652166]
[15]
Simon, M.C.; Keith, B. The role of oxygen availability in embryonic development and stem cell function. Nat. Rev. Mol. Cell Biol., 2008, 9(4), 285-296.
[http://dx.doi.org/10.1038/nrm2354] [PMID: 18285802]
[16]
Carreau, A.; Hafny-Rahbi, B.E.; Matejuk, A.; Grillon, C.; Kieda, C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J. Cell. Mol. Med., 2011, 15(6), 1239-1253.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01258.x] [PMID: 21251211]
[17]
Graham, K.; Unger, E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int. J. Nanomedicine, 2018, 13, 6049-6058.
[http://dx.doi.org/10.2147/IJN.S140462] [PMID: 30323592]
[18]
Semenza, G.L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu. Rev. Pathol., 2014, 9(1), 47-71.
[http://dx.doi.org/10.1146/annurev-pathol-012513-104720] [PMID: 23937437]
[19]
Zaarour, R.F.; Azakir, B.; Hajam, E.Y.; Nawafleh, H.; Zeinelabdin, N.A.; Engelsen, A.S.T.; Thiery, J.; Jamora, C.; Chouaib, S. Role of hypoxia-mediated autophagy in tumor cell death and survival. Cancers, 2021, 13(3), 533.
[http://dx.doi.org/10.3390/cancers13030533] [PMID: 33573362]
[20]
Luo, W.; Wang, Y. Hypoxia mediates tumor malignancy and therapy resistance. Adv. Exp. Med. Biol., 2019, 1136, 1-18.
[http://dx.doi.org/10.1007/978-3-030-12734-3_1] [PMID: 31201713]
[21]
You, L.; Wu, W.; Wang, X.; Fang, L.; Adam, V.; Nepovimova, E.; Wu, Q.; Kuca, K. The role of hypoxia‐inducible factor 1 in tumor immune evasion. Med. Res. Rev., 2021, 41(3), 1622-1643.
[http://dx.doi.org/10.1002/med.21771] [PMID: 33305856]
[22]
Zhang, Y.; Zhang, Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol., 2020, 17(8), 807-821.
[http://dx.doi.org/10.1038/s41423-020-0488-6] [PMID: 32612154]
[23]
Li, J.; Liang, Q.; Sun, G. Traditional Chinese medicine for prevention and treatment of hepatocellular carcinoma: A focus on epithelial-mesenchymal transition. J. Integr. Med., 2021, 19(6), 469-477.
[http://dx.doi.org/10.1016/j.joim.2021.08.004] [PMID: 34538644]
[24]
Zhang, Y.; Huang, R.; Jiang, Y.; Shen, W.; Pei, H.; Wang, G.; Pei, P.; Yang, K. The role of bacteria and its derived biomaterials in cancer radiotherapy. Acta Pharm. Sin. B, 2022.
[http://dx.doi.org/10.1016/j.apsb.2022.10.013]
[25]
Taefehshokr, S.; Parhizkar, A.; Hayati, S.; Mousapour, M.; Mahmoudpour, A.; Eleid, L.; Rahmanpour, D.; Fattahi, S.; Shabani, H.; Taefehshokr, N. Cancer immunotherapy: Challenges and limitations. Pathol. Res. Pract., 2022, 229, 153723.
[http://dx.doi.org/10.1016/j.prp.2021.153723] [PMID: 34952426]
[26]
Sedighi, M.; Zahedi Bialvaei, A.; Hamblin, M.R.; Ohadi, E.; Asadi, A.; Halajzadeh, M.; Lohrasbi, V.; Mohammadzadeh, N.; Amiriani, T.; Krutova, M.; Amini, A.; Kouhsari, E. Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Med., 2019, 8(6), cam4.2148.
[http://dx.doi.org/10.1002/cam4.2148] [PMID: 30950210]
[27]
Vijayakumar, M. Bacteria therapeutics for cancer oncology: A crossroads for new paradigms. Drug Discov. Today, 2022, 27(8), 2043-2050.
[28]
Radha, G.; Lopus, M. The spontaneous remission of cancer: Current insights and therapeutic significance. Transl. Oncol., 2021, 14(9), 101166.
[http://dx.doi.org/10.1016/j.tranon.2021.101166] [PMID: 34242964]
[29]
Eyvazi, S.; Vostakolaei, M.A.; Dilmaghani, A.; Borumandi, O.; Hejazi, M.S.; Kahroba, H.; Tarhriz, V. The oncogenic roles of bacterial infections in development of cancer. Microb. Pathog., 2020, 141, 104019.
[http://dx.doi.org/10.1016/j.micpath.2020.104019] [PMID: 32006638]
[30]
Zu, C.; Wang, J. Tumor-colonizing bacteria: A potential tumor targeting therapy. Crit. Rev. Microbiol., 2014, 40(3), 225-235.
[http://dx.doi.org/10.3109/1040841X.2013.776511] [PMID: 23964706]
[31]
Rommasi, F. Bacterial-based methods for cancer treatment: What we know and where we are. Oncol. Ther., 2022, 10(1), 23-54.
[http://dx.doi.org/10.1007/s40487-021-00177-x] [PMID: 34780046]
[32]
Weerakkody, L.R.; Witharana, C. The role of bacterial toxins and spores in cancer therapy. Life Sci., 2019, 235, 116839.
[http://dx.doi.org/10.1016/j.lfs.2019.116839] [PMID: 31499068]
[33]
Dang, L.H.; Bettegowda, C.; Huso, D.L.; Kinzler, K.W.; Vogelstein, B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc. Natl. Acad. Sci. USA, 2001, 98(26), 15155-15160.
[http://dx.doi.org/10.1073/pnas.251543698] [PMID: 11724950]
[34]
Wei, M.Q.; Mengesha, A.; Good, D.; Anné, J. Bacterial targeted tumour therapy-dawn of a new era. Cancer Lett., 2008, 259(1), 16-27.
[http://dx.doi.org/10.1016/j.canlet.2007.10.034] [PMID: 18063294]
[35]
Feng, X.; He, P.; Zeng, C.; Li, Y.H.; Das, S.; Li, B.; Yang, H.F.; Du, Y. Novel insights into the role of Clostridium novyi-NT related combination bacteriolytic therapy in solid tumors (Review). Oncol. Lett., 2020, 21(2), 110.
[http://dx.doi.org/10.3892/ol.2020.12371] [PMID: 33376543]
[36]
Patyar, S.; Joshi, R.; Byrav, D.S.P.; Prakash, A.; Medhi, B.; Das, B.K. Bacteria in cancer therapy: A novel experimental strategy. J. Biomed. Sci., 2010, 17(1), 21.
[http://dx.doi.org/10.1186/1423-0127-17-21] [PMID: 20331869]
[37]
Bettegowda, C.; Huang, X.; Lin, J.; Cheong, I.; Kohli, M.; Szabo, S.A.; Zhang, X.; Diaz, L.A., Jr; Velculescu, V.E.; Parmigiani, G.; Kinzler, K.W.; Vogelstein, B.; Zhou, S. The genome and transcriptomes of the anti-tumor agent Clostridium novyi-NT. Nat. Biotechnol., 2006, 24(12), 1573-1580.
[http://dx.doi.org/10.1038/nbt1256] [PMID: 17115055]
[38]
Basu, A.; Singh, R.; Gupta, S. Bacterial infections in cancer: A bilateral relationship. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2022, 14(3), e1771.
[http://dx.doi.org/10.1002/wnan.1771] [PMID: 34994112]
[39]
Kang, S.R.; Nguyen, D.H.; Yoo, S.W.; Min, J.J. Bacteria and bacterial derivatives as delivery carriers for immunotherapy. Adv. Drug Deliv. Rev., 2022, 181, 114085.
[http://dx.doi.org/10.1016/j.addr.2021.114085] [PMID: 34933064]
[40]
Hoption Cann, S.A.; van Netten, J.P.; van Netten, C. Dr William Coley and tumour regression: A place in history or in the future. Postgrad. Med. J., 2003, 79(938), 672-680.
[http://dx.doi.org/10.1093/postgradmedj/79.938.672] [PMID: 14707241]
[41]
Waller, V.; Pruschy, M. Combined radiochemotherapy: Metalloproteinases revisited. Front. Oncol., 2021, 11, 676583.
[http://dx.doi.org/10.3389/fonc.2021.676583] [PMID: 34055644]
[42]
Gontero, P.; Bohle, A.; Malmstrom, P.U.; O’Donnell, M.A.; Oderda, M.; Sylvester, R.; Witjes, F. The role of bacillus Calmette-Guérin in the treatment of non-muscle-invasive bladder cancer. Eur. Urol., 2010, 57(3), 410-429.
[http://dx.doi.org/10.1016/j.eururo.2009.11.023] [PMID: 19969411]
[43]
Nauts, H.C.; Swift, W.E.; Coley, B.L. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res., 1946, 6(4), 205-216.
[PMID: 21018724]
[44]
Forbes, N.S. Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer, 2010, 10(11), 785-794.
[http://dx.doi.org/10.1038/nrc2934] [PMID: 20944664]
[45]
Gravekamp, C.; Paterson, Y. Harnessing Listeria monocytogenes to target tumors. Cancer Biol. Ther., 2010, 9(4), 257-265.
[http://dx.doi.org/10.4161/cbt.9.4.11216] [PMID: 20139702]
[46]
Hoffman, R.M.; Zhao, M. Methods for the development of tumortargeting bacteria. Expert Opin. Drug Discov., 2014, 9(7), 741-750.
[http://dx.doi.org/10.1517/17460441.2014.916270] [PMID: 24949888]
[47]
Kim, J.C.; Steinberg, G.D. The limits of bacillus Calmette-Guerin for carcinoma in situ of the bladder. J. Urol., 2001, 165(3), 745-756.
[http://dx.doi.org/10.1016/S0022-5347(05)66518-4] [PMID: 11176460]
[48]
Zlotta, A.R.; Fleshner, N.E.; Jewett, M.A. The management of BCG failure in non-muscle-invasive bladder cancer: An update. Can. Urol. Assoc. J., 2009, 3(6 Suppl. 4), S199-S205.
[PMID: 20019985]
[49]
Plomp, M.; McCaffery, J.M.; Cheong, I.; Huang, X.; Bettegowda, C.; Kinzler, K.W.; Zhou, S.; Vogelstein, B.; Malkin, A.J. Spore coat architecture of Clostridium novyi-NT spores. J. Bacteriol., 2007, 189(17), 6457-6468.
[http://dx.doi.org/10.1128/JB.00757-07] [PMID: 17586633]
[50]
Aronoff, D.M. Clostridium novyi, sordellii, and tetani: Mechanisms of disease. Anaerobe, 2013, 24, 98-101.
[http://dx.doi.org/10.1016/j.anaerobe.2013.08.009] [PMID: 24036420]
[51]
Palmateer, N.E.; Hope, V.D.; Roy, K.; Marongiu, A.; White, J.M.; Grant, K.A.; Ramsay, C.N.; Goldberg, D.J.; Ncube, F. Infections with spore-forming bacteria in persons who inject drugs, 2000-2009. Emerg. Infect. Dis., 2013, 19(1), 29-34.
[http://dx.doi.org/10.3201/eid1901.120044] [PMID: 23260795]
[52]
Agrawal, N.; Bettegowda, C.; Cheong, I.; Geschwind, J.F.; Drake, C.G.; Hipkiss, E.L.; Tatsumi, M.; Dang, L.H.; Diaz, L.A., Jr; Pomper, M.; Abusedera, M.; Wahl, R.L.; Kinzler, K.W.; Zhou, S.; Huso, D.L.; Vogelstein, B. Bacteriolytic therapy can generate a potent immune response against experimental tumors. Proc. Natl. Acad. Sci. USA, 2004, 101(42), 15172-15177.
[http://dx.doi.org/10.1073/pnas.0406242101] [PMID: 15471990]
[53]
Schweitzer, T.; Genth, H.; Pich, A. Clostridium novyi’s alpha-toxin changes proteome and phosphoproteome of HEp-2 cells. Int. J. Mol. Sci., 2022, 23(17), 9939.
[http://dx.doi.org/10.3390/ijms23179939] [PMID: 36077344]
[54]
Rycroft, A.N. Histotoxic Clostridia. In: Pathogenesis of Bacterial Infections in Animals; John Wiley and Sons: New Jersey, USA, 2022. Wiley Online Library.
[http://dx.doi.org/10.1002/9781119754862.ch29]
[55]
Abedi Jafari, F.; Abdoli, A.; Pilehchian, R.; Soleimani, N.; Hosseini, S.M. The oncolytic activity of Clostridium novyi nontoxic spores in breast cancer. Bioimpacts, 2022, 12(5), 405-414.
[PMID: 36381634]
[56]
Dailey, K.M.; Jacobson, R.I.; Johnson, P.R.; Woolery, T.J.; Kim, J.; Jansen, R.J.; Mallik, S.; Brooks, A.E. Methods and techniques to facilitate the development of Clostridium novyi NT as an effective, therapeutic oncolytic bacteria. Front. Microbiol., 2021, 12, 624618.
[http://dx.doi.org/10.3389/fmicb.2021.624618] [PMID: 33854487]
[57]
Shi, X.; Wang, L.; Wang, Q.; Tian, X. Learning from Clostridium novyi -NT: How to defeat cancer. J. Cancer Res. Ther., 2018, 14(Suppl. 8), 1.
[http://dx.doi.org/10.4103/0973-1482.204841] [PMID: 29578142]
[58]
Bozic, I. Evolutionary dynamics of cancer in response to targeted combination therapy. Elife., 2013, 2, e00747.
[http://dx.doi.org/10.7554/eLife.00747]
[59]
Kwak, E.L.; Bang, Y.J.; Camidge, D.R.; Shaw, A.T.; Solomon, B.; Maki, R.G.; Ou, S.H.I.; Dezube, B.J.; Jänne, P.A.; Costa, D.B.; Varella-Garcia, M.; Kim, W.H.; Lynch, T.J.; Fidias, P.; Stubbs, H.; Engelman, J.A.; Sequist, L.V.; Tan, W.; Gandhi, L.; Mino-Kenudson, M.; Wei, G.C.; Shreeve, S.M.; Ratain, M.J.; Settleman, J.; Christensen, J.G.; Haber, D.A.; Wilner, K.; Salgia, R.; Shapiro, G.I.; Clark, J.W.; Iafrate, A.J. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med., 2010, 363(18), 1693-1703.
[http://dx.doi.org/10.1056/NEJMoa1006448] [PMID: 20979469]
[60]
Chapman, P.B.; Hauschild, A.; Robert, C.; Haanen, J.B.; Ascierto, P.; Larkin, J.; Dummer, R.; Garbe, C.; Testori, A.; Maio, M.; Hogg, D.; Lorigan, P.; Lebbe, C.; Jouary, T.; Schadendorf, D.; Ribas, A.; O’Day, S.J.; Sosman, J.A.; Kirkwood, J.M.; Eggermont, A.M.M.; Dreno, B.; Nolop, K.; Li, J.; Nelson, B.; Hou, J.; Lee, R.J.; Flaherty, K.T.; McArthur, G.A. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med., 2011, 364(26), 2507-2516.
[http://dx.doi.org/10.1056/NEJMoa1103782] [PMID: 21639808]
[61]
Pettersen, E.O.; Ebbesen, P.; Gieling, R.G.; Williams, K.J.; Dubois, L.; Lambin, P.; Ward, C.; Meehan, J.; Kunkler, I.H.; Langdon, S.P.; Ree, A.H.; Flatmark, K.; Lyng, H.; Calzada, M.J.; Peso, L.; Landazuri, M.O.; Görlach, A.; Flamm, H.; Kieninger, J.; Urban, G.; Weltin, A.; Singleton, D.C.; Haider, S.; Buffa, F.M.; Harris, A.L.; Scozzafava, A.; Supuran, C.T.; Moser, I.; Jobst, G.; Busk, M.; Toustrup, K.; Overgaard, J.; Alsner, J.; Pouyssegur, J.; Chiche, J.; Mazure, N.; Marchiq, I.; Parks, S.; Ahmed, A.; Ashcroft, M.; Pastorekova, S.; Cao, Y.; Rouschop, K.M.; Wouters, B.G.; Koritzinsky, M.; Mujcic, H.; Cojocari, D. Targeting tumour hypoxia to prevent cancer metastasis. From biology, biosensing and technology to drug development: The METOXIA consortium. J. Enzyme Inhib. Med. Chem., 2015, 30(5), 689-721.
[http://dx.doi.org/10.3109/14756366.2014.966704] [PMID: 25347767]
[62]
Roberts, N.J. Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses. Sci. Trad. Med., 2014, 6(249), 249ra111-249ra111.
[http://dx.doi.org/10.1126/scitranslmed.3008982]
[63]
Janku, F.; Zhang, H.H.; Pezeshki, A.; Goel, S.; Murthy, R.; Wang-Gillam, A.; Shepard, D.R.; Helgason, T.; Masters, T.; Hong, D.S.; Piha-Paul, S.A.; Karp, D.D.; Klang, M.; Huang, S.Y.; Sakamuri, D.; Raina, A.; Torrisi, J.; Solomon, S.B.; Weissfeld, A.; Trevino, E.; DeCrescenzo, G.; Collins, A.; Miller, M.; Salstrom, J.L.; Korn, R.L.; Zhang, L.; Saha, S.; Leontovich, A.A.; Tung, D.; Kreider, B.; Varterasian, M.; Khazaie, K.; Gounder, M.M. Intratumoral injection of Clostridium novyi-NT spores in patients with treatmentrefractory advanced solid TumorsPhase I study of Intratumoral clostridium novyi-NT. Clin. Cancer Res., 2021, 27(1), 96-106.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2065] [PMID: 33046513]
[64]
van der Meer-Janssen, Y.P.M.; van Galen, J.; Batenburg, J.J.; Helms, J.B. Lipids in host–pathogen interactions: Pathogens exploit the complexity of the host cell lipidome. Prog. Lipid Res., 2010, 49(1), 1-26.
[http://dx.doi.org/10.1016/j.plipres.2009.07.003] [PMID: 19638285]
[65]
Sitkiewicz, I.; Stockbauer, K.E.; Musser, J.M. Secreted bacterial phospholipase A2 enzymes: Better living through phospholipolysis. Trends Microbiol., 2007, 15(2), 63-69.
[http://dx.doi.org/10.1016/j.tim.2006.12.003] [PMID: 17194592]
[66]
Flores-Díaz, M.; Monturiol-Gross, L.; Naylor, C.; Alape-Girón, A.; Flieger, A. Bacterial sphingomyelinases and phospholipases as virulence factors. Microbiol. Mol. Biol. Rev., 2016, 80(3), 597-628.
[http://dx.doi.org/10.1128/MMBR.00082-15] [PMID: 27307578]
[67]
Jepson, M.; Titball, R. Structure and function of clostridial phospholipases C. Microbes Infect., 2000, 2(10), 1277-1284.
[http://dx.doi.org/10.1016/S1286-4579(00)01281-8] [PMID: 11008117]
[68]
Uzal, F.A.; Navarro, M.A.; Asin, J.; Henderson, E.E. Clostridial diseases of horses: A review. Vaccines, 2022, 10(2), 318.
[http://dx.doi.org/10.3390/vaccines10020318] [PMID: 35214776]
[69]
González-Bulnes, P.; González-Roura, A.; Canals, D.; Delgado, A.; Casas, J.; Llebaria, A. 2-Aminohydroxamic acid derivatives as inhibitors of Bacillus cereus phosphatidylcholine preferred phospholipase C PC-PLCBc. Bioorg. Med. Chem., 2010, 18(24), 8549-8555.
[http://dx.doi.org/10.1016/j.bmc.2010.10.031] [PMID: 21071231]
[70]
Titball, R.W.; Naylor, C.E.; Basak, A.K. The Clostridium perfringensα-toxin. Anaerobe, 1999, 5(2), 51-64.
[http://dx.doi.org/10.1006/anae.1999.0191] [PMID: 16887662]
[71]
Oda, M.; Terao, Y.; Sakurai, J.; Nagahama, M. Membrane-binding mechanism of Clostridium perfringens alpha-toxin. Toxins, 2015, 7(12), 5268-5275.
[http://dx.doi.org/10.3390/toxins7124880] [PMID: 26633512]
[72]
Oda, M.; Matsuno, T.; Shiihara, R.; Ochi, S.; Yamauchi, R.; Saito, Y.; Imagawa, H.; Nagahama, M.; Nishizawa, M.; Sakurai, J. The relationship between the metabolism of sphingomyelin species and the hemolysis of sheep erythrocytes induced by Clostridium perfringens α-toxin. J. Lipid Res., 2008, 49(5), 1039-1047.
[http://dx.doi.org/10.1194/jlr.M700587-JLR200] [PMID: 18263851]
[73]
Oda, M.; Kabura, M.; Takagishi, T.; Suzue, A.; Tominaga, K.; Urano, S.; Nagahama, M.; Kobayashi, K.; Furukawa, K.; Furukawa, K.; Sakurai, J. Clostridium perfringens alpha-toxin recognizes the GM1a-TrkA complex. J. Biol. Chem., 2012, 287(39), 33070-33079.
[http://dx.doi.org/10.1074/jbc.M112.393801] [PMID: 22847002]
[74]
Flores-Díaz, M.; Thelestam, M.; Clark, G.C.; Titball, R.W.; Alape-Girón, A. Effects of Clostridium perfringens phospholipase C in mammalian cells. Anaerobe, 2004, 10(2), 115-123.
[http://dx.doi.org/10.1016/j.anaerobe.2003.11.002] [PMID: 16701508]
[75]
Chan, F.K-M.; Moriwaki, K.; De Rosa, M.J. Detection of necrosis by release of lactate dehydrogenase activity. Immune Homeostasis; Springer: Chamb., 2013, pp. 65-70.
[http://dx.doi.org/10.1007/978-1-62703-290-2_7]
[76]
Monturiol-Gross, L.; Flores-Díaz, M.; Pineda-Padilla, M.J.; Castro-Castro, A.C.; Alape-Giron, A. Clostridium perfringens phospholipase C induced ROS production and cytotoxicity require PKC, MEK1 and NFκB activation. PLoS One, 2014, 9(1), e86475.
[http://dx.doi.org/10.1371/journal.pone.0086475] [PMID: 24466113]
[77]
Manni, M.M.; Valero, J.G.; Pérez-Cormenzana, M.; Cano, A.; Alonso, C.; Goñi, F.M. Lipidomic profile of GM95 cell death induced by Clostridium perfringens alpha-toxin. Chem. Phys. Lipids, 2017, 203, 54-70.
[http://dx.doi.org/10.1016/j.chemphyslip.2017.01.002] [PMID: 28104376]
[78]
Barth, M Ceramide-based therapeutics for the treatment of cancer. Anticancer Agents Med Chem., 2011, 11(9), 911-9.
[79]
Johansson, A.C.; Appelqvist, H.; Nilsson, C.; Kågedal, K.; Roberg, K.; Öllinger, K. Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis, 2010, 15(5), 527-540.
[http://dx.doi.org/10.1007/s10495-009-0452-5] [PMID: 20077016]
[80]
Zhivotovsky, B.; Orrenius, S. Calcium and cell death mechanisms: A perspective from the cell death community. Cell Calcium, 2011, 50(3), 211-221.
[http://dx.doi.org/10.1016/j.ceca.2011.03.003] [PMID: 21459443]
[81]
Ochi, S.; Oda, M.; Matsuda, H.; Ikari, S.; Sakurai, J. Clostridium perfringens α-toxin activates the sphingomyelin metabolism system in sheep erythrocytes. J. Biol. Chem., 2004, 279(13), 12181-12189.
[http://dx.doi.org/10.1074/jbc.M307046200] [PMID: 14702348]
[82]
Blom, T.; Slotte, J.P.; Pitson, S.M.; Törnquist, K. Enhancement of intracellular sphingosine-1-phosphate production by inositol 1,4,5-trisphosphate-evoked calcium mobilisation in HEK-293 cells: Endogenous sphingosine-1-phosphate as a modulator of the calcium response. Cell. Signal., 2005, 17(7), 827-836.
[http://dx.doi.org/10.1016/j.cellsig.2004.11.022] [PMID: 15763425]
[83]
DeClue, A.E.; Axiak-Bechtel, S.M.; Zhang, Y.; Saha, S.; Zhang, L.; Tung, D.; Bryan, J.N. Immune response to C. novyi-NT immunotherapy. Vet. Res., 2018, 49(1), 38.
[http://dx.doi.org/10.1186/s13567-018-0531-0] [PMID: 29690928]
[84]
Casares, N.; Pequignot, M.O.; Tesniere, A.; Ghiringhelli, F.; Roux, S.; Chaput, N.; Schmitt, E.; Hamai, A.; Hervas-Stubbs, S.; Obeid, M.; Coutant, F.; Métivier, D.; Pichard, E.; Aucouturier, P.; Pierron, G.; Garrido, C.; Zitvogel, L.; Kroemer, G. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med., 2005, 202(12), 1691-1701.
[http://dx.doi.org/10.1084/jem.20050915] [PMID: 16365148]
[85]
Michaud, M.; Martins, I.; Sukkurwala, A.Q.; Adjemian, S.; Ma, Y.; Pellegatti, P.; Shen, S.; Kepp, O.; Scoazec, M.; Mignot, G.; Rello-Varona, S.; Tailler, M.; Menger, L.; Vacchelli, E.; Galluzzi, L.; Ghiringhelli, F.; di Virgilio, F.; Zitvogel, L.; Kroemer, G. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science, 2011, 334(6062), 1573-1577.
[http://dx.doi.org/10.1126/science.1208347] [PMID: 22174255]
[86]
Obeid, M.; Tesniere, A.; Ghiringhelli, F.; Fimia, G.M.; Apetoh, L.; Perfettini, J.L.; Castedo, M.; Mignot, G.; Panaretakis, T.; Casares, N.; Métivier, D.; Larochette, N.; van Endert, P.; Ciccosanti, F.; Piacentini, M.; Zitvogel, L.; Kroemer, G. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med., 2007, 13(1), 54-61.
[http://dx.doi.org/10.1038/nm1523] [PMID: 17187072]
[87]
LeBlanc, C.J.; LeBlanc, A.K.; Jones, M.M.; Bartges, J.W.; Kania, S.A. Evaluation of peripheral blood neutrophil function in tumorbearing dogs. Vet. Clin. Pathol., 2010, 39(2), 157-163.
[http://dx.doi.org/10.1111/j.1939-165X.2009.00200.x] [PMID: 20003028]
[88]
Fowler, B.L.; Axiak, S.M.; DeClue, A.E. Blunted pathogenassociated molecular pattern motif induced TNF, IL-6 and IL-10 production from whole blood in dogs with lymphoma. Vet. Immunol. Immunopathol., 2011, 144(1-2), 167-171.
[http://dx.doi.org/10.1016/j.vetimm.2011.07.011] [PMID: 21835475]
[89]
Staedtke, V.; Gray-Bethke, T.; Liu, G.; Liapi, E.; Riggins, G.J.; Bai, R.Y. Neutrophil depletion enhanced the Clostridium novyi -NT therapy in mouse and rabbit tumor models. Neurooncol. Adv., 2022, 4(1), vdab184.
[http://dx.doi.org/10.1093/noajnl/vdab184] [PMID: 35118381]
[90]
Hekmatshoar, Y.; Rahbar Saadat, Y.; Hosseiniyan Khatibi, S.M.; Ozkan, T.; Zununi Vahed, F.; Nariman-Saleh-Fam, Z.; Pourghassem Gargari, B.; Sunguroglu, A.; Zununi Vahed, S. The impact of tumor and gut microbiotas on cancer therapy: Beneficial or detrimental? Life Sci., 2019, 233, 116680.
[http://dx.doi.org/10.1016/j.lfs.2019.116680] [PMID: 31344431]
[91]
Cheong, I.; Huang, X.; Bettegowda, C.; Diaz, L.A., Jr; Kinzler, K.W.; Zhou, S.; Vogelstein, B. A bacterial protein enhances the release and efficacy of liposomal cancer drugs. Science, 2006, 314(5803), 1308-1311.
[http://dx.doi.org/10.1126/science.1130651] [PMID: 17124324]
[92]
Danino, T.; Lo, J.; Prindle, A.; Hasty, J.; Bhatia, S.N. In vivo gene expression dynamics of tumor-targeted bacteria. ACS Synth. Biol., 2012, 1(10), 465-470.
[http://dx.doi.org/10.1021/sb3000639] [PMID: 23097750]
[93]
Smith, A.B., III; Freeze, B.S.; LaMarche, M.J.; Sager, J.; Kinzler, K.W.; Vogelstein, B. Discodermolide analogues as the chemical component of combination bacteriolytic therapy. Bioorg. Med. Chem. Lett., 2005, 15(15), 3623-3626.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.068] [PMID: 15979874]
[94]
Dang, L.H.; Bettegowda, C.; Agrawal, N.; Cheong, I.; Huso, D.; Frost, P.; Loganzo, F.; Greenberger, L.; Barkoczy, J.; Pettit, G.R.; Smith, A.B., III; Gurulingappa, H.; Khan, S.; Parmigiani, G.; Kinzler, K.W.; Zhou, S.; Vogelstein, B. Targeting vascular and avascular compartments of tumors with C. novyi-NT and antimicrotubule agents. Cancer Biol. Ther., 2004, 3(3), 326-337.
[http://dx.doi.org/10.4161/cbt.3.3.704] [PMID: 14739784]
[95]
Wachsberger, P.; Burd, R.; Dicker, A.P. Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction. Clin. Cancer Res., 2003, 9(6), 1957-1971.
[PMID: 12796357]
[96]
Bettegowda, C.; Dang, L.H.; Abrams, R.; Huso, D.L.; Dillehay, L.; Cheong, I.; Agrawal, N.; Borzillary, S.; McCaffery, J.M.; Watson, E.L.; Lin, K.S.; Bunz, F.; Baidoo, K.; Pomper, M.G.; Kinzler, K.W.; Vogelstein, B.; Zhou, S. Overcoming the hypoxic barrier to radiation therapy with anaerobic bacteria. Proc. Natl. Acad. Sci. USA, 2003, 100(25), 15083-15088.
[http://dx.doi.org/10.1073/pnas.2036598100] [PMID: 14657371]
[97]
Garcia-Barros, M.; Paris, F.; Cordon-Cardo, C.; Lyden, D.; Rafii, S.; Haimovitz-Friedman, A.; Fuks, Z.; Kolesnick, R. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science, 2003, 300(5622), 1155-1159.
[http://dx.doi.org/10.1126/science.1082504] [PMID: 12750523]
[98]
Zheng, L.; Zhang, Z.; Khazaie, K.; Saha, S.; Lewandowski, R.J.; Zhang, G.; Larson, A.C. MRI-monitored intra-tumoral injection of iron-oxide labeled Clostridium novyi-NT anaerobes in pancreatic carcinoma mouse model. PLoS One, 2014, 9(12), e116204.
[http://dx.doi.org/10.1371/journal.pone.0116204] [PMID: 25549324]
[99]
Park, W.; Cho, S.; Huang, X.; Larson, A.C.; Kim, D.H. Branched gold nanoparticle coating of clostridium novyi‐NT spores for CTguided intratumoral injection. Small, 2017, 13(5), 1602722.
[http://dx.doi.org/10.1002/smll.201602722] [PMID: 27862936]
[100]
Park, W.; Cho, S.; Kang, D.; Han, J.H.; Park, J.H.; Lee, B.; Lee, J.; Kim, D.H. Tumor microenvironment targeting nano–bio emulsion for synergistic combinational X‐Ray PDT with oncolytic bacteria therapy. Adv. Healthc. Mater., 2020, 9(13), 1901812.
[http://dx.doi.org/10.1002/adhm.201901812] [PMID: 32529747]
[101]
Chen, Y.; Liu, X.; Guo, Y.; Wang, J.; Zhang, D.; Mei, Y.; Shi, J.; Tan, W.; Zheng, J.H. Genetically engineered oncolytic bacteria as drug delivery systems for targeted cancer theranostics. Acta Biomater., 2021, 124, 72-87.
[http://dx.doi.org/10.1016/j.actbio.2021.02.006] [PMID: 33561563]
[102]
Zhu, L.; Liu, J.; Qiu, M.; Chen, J.; Liang, Q.; Peng, G.; Zou, Z. Bacteria-mediated metformin-loaded peptide hydrogel reprograms the tumor immune microenvironment in glioblastoma. Biomaterials, 2022, 288, 121711.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121711] [PMID: 35948494]
[103]
Ryan, H.E.; Poloni, M.; McNulty, W.; Elson, D.; Gassmann, M.; Arbeit, J.M.; Johnson, R.S. Hypoxia-inducible factor-1α is a positive factor in solid tumor growth. Cancer Res., 2000, 60(15), 4010-4015.
[PMID: 10945599]
[104]
Groot, A.J.; Mengesha, A.; Wall, E.; Diest, P.J.; Theys, J.; Vooijs, M. Functional antibodies produced by oncolytic clostridia. Biochem. Biophys. Res. Commun., 2007, 364(4), 985-989.
[http://dx.doi.org/10.1016/j.bbrc.2007.10.126] [PMID: 17971292]
[105]
Swierz, M.J. Transarterial (chemo) embolisation versus no intervention or placebo for liver metastases. Cochrane Database Syst Rev., 2020, 3(3), CD009498.
[106]
Ebrahimzadeh, S.; Ahangari, H.; Soleimanian, A.; Hosseini, K.; Ebrahimi, V.; Ghasemnejad, T.; Soofiyani, S.R.; Tarhriz, V.; Eyvazi, S. Colorectal cancer treatment using bacteria: Focus on molecular mechanisms. BMC Microbiol., 2021, 21(1), 218.
[http://dx.doi.org/10.1186/s12866-021-02274-3] [PMID: 34281519]
[107]
Shimose, S.; Kawaguchi, T.; Tanaka, M.; Iwamoto, H.; Miyazaki, K.; Moriyama, E.; Suzuki, H.; Niizeki, T.; Shirono, T.; Nakano, M.; Suga, H.; Yamaguchi, T.; Yokokura, Y.; Noguchi, K.; Koga, H.; Torimura, T. Lenvatinib prolongs the progression-free survival time of patients with intermediate-stage hepatocellular carcinoma refractory to transarterial chemoembolization: A multicenter cohort study using data mining analysis. Oncol. Lett., 2020, 20(3), 2257-2265.
[http://dx.doi.org/10.3892/ol.2020.11758] [PMID: 32782543]
[108]
Krick, E.L.; Sorenmo, K.U.; Rankin, S.C.; Cheong, I.; Kobrin, B.; Thornton, K.; Kinzler, K.W.; Vogelstein, B.; Zhou, S.; Diaz, L.A., Jr Evaluation of Clostridium novyi–NT spores in dogs with naturally occurring tumors. Am. J. Vet. Res., 2012, 73(1), 112-118.
[http://dx.doi.org/10.2460/ajvr.73.1.112] [PMID: 22204296]
[109]
Berlin, J. 385 A first-in-human study of lemzoparlimab, a differentiated anti-CD47 antibody, in subjects with relapsed/refractory malignancy: initial monotherapy results. J. Immnotherp. Cancer, 2020, 8(3), A410-A410.
[110]
Diaz, L.A., Jr; Cheong, I.; Foss, C.A.; Zhang, X.; Peters, B.A.; Agrawal, N.; Bettegowda, C.; Karim, B.; Liu, G.; Khan, K.; Huang, X.; Kohli, M.; Dang, L.H.; Hwang, P.; Vogelstein, A.; Garrett-Mayer, E.; Kobrin, B.; Pomper, M.; Zhou, S.; Kinzler, K.W.; Vogelstein, B.; Huso, D.L. Pharmacologic and toxicologic evaluation of C. novyi-NT spores. Toxicol. Sci., 2005, 88(2), 562-575.
[http://dx.doi.org/10.1093/toxsci/kfi316] [PMID: 16162850]
[111]
Husain, S.R.; Han, J.; Au, P.; Shannon, K.; Puri, R.K. Gene therapy for cancer: Regulatory considerations for approval. Cancer Gene Ther., 2015, 22(12), 554-563.
[http://dx.doi.org/10.1038/cgt.2015.58] [PMID: 26584531]
[112]
Eisenman, D.; Swindle, S. FDA guidance on shedding and environmental impact in clinical trials involving gene therapy products. Appl. Biosaf., 2022, 27(3), 191-197.
[http://dx.doi.org/10.1089/apb.2022.0020] [PMID: 36779200]
[113]
Staedtke, V.; Roberts, N.J.; Bai, R.Y.; Zhou, S. Clostridium novyi-NT in cancer therapy. Genes Dis., 2016, 3(2), 144-152.
[http://dx.doi.org/10.1016/j.gendis.2016.01.003] [PMID: 30258882]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy