Generic placeholder image

Recent Advances in Anti-Infective Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-4344
ISSN (Online): 2772-4352

Mini-Review Article

COVID-19 Study, Diagnostic and Therapeutic Transition

Author(s): Da-Yong Lu* and Ting-Ren Lu

Volume 19, Issue 1, 2024

Published on: 27 April, 2023

Page: [21 - 35] Pages: 15

DOI: 10.2174/2772434418666230331115936

Price: $65

Abstract

Introduction: The outbreak of coronavirus (severe acute respiratory syndrome coronavirus2, COVID-19, SARS-CoV-2) in Wuhan, China occurred three years ago. However, the healthcare state and legislature for COVID-19 varied greatly worldwide. After three years, the social life of most countries worldwide is gradually back to normal. Diagnosis and therapeutics worldwide are formalized now. Improvement of the knowledge about this devastating disease will shed new light on its management and spawn the development of new counter measures. Due to the differences in socioeconomic conditions and policies worldwide, the diagnostic and therapeutic transition should be established. The schedules and techniques of vaccines, drugs, or other therapeutic strategies could be formalized in the future. The origin and hidden nature of COVID-19 biology (relationship between viral strain and drug targeting) should be further investigated. Knowledge and opinion breakthroughs may significantly heighten the quality of preventive and therapeutic strategies against COVID-19. To further stabilize the global situation, the issues of viral spread and induced mortality should be emphasized. Existing animal models, pathophysiological knowledge, and therapeutics for different infected patients played vital roles. The diagnostic widening, variants of COVID, and therapeutic selection worldwide totally solve the complex outcomes and promote the curability for infected patients. Different diagnostic platforms can reach different therapeutic selections, responses, and benefits in the clinic. It will provide advanced diagnostic dimensions, therapeutic paradigms, and drug selection strategies for the purpose of the greatest benefiting and recoveries of COVID-19 patients. To speed up the global fight against COVID-19, biomedical knowledge, prophylactic vaccines, and therapeutic paradigms should be updated in dynamic states.

Keywords: COVID-19, viral pathology, infection targets, drug development, clinical trial, viral prevention, viral infection.

[1]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[2]
Ciotti M, Angeletti S, Minieri M, et al. COVID-19 outbreak: An overview. Chemotherapy 2020; 64(5-6): 215-23.
[http://dx.doi.org/10.1159/000507423] [PMID: 32259829]
[3]
Lu DY, Che JY, Lu TR, Wu HY. Coronavirus (COVID-19), origin, infectivity, epidemics, therapeutics and global impacts. EC Pharmacol Toxicol 2021; 9(3): 100-7.
[4]
Momtaz YA. The COVID-19 and ageism in social media. Coronaviruses 2020; 1(1): 7-8.
[http://dx.doi.org/10.2174/2666796701999200621203144]
[5]
Varala R, Bollikolla H. nCOVID-19 in 2020: From despair to hope. Coronaviruses 2020; 1(1): 9-12.
[http://dx.doi.org/10.2174/2666796701999200621202839]
[6]
Barupal T, Tak PK, Meena M. COVID-19: Morphology, characteristics, symptoms, prevention, clinical diagnosis and current scenario. Coronaviruses 2020; 1(1): 82-9.
[http://dx.doi.org/10.2174/2666796701999200617161348]
[7]
Ping X, Weiyang Y, Jianwei C, Xiang L. Antiviral activities against influenza virus (FM1) of bioactive fractions and representative compounds extracted from Banlangen (Radix Isatidis). J Tradit Chin Med 2016; 36(3): 369-76.
[http://dx.doi.org/10.1016/S0254-6272(16)30051-6] [PMID: 27468553]
[8]
Sytar O, Brestic M, Hajihashemi S, et al. COVID-19 prophylaxis efforts based on natural antiviral plant extracts and their compounds. Molecules 2021; 26(3): 727.
[http://dx.doi.org/10.3390/molecules26030727] [PMID: 33573318]
[9]
Randolph HE, Barreiro LB. Herd Immunity: Understanding COVID-19. Immunity 2020; 52(5): 737-41.
[http://dx.doi.org/10.1016/j.immuni.2020.04.012] [PMID: 32433946]
[10]
Morens DM. Antibody-dependent enhancement of infection and the pathogenesis of viral disease. Clin Infect Dis 1994; 19(3): 500-12.
[http://dx.doi.org/10.1093/clinids/19.3.500] [PMID: 7811870]
[11]
Katta M, Rapaka S, Adireddi R, Emandi JR. A preliminary review on novel coronavirus diseases: COVID-19. Coronaviruses 2020; 1(1): 90-7.
[http://dx.doi.org/10.2174/2666796701999200615155630]
[12]
Naqvi IH, Rizvi SNZ. The comprehensive appresal of COVID-19: Its clinical panorama from virology till management and beyond. Coronaviruses 2020; 1(1): 57-72.
[http://dx.doi.org/10.2174/2666796701999200701132336]
[13]
Raj S, Chandel V, Rathi B, Kumar D. Understanding the molecular mechanisms of SARS-CoV-2 infection and propagation in human to discover potential preventive and therapeutic approach. Coronaviruses 2020; 1(1): 73-81.
[http://dx.doi.org/10.2174/2666796701999200617155013]
[14]
Doshi GM, Ved HS, Thakkar AP. Critical insight into the attributes of emerging novel coronavirus (COVID-19) in India and across the world. Coronaviruses 2020; 1(1): 49-56.
[http://dx.doi.org/10.2174/2666796701999200623172631]
[15]
Banday AH, Shah SA, Ajaz SJ. Potential immunotherapy against SARS-CoV-2, strategy and status. Coronaviruses 2020; 1(1): 23-31.
[http://dx.doi.org/10.2174/2666796701999200625212040]
[16]
Li M, Wang H, Tian L, et al. COVID-19 vaccine development: milestones, lessons and prospects. Sign Transduct Target Ther 2022; 7(1): 146.
[http://dx.doi.org/10.1038/s41392-022-00996-y] [PMID: 35504917]
[17]
Liu T, Tian Y, Zheng A, Cui C. Design strategies for and stability of mRNA-lipid nanoparticle COVID-19 vaccines. Polymers 2022; 14(19): 4195.
[http://dx.doi.org/10.3390/polym14194195] [PMID: 36236141]
[18]
Rahman MM, Masum MHU, Wajed S, Talukder A. A comprehensive review on COVID-19 vaccines: Development, effectiveness, adverse effects, distribution and challenges. Virusdisease 2022; 33(1): 1-22.
[http://dx.doi.org/10.1007/s13337-022-00755-1] [PMID: 35127995]
[19]
Tian Y, Deng Z, Yang P. mRNA vaccines: A novel weapon to control infectious diseases. Front Microbiol 2022; 13: 1008684.
[http://dx.doi.org/10.3389/fmicb.2022.1008684]
[20]
Fang E, Liu X, Li M, et al. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther 2022; 7(1): 94.
[http://dx.doi.org/10.1038/s41392-022-00950-y]
[21]
Hameed SA, Paul S, Dellosa GKY, Jaraquemada D, Bello MB. Towards the future exploration of mucosal mRNA vaccines against emerging viral diseases; Lessons from existing next-generation mucosal vaccine strategies. NPJ Vaccines 2022; 7(1): 71.
[http://dx.doi.org/10.1038/s41541-022-00485-x] [PMID: 35764661]
[22]
Carvalho T. Intranasal COVID-19 vaccine fails to induce mucosal immunity. Nat Med 2022; 28(12): 2439-40.
[http://dx.doi.org/10.1038/d41591-022-00106-z] [PMID: 36329319]
[23]
Houston S. SARS-CoV-2 mucosal vaccine. Nat Immunol 2023; 24(1): 1.
[http://dx.doi.org/10.1038/s41590-022-01405-w] [PMID: 36596900]
[24]
Clever S, Volz A. Mouse models in COVID-19 research: Analyzing the adaptive immune response. Med Microbiol Immunol 2023; 212(2): 165-83.
[http://dx.doi.org/10.1007/s00430-022-00735-8]
[25]
Lu Dy. Lu Tr. COVID-19 Vaccine Development, Emergency Workflow. EC Emerg Medic Critic Care 2021; 5(9): 23-5.
[26]
AbdelMassih AF, Mahrous R, Taha A, et al. The potential use of ABO blood group system for risk stratification of COVID-19. Med Hypotheses 2020; 145: 110343.
[http://dx.doi.org/10.1016/j.mehy.2020.110343] [PMID: 33086161]
[27]
Crowe D. SARS-steroid and Ribavirin Scandal. In:The Infectious Myth. 2020.
[28]
Ledford H. How does COVID-19 kill? Uncertainty is hampering doctors’ ability to choose treatments. Nature 2020; 580(7803): 311-2.
[http://dx.doi.org/10.1038/d41586-020-01056-7] [PMID: 32273618]
[29]
Kebede T, Kumar D, Sharma PK. Potential drug option for treatment of COVID-19: A review. Coronaviruses 2020; 1(1): 42-8.
[http://dx.doi.org/10.2174/2666796701999200701131604]
[30]
Kim YK. RNA therapy: Rich history, various applications and unlimited future prospects. Exp Mol Med 2022; 54(4): 455-65.
[http://dx.doi.org/10.1038/s12276-022-00757-5] [PMID: 35440755]
[31]
Nooraei S, Bahrulolum H, Hoseini ZS, et al. Virus-like particles: Preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnol 2021; 19(1): 59.
[http://dx.doi.org/10.1186/s12951-021-00806-7] [PMID: 33632278]
[32]
Vlatkovic I. Non-immunotherapy application of LNP-mRNA: maximizing efficacy and safety. Biomedicines 2021; 9(5): 530.
[http://dx.doi.org/10.3390/biomedicines9050530] [PMID: 34068715]
[33]
Maxmen A. How blood from coronavirus survivors might save lives. Nature 2020; 580(7801): 16-7.
[http://dx.doi.org/10.1038/d41586-020-00895-8] [PMID: 32214238]
[34]
Lu DY, Che JY. Holistic COVID-19 emergency practice. EC Emerg Medic Critic Care 2022; 6(6): 2-4.
[35]
Parasuraman S. Herbal drug discovery: Challenges and perspectives. Curr Pharmacogen Person Med 2018; 16(1): 63-8.
[http://dx.doi.org/10.2174/1875692116666180419153313]
[36]
Zhao Q, Weber E, Yang H. Recent developments on coronavirus main protease/3C like protease inhibitors. Recent Patents Anti-Infect Drug Disc 2013; 8(2): 150-6.
[http://dx.doi.org/10.2174/1574891X113089990017] [PMID: 23879823]
[37]
Liu W, Zhu HL, Duan Y. Effective chemicals against novel coronavirus (COVID-19) in China. Curr Top Med Chem 2020; 20(8): 603-5.
[http://dx.doi.org/10.2174/18734294MTA16MDQBx] [PMID: 32133962]
[38]
Blaising J, Polyak SJ, Pécheur EI. Arbidol as a broad-spectrum antiviral: An update. Antiviral Res 2014; 107: 84-94.
[http://dx.doi.org/10.1016/j.antiviral.2014.04.006] [PMID: 24769245]
[39]
Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005; 2(1): 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[40]
Putta S, Yarla NS, Peluso I, et al. Anthocyanins: Possible role as multitarget therapeutic agents for prevention and therapy of chronic diseases. Curr Pharm Des 2017; 23(30): 4475-83.
[PMID: 28831925]
[41]
Mani JS, Johnson JB, Steel JC, et al. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res 2020; 284: 197989.
[http://dx.doi.org/10.1016/j.virusres.2020.197989] [PMID: 32360300]
[42]
Chojnacka K, Witek-Krowiak A, Skrzypczak D, Mikula K. Młynarz P. Phytochemicals containing biologically active polyphenols as an effective agent against COVID-19-inducing coronavirus. J Funct Foods 2020; 73: 104146.
[http://dx.doi.org/10.1016/j.jff.2020.104146] [PMID: 32834835]
[43]
Lu DY, Lu TR, Lu Y, Sastry N, Wu HY. Discover natural chemical drugs in modern medicines. Metabolomics 2016; 6(3): 181.
[44]
Omotayo AO, Otekunrin OA, Fasina FO, Otekunrin O, Akram M. COVID-19 in Nigeria: Why continuous spike in cases? Asian Pac J Trop Med 2021; 14(1): 1-4.
[http://dx.doi.org/10.4103/1995-7645.304292]
[45]
Pattanayak S. Alternative to antibiotics from herbal origin-outline of a comprehensive research project. Curr Pharmacogenomics Person Med 2018; 16(1): 9-62.
[http://dx.doi.org/10.2174/1875692116666180419154033]
[46]
Wang YX, Ma JR, Wang SQ, et al. Utilizing integrating network pharmacological approaches to investigate the potential mechanism of Ma Xing Shi Gan Decoction in treating COVID-19. Eur Rev Med Pharmacol Sci 2020; 24(6): 3360-84.
[PMID: 32271454]
[47]
Lu DY, Lu TR. Herbal medicine in new era. Hospice Palliat Medic Int J 2019; 3(4): 125-30.
[http://dx.doi.org/10.15406/hpmij.2019.03.00165]
[48]
Chen PX, Wang S, Nie S, Marcone M. Properties of Cordyceps Sinensis: A review. J Funct Foods 2013; 5(2): 550-69.
[http://dx.doi.org/10.1016/j.jff.2013.01.034] [PMID: 32288794]
[49]
Silveira D, Prieto-Garcia JM, Boylan F, et al. COVID-19: Is there evidence for the use of herbal medicines as adjuvant symptomatic therapy? Front Pharmacol 2020; 11: 581840.
[http://dx.doi.org/10.3389/fphar.2020.581840] [PMID: 33071794]
[50]
Nyamwamu NC, Okari OJ, Gisesa WNQ. A survey of medicinal plants used by the Gusii community in the treatment of digestive disorders and other inflammatory conditions. J Medicin Plants stud 2020; 8(3): 21-332.
[51]
Mazzaedoost S, Behhudi G, Mousavi SM, Hashemi SA. COVID-19 treatment by plant compounds. J Adv Appl NanoBio Tech 2020; 2(1): 23-33.
[52]
Pattanayak S. Plants in healthcare: Past, present and future. Explor Anim Med Res 2021; 11(2): 140-4.
[http://dx.doi.org/10.52635/EAMR/11.2.140-144]
[53]
Yin L, Gao Y, Li Z, Wang M, Chen K. Analysis of Chinese herbal formulae recommended for COVID-19 in different schemes in China: A data mining approach. Comb Chem High Throughput Screen 2021; 24(7): 957-67.
[http://dx.doi.org/10.2174/18755402MTEwqMzclw] [PMID: 33001008]
[54]
Lu DY. HIV/AIDS treatments, fight for a cure LAMBERT academic publishing. Germany: ISBN 2017.
[55]
Lu DY, Lu TR, Wu HY. Avian flu, pathogenesis and therapy. Antiinfect Agents 2012; 10(2): 124-9.
[http://dx.doi.org/10.2174/2211362611208020124]
[56]
Lu DY, Hy Wu, Lu TR, Xu B, Ding J. Ebola therapeutic study and future trends. Infect Disord Drug Targets 2019; 19(1): 17-29.
[http://dx.doi.org/10.2174/1871526518666180813160348] [PMID: 30101721]
[57]
Mahamid F, Bdier D, Berte D. Psychometric properties of the fear of COVID-19 scale (FCV-19S) in a Palestinian context. J Muslim Ment Health 2022; 16(1): 45-58.
[http://dx.doi.org/10.3998/jmmh.400]
[58]
Carvalho APA, Conte-Junior CA. Recent advances on nanomaterials to COVID-19 management; A systematic review on antiviral/virucidal agents and mechanisms of SARS-CoV-2 inhibition/inactivation. Glob Chall 2021; 5(5): 2000115.
[http://dx.doi.org/10.1002/gch2.202000115] [PMID: 33786199]
[59]
Behl T, Rocchetti G, Chadha S, et al. Phytochemicals from plant foods as potential source of antiviral agents: An overview. Pharmaceuticals 2021; 14(4): 381.
[http://dx.doi.org/10.3390/ph14040381] [PMID: 33921724]
[60]
Gopal M, Bhaskaran A, Khalife W, Barbagelata A. Heart disease in patients with HIV/AIDS-an emerging clinical problem. Curr Cardiol Rev 2009; 5(2): 149-54.
[http://dx.doi.org/10.2174/157340309788166705] [PMID: 20436855]
[61]
Garg H, Joshi A, Mukherjee D. Cardiovascular complications of HIV infection and treatment. Cardiovasc Hematol Agents Med Chem 2013; 11(1): 58-66.
[http://dx.doi.org/10.2174/1871525711311010010] [PMID: 22946901]
[62]
Sukasem C, Sungkanuparph S. Would a CYP2B6 test help HIV patients being treated with efavirenz? Pharmacogenomics 2013; 14(9): 999-1001.
[http://dx.doi.org/10.2217/pgs.13.69] [PMID: 23837472]
[63]
Sánchez Martín A, Cabrera Figueroa S, Cruz Guerrero R, Hurtado LP, Hurlé ADG, Carracedo Álvarez Á. Impact of pharmacogenetics on CNS side effects related to efavirenz. Pharmacogenomics 2013; 14(10): 1167-78.
[http://dx.doi.org/10.2217/pgs.13.111] [PMID: 23859571]
[64]
van der Klaauw AA, Farooqi IS. The hunger genes: pathways to obesity. Cell 2015; 161(1): 119-32.
[http://dx.doi.org/10.1016/j.cell.2015.03.008] [PMID: 25815990]
[65]
Lu DY, Che JY, Wu HY, et al. Obesity, risks and managements. Metabolomics 2018; 8(1): e155.
[66]
Brestoff JR, Artis D. Immune regulation of metabolic homeostasis in health and disease. Cell 2015; 161(1): 146-60.
[http://dx.doi.org/10.1016/j.cell.2015.02.022] [PMID: 25815992]
[67]
Quarta C, Schneider R, Tschöp MH. Epigenetic ON/OFF switches for obesity. Cell 2016; 164(3): 341-2.
[http://dx.doi.org/10.1016/j.cell.2016.01.006] [PMID: 26824648]
[68]
Lu DY, Che JY, Lu TR, et al. Pathology and treatments of obesity. Trends Medic 2018; 8(5): 157.
[69]
Lu DY, Che JY, Yarla NS, et al. Type 2 diabetes study, introduction and perspective. Open Diabetes J 2018; 8(1): 13-21.
[http://dx.doi.org/10.2174/1876524601808010013]
[70]
Putta S, Peluso I, Yarla NS, et al. Diabetes mellitus and male aging, pharmacotherapeutics and clinical implications. Curr Pharm Des 2017; 23(41): 6321-46.
[http://dx.doi.org/10.2174/1381612823666170519151801] [PMID: 28741457]
[71]
Lu DY, Che JY, Yarla NS, et al. Type 2 diabetes treatment and drug development study. Open Diabetes J 2018; 8(1): 22-33.
[http://dx.doi.org/10.2174/1876524601808010022]
[72]
Lu DY, Lu Y. COVID-19 infection for metabolic abnormal human beings. Nursing & Care Open Access J 2022; 8(2): 72-3.
[http://dx.doi.org/10.15406/ncoaj.2022.08.00241]
[73]
Downes DJ, Cross AR, Hua P, et al. Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus. Nat Genet 2021; 53(11): 1606-15.
[http://dx.doi.org/10.1038/s41588-021-00955-3] [PMID: 34737427]
[74]
Schröder ARW, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002; 110(4): 521-9.
[http://dx.doi.org/10.1016/S0092-8674(02)00864-4] [PMID: 12202041]
[75]
Lu DY, Ding J. Sequencing the whole genome of infected human cells obtained from diseased patients a proposed strategy for understanding and overcoming AIDS or other deadest virus-infected diseases. Med Hypotheses 2007; 68(4): 826-7.
[http://dx.doi.org/10.1016/j.mehy.2006.08.042] [PMID: 17055187]
[76]
Smith AE, Helenius A. How viruses enter animal cells. Science 2004; 304(5668): 237-42.
[http://dx.doi.org/10.1126/science.1094823] [PMID: 15073366]
[77]
Taha H, Morgan J, Das A, Das S. Parenteral patent drug S/GSK1265744 has the potential to be an effective agent in pre-exposure prophylaxis against HIV infection. Recent Patents Anti-Infect Drug Disc 2014; 8(3): 213-8.
[http://dx.doi.org/10.2174/1574891X09666140417154727] [PMID: 24738551]
[78]
Huang W, Petropoulos CJ. Methods and compositions for determining virus susceptibility to integrase inhibitors. E 2014.Patent: EP2678453A1,
[79]
Rao DV, Dattatreya A, Dan MM, Sarangi T, Sasidhar K, Rahul J. Translational approach in emerging infectious disease treatment: An update. Biomed Res 2017; 28(13): 5678-86.
[80]
Lu DY, Lu TR, Yarla NS, Xu B, Ding J. HIV in human genomes and therapeutics. HIV: Curr Res 2017; 2(1): 121.
[81]
Kalidasan V, Ravichantar N, Muhd BA, et al. Latent HIV-1 provirus in vitro suppression using combinatorial CRISPR/Cas9 strategy. Gene Rep 2022; 29: 101686.
[http://dx.doi.org/10.1016/j.genrep.2022.101686]
[82]
Ferreira LLG, Andricopulo AD. COVID-19: Small-molecule clinical trial landscape. Curr Top Med Chem 2020; 20(18): 1577-80.
[http://dx.doi.org/10.2174/156802662018200703154334] [PMID: 32862824]
[83]
Kneller DW, Phillips G, Weiss KL, Zhang Q, Coates L, Kovalevsky A. Direct observation of protonation state modulation in SARS-CoV-2 main protease upon inhibitor binding with neutron crystallography. J Med Chem 2021; 64(8): 4991-5000.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00058] [PMID: 33755450]
[84]
Zhao Y, Du X, Duan Y, et al. High-throughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors. Protein Cell 2021; 12(11): 877-88.
[http://dx.doi.org/10.1007/s13238-021-00836-9] [PMID: 33864621]
[85]
Lu DY, Lu TR, Chen EH, et al. Keep up the pace of drug development evolution and expenditure. Cancer Rep Rev 2018; 2(5): 165.
[http://dx.doi.org/10.15761/CRR.1000165]
[86]
Mpiana PT, Ngbolua KTN, Tshibangu DST, et al. Aloe vera (L.) Burm F as a potential of anti-COVID-19 plant: A mini-review of its antiviral activity. European J Med Plants 2020; 31(8): 86-93.
[http://dx.doi.org/10.9734/ejmp/2020/v31i830261]
[87]
Hafez Ghoran S, El-Shazly M, Sekeroglu N, Kijjoa A. Natural products from medicinal plants with anti-human coronavirus activities. Molecules 2021; 26(6): 1754.
[http://dx.doi.org/10.3390/molecules26061754] [PMID: 33800977]
[88]
Ho MW, Li TM, Li JP, et al. Chinese herbal medicine usage reduces overall mortality in HIV-infected patients with osteoporosis or fractures. Front Pharmacol 2021; 12: 593434.
[http://dx.doi.org/10.3389/fphar.2021.593434] [PMID: 33935696]
[89]
Akram M, Michael S, Saeed M, et al. In: Ethnopharmacological properties of Asian medicinal plants during conflict-related blockades Phytochemistry, the Military and Health. (Chapter 5.). Elsevier 2021; 53: p. 68.
[90]
Brenbdler T, Al-Harrasi A, Bauer R, et al. Batanical drugs and supplements affecting the immune response in the time of COVID-19: Implication for research and clinical practice. Phytother Res 2020; 1: 19.
[http://dx.doi.org/10.1002/ptr.7008]
[91]
Inkoto CL, Ngbolua KTN, Kilembe JT, et al. A mini review on the phytochemistry and pharmacology of Aframomum alboviolaceum (zingiberaceae). South Asian Res J Natural Products 2021; 4(3): 24-35.
[92]
de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus replication. Curr Topics Microbiol Immunol 2018; 419: 1-42.
[93]
Viana JO, Félix MB, Maia MS, Serafim VL, Scotti L, Scotti MT. Drug discovery and computational strategies in the multitarget drugs era. Braz J Pharm Sci 2018; 54(spe): e01010.
[http://dx.doi.org/10.1590/s2175-97902018000001010]
[94]
Scotti L, Ishiki H, Mendonca FJB, Silva MS, Scotti MT. In silico analyses of natural products on leishmania enzyme targets. Mini Rev Med Chem 2015; 15(3): 253-69.
[http://dx.doi.org/10.2174/138955751503150312141854] [PMID: 25769973]
[95]
Landhuis E. Deep learning takes on tumours. Nature 2020; 580(7804): 551-3.
[http://dx.doi.org/10.1038/d41586-020-01128-8] [PMID: 32317799]
[96]
Huey R, Morris GM, Olson AJ, Goodsell DS. A semiempirical free energy force field with charge-based desolvation. J Comput Chem 2007; 28(6): 1145-52.
[http://dx.doi.org/10.1002/jcc.20634] [PMID: 17274016]
[97]
Morris GM, Goodsell DS, Halliday RS, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998; 19(14): 1639-62.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[98]
Kalirajan R. Activity of some novel chalcone-substituted 9-anilinoacridines against coronavirus (COVID-19): A computational approach. Coronaviruses 2020; 1(1): 13-22.
[http://dx.doi.org/10.2174/2666796701999200625210746]
[99]
Bhatia R, Narang RK, Rawal RK. Repurposing of RdRp inhibitors against SARS-CoV-2 through molecular docking tools. Coronaviruses 2020; 1(1): 108-16.
[http://dx.doi.org/10.2174/2666796701999200617155629]
[100]
Dutta M, Nezam M, Chowdhury S, et al. Appraisals of the Bangladeshi medicinal plant Calotropies gigantean used by folk medicine practitioners in the management of COVID-19: biochemical and computational approach. Front Mol Biosci 2021; 8: 625391.
[http://dx.doi.org/10.3389/fmolb.2021.625391] [PMID: 34124140]
[101]
Freedman DH. Hunting for new drugs with AI. Nature 2019; 576(7787): S49-53.
[http://dx.doi.org/10.1038/d41586-019-03846-0] [PMID: 31853074]
[102]
Raghav N, Sharma MR, Kennedy JF. Nanocellulose: A mini-review on types and use in drug delivery systems. Carbohydr Polym Technol Appl 2021; 2: 100031.
[http://dx.doi.org/10.1016/j.carpta.2020.100031]
[103]
Lu DY, Lu TR, Wu HY, Yarla NS, Ding J, Xu B. HIV/AIDS curable study, new forms of therapeutic trinity. Recent Patents Anti-Infect Drug Disc 2019; 13(3): 217-27.
[http://dx.doi.org/10.2174/1574891X13666181026094526] [PMID: 30362422]
[104]
Lu DY, Wu HY, Yarla NS, Xu B, Ding J, Lu TR. HAART in HIV/AIDS treatments, future trends. Infect Disord Drug Targets 2018; 18(1): 15-22.
[http://dx.doi.org/10.2174/1871526517666170505122800] [PMID: 28474549]
[105]
Lu DY, Lu TR, Cao S. Drug combinations in cancer treatment. Clin Exp Pharmacol 2013; 3(4): 134.
[106]
Morad I, Itzhaki H. Matato©-a novel concept for curing cancer. J Cancer Ther 2020; 11(2): 55-73.
[http://dx.doi.org/10.4236/jct.2020.112006]
[107]
Lu DY, Chen EH, Wu HY, Lu TR, Xu B, Ding J. Anticancer drug combination, how far we can go through? Anticancer Agents Med Chem 2017; 17(1): 21-8.
[http://dx.doi.org/10.2174/1871520616666160404112028] [PMID: 27039923]
[108]
Lu DY, Lu TR, Yarla NS, et al. Drug combination in clinical cancer treatment. Rev Recent Clin Trials 2017; 12(3): 202-11.
[PMID: 28782482]
[109]
Pariak C, Alver O, Ouma CNM, Rhyman L, Ramasami P. Can the antivirals remdesivir and favipiravir work jointly? in silico insights. Drug Res 2022; 72(01): 34-40.
[http://dx.doi.org/10.1055/a-1585-1323] [PMID: 34535038]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy