Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Review Article

L-Proline Catalyzed Organic Reactions via Microwave-Activation

Author(s): Rajiv Karmakar* and Chhanda Mukhopadhyay*

Volume 10, Issue 1, 2023

Published on: 14 June, 2023

Page: [26 - 42] Pages: 17

DOI: 10.2174/2213335610666230330164520

Price: $65

Abstract

In the past few years, using microwave power to heat and wield chemical reactions has become a gradually more popular subject in the scientific community. Microwave-supported organic synthesis is confirmed to be involved in rapidly synthesizing novel compounds with selectivity and enhanced biological activities. Microwave flash heating for chemical synthesis is a spectacular reduction in reaction times, high yield and purity of the products, etc. A catalysis field wherein small organic molecules like L-Proline efficiently and selectively catalyzes organic transformations. Microwave-assisted L-Proline catalyzed reactions are valuable tools for making different acyclic, heterocycles, and carbocyclic scaffolds that signify the main framework of most bioactive compounds. In synthetic organic chemistry, microwave irradiation speedily discarded the conventional heating methods in the world of multicomponent and step-wise synthetic chemistry. This review discusses only L-Proline Catalyzed Organic Reactions under microwave activation using modern organic transformations, including condensation, addition, asymmetric, multi-components, and other modular reactions.

Keywords: L-Proline, Microwave-assisted synthesis, Bio-active molecules, Addition, Condensation, Cyclization reactions, Asymmetric, Multi-component reactions, and One-Pot reactions.

Graphical Abstract
[1]
Sheldon, R.A.; Arenders, I.; Hanefeld, U. Green Chemistry and Catalysis; Wiley-VCH: Weinheim, 2007.
[http://dx.doi.org/10.1002/9783527611003]
[2]
Pellissier, H. Asymmetric organocatalysis. Tetrahedron, 2007, 63(38), 9267-9331.
[http://dx.doi.org/10.1016/j.tet.2007.06.024]
[3]
(a) Caddick, S. Microwave assisted organic reactions. Tetrahedron, 1995, 51(38), 10403-10432.
[http://dx.doi.org/10.1016/0040-4020(95)00662-R];
(b) Varma, R.S. Solvent-free organic synthesis. Using supported reagents and microwave irradiation. Green Chem., 1999, 1, 43-55.
[http://dx.doi.org/10.1039/a808223e];
(c) Perreux, L.; Loupy, A. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron, 2001, 57(45), 9199-9223.
[http://dx.doi.org/10.1016/S0040-4020(01)00905-X];
(d) Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis—a review. Tetrahedron, 2001, 57(45), 9225-9283.
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1];
(e) Polshettiwar, V.; Varma, R.S. Aqueous microwave chemistry: A clean and green synthetic tool for rapid drug discovery. Chem. Soc. Rev., 2008, 37(8), 1546-1557.
[http://dx.doi.org/10.1039/b716534j] [PMID: 18648680];
(f) Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed., 2004, 43(46), 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655] [PMID: 15558676]
[4]
De la Hoz, A.; Loupy, A. Microwaves in Organic Synthesis; Wiley‐VCH Verlag GmbH & Co. KGaA , 2012.
[http://dx.doi.org/10.1002/9783527651313]
[5]
Surati, M.A.; Jauhari, S.; Desai, K.R. A brief review: Microwave assisted organic reactionIndian J Pharm. Educ. Res., 2012, 4, 645-661.
[6]
Charde, M.S.; Shukla, A.; Bukhariya, V.; Chakole, R.D. A review on: A significance of microwave assist technique in green chemistry. Int J Phytopharm, 2012, 2, 39-50.
[http://dx.doi.org/10.7439/ijpc.v1i1.130]
[7]
Baumann, T.; Bächle, M.; Bräse, S. Sulfamidation of 2-arylaldehydes and ketones with chloramine-T. Org. Lett., 2006, 8(17), 3797-3800.
[http://dx.doi.org/10.1021/ol061410g] [PMID: 16898820]
[8]
Hosseini, M.; Stiasni, N.; Barbieri, V.; Kappe, C.O. Microwave-assisted asymmetric organocatalysis. A probe for nonthermal microwave effects and the concept of simultaneous cooling. J. Org. Chem., 2007, 72(4), 1417-1424.
[http://dx.doi.org/10.1021/jo0624187] [PMID: 17288387]
[9]
Rodríguez, B.; Bolm, C. Thermal effects in the organocatalytic asymmetric Mannich reaction. J. Org. Chem., 2006, 71(7), 2888-2891.
[http://dx.doi.org/10.1021/jo060064d] [PMID: 16555849]
[10]
Mossé, S.; Alexakis, A. Organocatalyzed asymmetric reactions via microwave activation. Org. Lett., 2006, 8(16), 3577-3580.
[http://dx.doi.org/10.1021/ol0614727] [PMID: 16869664]
[11]
Diaba, F.; Bonjoch, J. Asymmetric synthesis of 2-azabicyclo[3.3.1]nonanes by a microwave-assisted organocatalysed tandem desymmetrisation and intramolecular aldolisation. Org. Biomol. Chem., 2009, 7(12), 2517-2519.
[http://dx.doi.org/10.1039/b906835j] [PMID: 19503923]
[12]
Landge, S.M.; Török, B. Highly enantioselective organocatalytic addition of ethyl trifluoropyruvate to ketones with subzero temperature microwave activation. Catal. Lett., 2009, 131(3-4), 432-439.
[http://dx.doi.org/10.1007/s10562-009-0102-0]
[13]
Procopio, A.; De Nino, A.; Nardi, M.; Oliverio, M.; Paonessa, R.; Pasceri, R. A new microwave-assisted organocatalytic solvent-free synthesis of optically enriched Michael adducts. Synlett, 2010, 2010(12), 1849-1853.
[http://dx.doi.org/10.1055/s-0030-1258126]
[14]
Kumari, K.; Raghuvanshi, D.S.; Singh, K.N. Microwave assisted eco-friendly protocol for one pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones in water. Indian J. Chem., 2012, 51B, 860-865.
[15]
Lee, A.S.Y.; Chung, C.H.; Chang, Y.T.; Chen, P.L. L-proline catalyzed condensation reaction of aldehyde or carboxylic acid with 2-aminothiophenol under solvent-free and microwave irradiation. J. Appl. Sci. Eng, 2012, 15, 311-315.
[16]
Indumathi, S.; Perumal, S.; Anbananthan, N. A facile eco-friendly three-component protocol for the regio- and stereoselective synthesis of functionalized trans-dihydrofuro[3,2-c]-quinolin-4(2H)-ones. Green Chem., 2012, 14(12), 3361-3367.
[http://dx.doi.org/10.1039/c2gc36040c]
[17]
(a) Elguero, J.; Goya, P.; Jagerovic, N.; Silva, A.M.S. Pyrazoles as drugs: Facts and fantasies. Targets Heterocycl. Syst, 2002, 6, 52-98.;
(b) Singh, S.K.; Reddy, P.G.; Rao, K.S.; Lohray, B.B.; Misra, P.; Rajjak, S.A.; Rao, Y.K.; Venkateswarlu, A. Polar substitutions in the benzenesulfonamide ring of celecoxib afford a potent 1,5-diarylpyrazole class of COX-2 inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(2), 499-504.
[http://dx.doi.org/10.1016/j.bmcl.2003.10.027] [PMID: 14698190]
[18]
Boerrigter, G.; Costello-Boerrigter, L.C.; Cataliotti, A.; Tsuruda, T.; Harty, G.J.; Lapp, H.; Stasch, J.P.; Burnett, J.C. Jr Cardiorenal and humoral properties of a novel direct soluble guanylate cyclase stimulator BAY 41-2272 in experimental congestive heart failure. Circulation, 2003, 107(5), 686-689.
[http://dx.doi.org/10.1161/01.CIR.0000055737.15443.F8] [PMID: 12578869]
[19]
Wang, L.; Zhu, Y.R.; Wang, S.; Zhao, S. Autophagy inhibition sensitizes WYE-354-induced anti-colon cancer activity in vitro and in vivo. Tumour Biol., 2016, 37(9), 11743-11752.
[http://dx.doi.org/10.1007/s13277-016-5018-x] [PMID: 27020593]
[20]
Bristol-Meyers, Co.; Demande, Fr.; 1973, 2, 275; Chem. Abstr., 1973, 79, 78784n.
[21]
Dey, A.U.; Pathak, B. Synthesis and activity of a new class of heterocyclic compounds against Entamoeba histolytica. 1,2,3,3a-Tetrahydro-1-alkylcyclopenta[de]quinolines. J. Med. Chem., 1970, 13(1), 152-153.
[http://dx.doi.org/10.1021/jm00295a048] [PMID: 4312677]
[22]
Farghaly, A.M.; N.S. Habib, N.S. Khalil, M.A.; El-Sayed, O.A. Alexandria J. Pharm. Sci., 1989, 3, 90–94; (b) Farghaly, A.M.; Habib, N.S.; Khalil.M.A.; El-Sayed. O.A. Chem. Abstr., 1990, 112, 7420b.
[23]
(a) Crenshaw, R.R.; Luke, G.M.; Smirnoff, P. Interferon inducing activities of derivatives of 1,3-dimethyl-4-(3- dimethylaminopropylamino)-1H-pyrazolo[3,4- b]quinoline and related compounds. J. Med. Chem., 1976, 19, 262-275.;
(b) Smirnoff, P.; Crenshaw, R. R. Stimulation of interferon production in mice and in mouse spleen leukocytes by analogues of BL- 20803 Antimicrob. Agents Chemother., 1977, 11, 571-573.
[24]
Gatta, F.; Pomponi, M.; Marta, M. Synthesis of 7,8-dihydro-6 H -pyrazolo[3,4- b]quinolin-5-ones and related derivatives. J. Heterocycl. Chem., 1991, 28(5), 1301-1307.
[http://dx.doi.org/10.1002/jhet.5570280523]
[25]
Bell, M.R.; Ackerman, J.H.; US Pat., 4,920,128, 1990; Chem. Abstr., 1990, 113, 172015b.
[26]
Bhattacharjee, D.; Kshiar, B.; Myrboh, B. L -Proline as an efficient enantioinduction organo-catalyst in the solvent-free synthesis of pyrazolo[3,4-b]quinoline derivatives via one-pot multi-component reaction. RSC Advances, 2016, 6(98), 95944-95950.
[http://dx.doi.org/10.1039/C6RA22429F]
[27]
Omar, E.M.; Rahman, M.B.A.; Abdulmalek, E.; Tejo, B.A.; Ni, B.; Headley, A.D. Optimization of microwave-assisted michael addition reaction catalyzed by l-proline in ionic liquid medium using response surface methodology. Synth. Commun., 2014, 44(3), 381-398.
[http://dx.doi.org/10.1080/00397911.2013.808348]
[28]
Aghapoor, K.; Amini, M.M.; Jadidi, K.; Darabi, H.R. N-Functionalized L-proline anchored MCM-41: A novel organic-inorganic hybrid material for solvent-free aminolysis of styrene oxide under microwave irradiation. Acta Chim. Slov., 2015, 62(1), 95-102.
[http://dx.doi.org/10.17344/acsi.2014.755] [PMID: 25830965]
[29]
Gohil, J.D.; Patel, H.B.; Patel, M.P. Comparative study on the use of conventional, microwave and ultrasound-irradiation for the synthesis of pyrano[3,2- c]chromene and benzopyrano[4,3-b]chromene derivatives in water. Heterocyclic Lett, 2016, 6, 123-132.
[30]
Yazdani-Elah-Abadi, A.; Mohebat, R.; Kangani, M. Microwave-assisted and L-proline catalysed domino cyclisation in an aqueous medium: a rapid, highly efficient and green synthesis of benzo[a] phenazine annulated heterocycles. J. Chem. Res., 2016, 40(12), 722-726.
[http://dx.doi.org/10.3184/174751916X14787124908891]
[31]
(a) Dong, J.; Zhang, Q.; Wang, Z.; Huang, G.; Li, S. Recent advances in the development of indazole‐based anticancer agents. ChemMedChem, 2018, 13(15), 1490-1507.
[http://dx.doi.org/10.1002/cmdc.201800253] [PMID: 29863292];
(b) Chandarlapaty, S.; Sawai, A.; Ye, Q.; Scott, A.; Silinski, M.; Huang, K.; Fadden, P.; Partdrige, J.; Hall, S.; Steed, P.; Norton, L.; Rosen, N.; Solit, D.B. SNX2112, a synthetic heat shock protein 90 inhibitor, has potent antitumor activity against HER kinase-dependent cancers. Clin. Cancer Res., 2008, 14(1), 240-248.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1667] [PMID: 18172276]
[32]
Claramunt, R.M.; Lopez, C.; Medina, C.P.; Torralba, M.P.; Elguero, J.; Escames, G.; Castroviejo, D.A. Fluorinated indazoles as novel selective inhibitors of nitric oxide synthase (NOS): Synthesis and biological evaluation. Bioorg. Med. Chem., 2009, 17, 6180-6187.
[33]
a) Guo, S.; Song, Y.; Huang, Q.; Yuan, H.; Wan, B.; Wang, Y.; He, R.; Beconi, M.G.; Franzblau, S.G. Kozikowski; Norton, L.; Rosen, N.; Solit, D.B. Identification, synthesis, and pharmacological evaluation of tetrahydroindazole based ligands as novel antituberculosis agents. A. P.J. Med., 2010, 53, 649-659.;
b) Strakova, I.; Turks, M.; Strakovs, A. Synthesis of triazole- functionalized tetrahydroindazolones by 1,3-dipolar cycloadditions between azides and alkynes. Tetrahedron Letters., 2009, 50(25), 3046-3049.
[34]
Benson, G.M.; Bleicher, K.; Grether, U.; Kirchen, E.; Kuhn, B.; Richter, H.; Taylor, S. Indazole or 4,5,6,7-tetrahydroindazole derivatives. Patent US2010/0076027 A1, 2010.
[35]
(a) Rosati, O.; Curini, M.; Marcotullio, M.C.; Macchiarulo, A.; Perfumi, M.; Mattioli, L.; Rismondo, F.; Cravotto, G. Synthesis, docking studies and anti-inflammatory activity of 4,5,6,7-tetrahydro-2H-indazole derivatives. Bioorg. Med. Chem., 2007, 15(10), 3463-3473.
[http://dx.doi.org/10.1016/j.bmc.2007.03.006];
Chem. Lett., 1997, 7(19), 2551-2556.
[http://dx.doi.org/10.1016/S0960-894X(97)10016-6]
[36]
Huang, K.H.; Veal, J.M.; Fadden, R.P.; Rice, J.W.; Eaves, J.; Strachan, J.P.; Barabasz, A.F.; Foley, B.E.; Barta, T.E.; Ma, W.; Silinski, M.A.; Hu, M.; Partridge, J.M.; Scott, A.; DuBois, L.G.; Freed, T.; Steed, P.M.; Ommen, A.J.; Smith, E.D.; Hughes, P.F.; Woodward, A.R.; Hanson, G.J.; McCall, W.S.; Markworth, C.J.; Hinkley, L.; Jenks, M.; Geng, L.; Lewis, M.; Otto, J.; Pronk, B.; Verleysen, K.; Hall, S.E. Discovery of novel 2-aminobenzamide inhibitors of heat shock protein 90 as potent, selective and orally active antitumor agents. J. Med. Chem., 2009, 52(14), 4288-4305.
[http://dx.doi.org/10.1021/jm900230j] [PMID: 19552433]
[37]
(a) Huang, K. H.; Eaves, J.; Veal, J.; Hall, S. E.; Barta, T. E.; Hanson, G. J. US Patent US 2007/0207984, 2007. in multiple myeloma and other hematologic tumors by abrogating signaling via Akt and ERK. Blood, 2009, 113(4), 846-855. http://dx.doi.org/10.1182/blood-2008-04-151928 PMID: 18948577 Chem. Lett., 2008, 18(12), 3517-3521.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.023] [PMID: 18511277]
[38]
Bayannavar, P.K.; Kamble, R.R.; Shaikh, S.K.J.; Kumar, S.M.; Kumbar, M.N.; Nesaragi, A.R. L-proline catalyzed multicomponent domino reaction in polyethyleneglycol-400 for regioselective synthesis of pyrazolyl-tetrahydroindazolones under microwave irradiation. Synth. Commun., 2019, 49(16), 2005-2016.
[http://dx.doi.org/10.1080/00397911.2019.1614628]
[39]
Hua, K.M.; Tran, P.H.; Le, T.N. An efficient and recyclable L-proline triflate ionic liquid catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)- ones via the multi- component Biginelli reaction. ARKIVOC, 2019, 6, 406-415.
[40]
Kempson, J.; Pitts, W.J.; Barbosa, J.; Guo, J.; Omotoso, O.; Watson, A.; Stebbins, K.; Starling, G.C.; Dodd, J.H.; Barrish, J.C.; Felix, R.; Fischer, K. Fused pyrimidine based inhibitors of phosphodiesterase 7 (PDE7): synthesis and initial structure–activity relationships. Bioorg. Med. Chem. Lett., 2005, 15(7), 1829-1833.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.025] [PMID: 15780616]
[41]
Bruno, O.; Brullo, C.; Schenone, S.; Bondavalli, F.; Ranise, A.; Tognolini, M.; Impicciatore, M.; Ballabeni, V.; Barocelli, E. Synthesis, antiplatelet and antithrombotic activities of new 2-substituted benzopyrano[4,3-d]pyrimidin-4-cycloamines and 4-amino/cycloamino-benzopyrano[4,3-d]pyrimidin-5-ones. Bioorg. Med. Chem., 2006, 14(1), 121-130.
[http://dx.doi.org/10.1016/j.bmc.2005.07.066] [PMID: 16154749]
[42]
(a) Al-Harbi, N.O.; Bahashwan, S.A.; Fayed, A.A.; Aboonq, M.S.; Amr, A.E.G.E. Anti-parkinsonism, hypoglycemic and anti-microbial activities of new poly fused ring heterocyclic candidates. Int. J. Biol. Macromol., 2013, 57, 165-173.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.03.019] [PMID: 23500666 ];
(b) Petersen, E.; Schmidt, D.R. Sulfadiazine and pyrimethamine in the postnatal treatment of congenital toxoplasmosis: what are the options? Expert Rev. Anti Infect. Ther., 2003, 1(1), 175-182.
[http://dx.doi.org/10.1586/14787210.1.1.175] [PMID: 15482110]
[43]
(a) Nadal, E.; Olavarria, E. Imatinib mesylate (Gleevec/Glivec) amolecular-targeted therapy for chronic myeloid leukaemia and other malignancies Int. J. Clin. Pract, 2004, 58(5), 511-516.
[http://dx.doi.org/10.1111/j.1368-5031.2004.00173.x] [PMID: 15206509];
Lawson, J.H.; Whiting,, J.F.; Hu, B.; Meyers, C.M.; Kusek,, J.W.; Feldman, H. Effect of dipyridamole plus aspirin on hemodialysis graft patency N. Engl. J. Med, 2009, 360(21), 2191-2201.
[http://dx.doi.org/10.1056/NEJMoa0805840 ] [PMID: 19458364]
[44]
Dinakaran, S.V.; Bhargavi, B.; Srinivasan, K.K. Fused pyrimidines: The heterocycle of diverse biological and pharmacological significance. Pharma Chem., 2012, 4, 255-265.
[45]
(a) Rovnyak, G.C.; Kimball, S.D.; Beyer, B.; Cucinotta, G.; DiMarco, J.D.; Gougoutas, J.; Hedberg, A.; Malley, M.; McCarthy, J.P.; Zhang, R. Calcium entry blockers and activators: conformational and structural determinants of dihydropyrimidine calcium channel modulators. J. Med. Chem., 1995, 38(1), 119-129.
[http://dx.doi.org/10.1021/jm00001a017] [PMID: 7837222];
(b) Oliver Kappe, C.; Fabian, W.M.F.; Semones, M.A. Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies. Tetrahedron, 1997, 53(8), 2803-2816.
[http://dx.doi.org/10.1016/S0040-4020(97)00022-7]
[46]
Lanjewar, K.R.; Rahatgaonkar, A.M.; Chorghade, M.S.; Saraf, B.D. Synthesis and antimicrobial activity of 5-(2-aminothiazol-4-yl)-3,4-dihydro-4-phenyl pyrimidin-2(1H)- one. Indian J. Chem., 2009, 48B, 1732-1737.
[47]
(a) Heravi, M.M.; Ranjbar, L.; Derikvand, F.; Alimadadi, B.; Oskooie, H.A.; Bamoharram, F.F. A three component one-pot procedure for the synthesis of [1,2,4]triazolo/benzimidazolo-quinazolinone derivatives in the presence of H6P2W18O62 · 18H2O as a green and reusable catalyst. Mol. Divers., 2008, 12(3-4), 181-185.
[http://dx.doi.org/10.1007/s11030-008-9086-8] [PMID: 18780153];
(b) Sun, C.; Ji, S.J.; Liu, Y. A novel, simple and efficient synthesis of 3-amino-benzo[ d]imidazo[2,1- b]thiazole derivatives via a multicomponent procedure. J. Chin. Chem. Soc., 2008, 55(2), 292-296.
[http://dx.doi.org/10.1002/jccs.200800043];
(c) Shah, N.K.; Patel, M.P.; Patel, R.G. One-Pot, multicomponent condensation reaction in neutral conditions: synthesis, characterization, and biological studies of fused Thiazolo[2,3-b]quinazolinone Derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(10), 2704-2719.
[http://dx.doi.org/10.1080/10426500802583504]
[48]
Kumar, R. Malik. S.; Chamdra, R.; “Synthesis and antimicrobial activity of 4-[5- chloro-3-methyl-1- phenyl-1H-pyrazol-4-yl]- dihydropyridines and 4-[5- chloro-3-methyl- 1- phenyl-1H-pyrazol-4-yl]-3,4- dihydropyrimidin-2-ones.”. Indian J. Chem., 2009, 48B, 718-724.
[49]
(a) Gaonkar, S.L.; Shimizu, H. Microwave-assisted synthesis of the antihyperglycemic drug rosiglitazone. Tetrahedron, 2010, 66(18), 3314-3317.
[http://dx.doi.org/ 10.1016/j.tet.2010.03.006];
(b) Gilchrist, T.L. Heterocyclic Chemistry; John Wiley& Sons, 1997.
[50]
(a) Parker, R.H.; Jones, W.M. Attempted synthesis of 2,4,8,10-tricyclo[5.4.0.01,6]undecatetraene: bis(norcaradiene). J. Org. Chem., 1978, 43(12), 2548-2550.
[http://dx.doi.org/10.1021/jo00406a058];
(b) Wiley, R.H.; Smith, N.R. Organic Syntheses; Collect; New YorkJohn Wiley & Sons, 1963. ;
(c) Pechmann, H.V. Untersuchungen über die Spaltungsproducte von α-Oxysäuren: Erste Abhandlung. Justus Liebigs Ann. Chem., 1891, 264, 261-309.
[http://dx.doi.org/10.1002/jlac.18912610204];
(d) Ashworth, I.W.; Bowden, M.C.; Dembofsky, B.; Levin, D.; Moss, W.; Robinson, E.; Szczur, N.; Virica, J. A New Route for Manufacture of 3-Cyano-1-naphthalenecarboxylic Acid. Org. Process Res. Dev., 2003, 7(1), 74-81.
[http://dx.doi.org/10.1021/op025571l]
[51]
Kaurav, M.S.; Sahu, P.K.; Sahu, P.K.; Messali, M.; Almutairi, S.M.; Sahu, P.L.; Agarwal, D.D. An efficient, mild and metal free L -proline catalyzed construction of fused pyrimidines under microwave conditions in water. RSC Advances, 2019, 9(7), 3755-3763.
[http://dx.doi.org/10.1039/C8RA07517D] [PMID: 35518091]
[52]
Khan, D.; Sharma, S.; Shukla, P. Microwave assisted L‐proline catalyzed ONE‐POT THREE–COMPONENT reaction for the synthesis of 4‐AMINOARYL‐2‐PHENYL‐2 H ‐3‐nitrochromene hybrid via Domino Michael‐Henry‐Michael addition reaction. J. Heterocycl. Chem., 2022, 59(6), 1064-1072.
[http://dx.doi.org/10.1002/jhet.4447]
[53]
Mir, N.A.; Choudhary, S.; Ramaraju, P.; Singh, D.; Kumar, I. Microwave assisted aminocatalyzed [3 + 2] annulation between α- iminonitriles and succinaldehyde: synthesis of pyrrole-3-methanols and related polycyclic ring systems. RSC Adv., 2016, 6, 39741-39749.
[http://dx.doi.org/10.1039/C6RA06831F]
[54]
Guhanathan, S.; Ganapathi, M.; Guhanathan, S. A Conventional and Micro wave Assisted Synthesis of 3-(3-(4-chlorophenyl)acryloyl)-2H-chromen-2-one Using Eco-Friendly Catalyst And Its Characterisation. SOJ Mater. Sci. Engin., 2015, 3(3), 1-6.
[http://dx.doi.org/10.15226/sojmse.2015.00128]
[55]
Tasqeeruddin, S.; Asiri, Y.; Alsherhri, J.A. An Efficient and Green Microwave-Assisted Synthesis of Quinoline Derivatives via Knoevengal Condensation. Lett. Org. Chem., 2020, 17(2), 157-163.
[http://dx.doi.org/10.2174/1570178616666190618153721]
[56]
Karadendrou, M.A.; Kostopoulou, I.; Kakokefalou, V.; Tzani, A.; Detsi, A. L-proline-based natural deep eutectic solvents as efficient solvents and catalysts for the ultrasound-assisted synthesis of aurones via knoevenagel condensation. Catalysts, 2022, 12(3), 249-266.
[http://dx.doi.org/10.3390/catal12030249]
[57]
Romo, P.E.; Isaza, J.H.; Insuasty, B.; Abonia, R.; del Crespo, M.P.; Quiroga, J. Synthesis of pyrazolo[3,4-b]azepines and their antioxidant and antibacterial studies. Monatsh. Chem., 2019, 150(8), 1503-1511.
[http://dx.doi.org/10.1007/s00706-019-02479-3]
[58]
Chavan, O.S.; Jadhav, S.A.; Shioorkar, M.G.; Chavan, S.B.; Baseer, M.A.; Shinde, D.B. Microwave Assisted Solvent Free Synthesis of Coumarins Using Zn [(L)- Proline]2 Catalyst. Rasayan J. Chem., 2015, 8, 194-197.
[59]
Pan, L.; Ding, X.; Ding, J.; Li, D.; Chen, J.; Zuo, X.; An, R. Design and synthesis of L-Proline derivatives as enantioselective organocatalysts for synthesis of the (S)-Wieland-miescher ketone 2017, 2(36), 11999-12005.
[http://dx.doi.org/10.1002/slct.201702075]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy