Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

利用纳米技术克服胰腺癌治疗策略的局限性

卷 23, 期 9, 2023

发表于: 28 April, 2023

页: [697 - 717] 页: 21

弟呕挨: 10.2174/1568009623666230329085618

价格: $65

conference banner
摘要

对于胰腺癌的治疗有很大的未满足的需求。许多患者在确诊后都活不过5年。治疗的效果因病人而异,许多人太虚弱,无法忍受化疗或手术。不幸的是,当患者接受诊断时,肿瘤通常已经扩散,使得这些化疗无效。有效的抗癌药物可以在纳米技术的帮助下更好地配方,纳米技术可以帮助它们克服其物理化学特性的问题,例如它们的水溶性差或给药后在血液中的半衰期短。许多报道的纳米技术提供了多功能的品质,包括图像引导和控制释放,除了针对作用部位的特定位点靶向。在这篇综述中,我们将研究目前最有前途的治疗胰腺癌的纳米技术的现状,包括那些仍处于研究和开发阶段的技术,以及那些最近被给予绿色信号用于临床实践的技术。

关键词: 胰腺癌,肿瘤微环境,化疗,放疗,光动力治疗,免疫治疗,纳米技术。

图形摘要
[1]
Ilic, M.; Ilic, I. Epidemiology of pancreatic cancer. World J. Gastroenterol., 2016, 22(44), 9694-9705.
[http://dx.doi.org/10.3748/wjg.v22.i44.9694] [PMID: 27956793]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Orth, M.; Metzger, P.; Gerum, S.; Mayerle, J.; Schneider, G.; Belka, C.; Schnurr, M.; Lauber, K. Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat. Oncol., 2019, 14(1), 141.
[http://dx.doi.org/10.1186/s13014-019-1345-6] [PMID: 31395068]
[4]
Hidalgo, M.; Cascinu, S.; Kleeff, J.; Labianca, R.; Löhr, J.M.; Neoptolemos, J.; Real, F.X.; Van Laethem, J.L.; Heinemann, V. Addressing the challenges of pancreatic cancer: Future directions for improving outcomes. Pancreatology, 2015, 15(1), 8-18.
[http://dx.doi.org/10.1016/j.pan.2014.10.001] [PMID: 25547205]
[5]
Kuzmickiene, I.; Everatt, R.; Virviciute, D.; Tamosiunas, A.; Radisauskas, R.; Reklaitiene, R.; Milinaviciene, E. Smoking and other risk factors for pancreatic cancer: A cohort study in men in Lithuania. Cancer Epidemiol., 2013, 37(2), 133-139.
[http://dx.doi.org/10.1016/j.canep.2012.10.001] [PMID: 23107757]
[6]
Xu, M.; Jung, X.; Hines, O.J.; Eibl, G.; Chen, Y. Obesity and pancreatic cancer: overview of epidemiology and potential prevention by weight loss. Pancreas, 2018, 47(2), 158-162.
[http://dx.doi.org/10.1097/MPA.0000000000000974] [PMID: 29346216]
[7]
Lu, P.Y.; Shu, L.; Shen, S.S.; Chen, X.J.; Zhang, X.Y. Dietary patterns and pancreatic cancer risk: a meta-analysis. Nutrients, 2017, 9(1), 38.
[http://dx.doi.org/10.3390/nu9010038] [PMID: 28067765]
[8]
Michaud, D.S.; Vrieling, A.; Jiao, L.; Mendelsohn, J.B.; Steplowski, E.; Lynch, S.M.; Wactawski-Wende, J.; Arslan, A.A.; Bas Bueno-de-Mesquita, H.; Fuchs, C.S.; Gross, M.; Helzlsouer, K.; Jacobs, E.J.; LaCroix, A.; Petersen, G.; Zheng, W.; Allen, N.; Ammundadottir, L.; Bergmann, M.M.; Boffetta, P.; Buring, J.E.; Canzian, F.; Chanock, S.J.; Clavel-Chapelon, F.; Clipp, S.; Freiberg, M.S.; Michael Gaziano, J.; Giovannucci, E.L.; Hankinson, S.; Hartge, P.; Hoover, R.N.; Allan Hubbell, F.; Hunter, D.J.; Hutchinson, A.; Jacobs, K.; Kooperberg, C.; Kraft, P.; Manjer, J.; Navarro, C.; Peeters, P.H.M.; Shu, X.O.; Stevens, V.; Thomas, G.; Tjønneland, A.; Tobias, G.S.; Trichopoulos, D.; Tumino, R.; Vineis, P.; Virtamo, J.; Wallace, R.; Wolpin, B.M.; Yu, K.; Zeleniuch-Jacquotte, A.; Stolzenberg-Solomon, R.Z. Alcohol intake and pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium (PanScan). Cancer Causes Control, 2010, 21(8), 1213-1225.
[http://dx.doi.org/10.1007/s10552-010-9548-z] [PMID: 20373013]
[9]
Ojajärvi, I.A.; Partanen, T.J.; Ahlbom, A.; Boffetta, P.; Hakulinen, T.; Jourenkova, N.; Kauppinen, T.P.; Kogevinas, M.; Porta, M.; Vainio, H.U.; Weiderpass, E.; Wesseling, C.H. Occupational exposures and pancreatic cancer: a meta-analysis. Occup. Environ. Med., 2000, 57(5), 316-324.
[http://dx.doi.org/10.1136/oem.57.5.316] [PMID: 10769297]
[10]
Andersen, D.K.; Korc, M.; Petersen, G.M.; Eibl, G.; Li, D.; Rickels, M.R.; Chari, S.T.; Abbruzzese, J.L. Diabetes, pancreatogenic diabetes, and pancreatic cancer. Diabetes, 2017, 66(5), 1103-1110.
[http://dx.doi.org/10.2337/db16-1477] [PMID: 28507210]
[11]
Olson, S.H.; Kurtz, R.C. Epidemiology of pancreatic cancer and the role of family history. J. Surg. Oncol., 2013, 107(1), 1-7.
[http://dx.doi.org/10.1002/jso.23149] [PMID: 22589078]
[12]
Osmani, R.; Hani, U.; Bhosale, R.; Kulkarni, P.; Shanmuganathan, S. Nanosponge carriers-an archetype swing in cancer therapy: a comprehensive review. Curr. Drug Targets, 2016, 18(1), 108-118.
[http://dx.doi.org/10.2174/1389450116666151001105449] [PMID: 26424399]
[13]
Ghosn, M.; Ibrahim, T.; Assi, T.; El Rassy, E.; Kourie, H.R.; Kattan, J. Dilemma of first line regimens in metastatic pancreatic adenocarcinoma. World J. Gastroenterol., 2016, 22(46), 10124-10130.
[http://dx.doi.org/10.3748/wjg.v22.i46.10124] [PMID: 28028360]
[14]
Hobday, T.J.; Qin, R.; Reidy-Lagunes, D.; Moore, M.J.; Strosberg, J.; Kaubisch, A.; Shah, M.; Kindler, H.L.; Lenz, H.J.; Chen, H.; Erlichman, C. Multicenter phase II trial of temsirolimus and bevacizumab in pancreatic neuroendocrine tumors. J. Clin. Oncol., 2015, 33(14), 1551-1556.
[http://dx.doi.org/10.1200/JCO.2014.56.2082] [PMID: 25488966]
[15]
Bhosale, R.R.; Gangadharappa, H.V.; Gowda, D.V.; Osmani, R.A.; Vaghela, R.; Kulkarni, P.K.; Sairam, K.V.; Gurupadayya, B. Current perspectives on novel drug carrier systems and therapies for management of pancreatic cancer: An updated inclusive review. Crit. Rev. Ther. Drug Carrier Sys., 2018, 35(3), 195-292.
[16]
Osmani, RA; Kulkarni, PK; Gowda, V; Hani, U; Gupta, VK; Prerana, M; Saha, C Cyclodextrin-based nanosponges in drug delivery and cancer therapeutics: New perspectives for old problems. Applications of nanocomposite materials in drug delivery; Elsevier: Amsterdam, 2018, pp. 97-147. INCOMPLETE
[http://dx.doi.org/10.1016/B978-0-12-813741-3.00005-4]
[17]
Von Hoff, D.D.; Goldstein, D.; Renschler, M.F. Albumin-bound paclitaxel plus gemcitabine in pancreatic cancer. N. Engl. J. Med., 2014, 370(5), 478-480.
[http://dx.doi.org/10.1056/NEJMc1314761] [PMID: 24476438]
[18]
Von Hoff, D.D.; Ramanathan, R.K.; Borad, M.J.; Laheru, D.A.; Smith, L.S.; Wood, T.E.; Korn, R.L.; Desai, N.; Trieu, V.; Iglesias, J.L.; Zhang, H.; Soon-Shiong, P.; Shi, T.; Rajeshkumar, N.V.; Maitra, A.; Hidalgo, M. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J. Clin. Oncol., 2011, 29(34), 4548-4554.
[http://dx.doi.org/10.1200/JCO.2011.36.5742] [PMID: 21969517]
[19]
Osmani, R.A.M.; Kulkarni, P.K.; Shanmuganathan, S.; Hani, U.; Srivastava, A.; M, P.; Shinde, C.G.; Bhosale, R.R. A 3 2 full factorial design for development and characterization of a nanosponge-based intravaginal in situ gelling system for vulvovaginal candidiasis. RSC Advances, 2016, 6(23), 18737-18750.
[http://dx.doi.org/10.1039/C5RA26218F]
[20]
Fusco, J. Pancreas Embryology, Anatomy, and Physiology. In: Endocrine Surgery in Children; Springer: Berlin, Heidelberg, 2018; pp. 143-160.
[http://dx.doi.org/10.1007/978-3-662-54256-9_11]
[21]
Ojha, A.; Ojha, U.; Mohammed, R.; Chandrashekar, A.; Ojha, H. Current perspective on the role of insulin and glucagon in the pathogenesis and treatment of type 2 diabetes mellitus. Clin. Pharmacol., 2019, 11, 57-65.
[http://dx.doi.org/10.2147/CPAA.S202614] [PMID: 31191043]
[22]
Qaid, M.M.; Abdelrahman, M.M. Role of insulin and other related hormones in energy metabolism - A review. Cogent Food Agric., 2016, 2(1), 1267691.
[http://dx.doi.org/10.1080/23311932.2016.1267691]
[23]
Chang, E.B.; Leung, P.S. Pancreatic physiology. In: The Gastrointestinal System; Springer: Berlin, 2014; pp. 87-105.
[24]
Roshani, R.; McCarthy, F.; Hagemann, T. Inflammatory cytokines in human pancreatic cancer. Cancer Lett., 2014, 345(2), 157-163.
[http://dx.doi.org/10.1016/j.canlet.2013.07.014] [PMID: 23879960]
[25]
de Wilde, R.F.; Hruban, R.H.; Maitra, A.; Offerhaus, G.J.A. Reporting precursors to invasive pancreatic cancer: pancreatic intraepithelial neoplasia, intraductal neoplasms and mucinous cystic neoplasm. Diagn. Histopathol., 2012, 18(1), 17-30.
[http://dx.doi.org/10.1016/j.mpdhp.2011.10.012]
[26]
Zhi, X.; Tao, J.; Xie, K.; Zhu, Y.; Li, Z.; Tang, J.; Wang, W.; Xu, H.; Zhang, J.; Xu, Z. MUC4-induced nuclear translocation of β -catenin: A novel mechanism for growth, metastasis and angiogenesis in pancreatic cancer. Cancer Lett., 2014, 346(1), 104-113.
[http://dx.doi.org/10.1016/j.canlet.2013.12.021] [PMID: 24374017]
[27]
Z’graggen, K.; Centeno, B.A.; Fernandez-del Castillo, C.; Jimenez, R.E.; Werner, J.; Warshaw, A.L. Biological implications of tumor cells in blood and bone marrow of pancreatic cancer patients. Surgery, 2001, 129(5), 537-546.
[http://dx.doi.org/10.1067/msy.2001.113819] [PMID: 11331445]
[28]
Prasad, R.; Katiyar, S.K. Grape seed proanthocyanidins inhibit migration potential of pancreatic cancer cells by promoting mesenchymal-to-epithelial transition and targeting NF-κB. Cancer Lett., 2013, 334(1), 118-126.
[http://dx.doi.org/10.1016/j.canlet.2012.08.003] [PMID: 22902508]
[29]
Hosoki, T. Dynamic CT of pancreatic tumors. AJR Am. J. Roentgenol., 1983, 140(5), 959-965.
[http://dx.doi.org/10.2214/ajr.140.5.959] [PMID: 6601441]
[30]
Sofuni, A.; Iijima, H.; Moriyasu, F.; Nakayama, D.; Shimizu, M.; Nakamura, K.; Itokawa, F.; Itoi, T. Differential diagnosis of pancreatic tumors using ultrasound contrast imaging. J. Gastroenterol., 2005, 40(5), 518-525.
[http://dx.doi.org/10.1007/s00535-005-1578-z] [PMID: 15942718]
[31]
Sugahara, K.N.; Teesalu, T.; Karmali, P.P.; Kotamraju, V.R.; Agemy, L.; Girard, O.M.; Hanahan, D.; Mattrey, R.F.; Ruoslahti, E. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell, 2009, 16(6), 510-520.
[http://dx.doi.org/10.1016/j.ccr.2009.10.013] [PMID: 19962669]
[32]
Bendas, G.; Borsig, L. Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int. J. Cell Biol., 2012, 2012, 1-10.
[http://dx.doi.org/10.1155/2012/676731] [PMID: 22505933]
[33]
Grzesiak, J.J.; Ho, J.C.; Moossa, A.R.; Bouvet, M. The integrin-extracellular matrix axis in pancreatic cancer. Pancreas, 2007, 35(4), 293-301.
[http://dx.doi.org/10.1097/mpa.0b013e31811f4526] [PMID: 18090233]
[34]
Dodson, L.F.; Hawkins, W.G.; Goedegebuure, P. Potential targets for pancreatic cancer immunotherapeutics. Immunotherapy, 2011, 3(4), 517-537.
[http://dx.doi.org/10.2217/imt.11.10] [PMID: 21463193]
[35]
Felix, K.; Gaida, M.M. Neutrophil-derived proteases in the microenvironment of pancreatic cancer-active players in tumor progression. Int. J. Biol. Sci., 2016, 12(3), 302-313.
[http://dx.doi.org/10.7150/ijbs.14996] [PMID: 26929737]
[36]
Quante, A.S.; Ming, C.; Rottmann, M.; Engel, J.; Boeck, S.; Heinemann, V.; Westphalen, C.B.; Strauch, K. Projections of cancer incidence and cancer‐related deaths in Germany by 2020 and 2030. Cancer Med., 2016, 5(9), 2649-2656.
[http://dx.doi.org/10.1002/cam4.767] [PMID: 27356493]
[37]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[38]
Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res., 2014, 74(11), 2913-2921.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0155] [PMID: 24840647]
[39]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S. Zeng h, Bray F, Jemal A, Yu XQ and he J: Cancer statistics in china. CA Cancer J. Clin., 2016, 66, 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[40]
Kamisawa, T.; Wood, L.D.; Itoi, T.; Takaori, K. Pancreatic cancer. Lancet, 2016, 388(10039), 73-85.
[http://dx.doi.org/10.1016/S0140-6736(16)00141-0] [PMID: 26830752]
[41]
Jiang, B.; Zhou, L.; Lu, J.; Wang, Y.; Liu, C.; You, L.; Guo, J. Stroma-targeting therapy in pancreatic cancer: one coin with two sides? Front. Oncol., 2020, 10, 576399.
[http://dx.doi.org/10.3389/fonc.2020.576399] [PMID: 33178608]
[42]
Yang, F.; Jin, C.; Subedi, S.; Lee, C.L.; Wang, Q.; Jiang, Y.; Li, J.; Di, Y.; Fu, D. Emerging inorganic nanomaterials for pancreatic cancer diagnosis and treatment. Cancer Treat. Rev., 2012, 38(6), 566-579.
[http://dx.doi.org/10.1016/j.ctrv.2012.02.003] [PMID: 22655679]
[43]
Kota, J.; Hancock, J.; Kwon, J.; Korc, M. Pancreatic cancer: Stroma and its current and emerging targeted therapies. Cancer Lett., 2017, 391, 38-49.
[http://dx.doi.org/10.1016/j.canlet.2016.12.035] [PMID: 28093284]
[44]
Neesse, A.; Michl, P.; Frese, K.K.; Feig, C.; Cook, N.; Jacobetz, M.A.; Lolkema, M.P.; Buchholz, M.; Olive, K.P.; Gress, T.M.; Tuveson, D.A. Stromal biology and therapy in pancreatic cancer. Gut, 2011, 60(6), 861-868.
[http://dx.doi.org/10.1136/gut.2010.226092] [PMID: 20966025]
[45]
Xu, Z.; Pothula, S.P.; Wilson, J.S.; Apte, M.V. Pancreatic cancer and its stroma: A conspiracy theory. World J. Gastroenterol., 2014, 20(32), 11216-11229.
[http://dx.doi.org/10.3748/wjg.v20.i32.11216] [PMID: 25170206]
[46]
von Ahrens, D.; Bhagat, T.D.; Nagrath, D.; Maitra, A.; Verma, A. The role of stromal cancer-associated fibroblasts in pancreatic cancer. J. Hematol. Oncol., 2017, 10(1), 76.
[http://dx.doi.org/10.1186/s13045-017-0448-5] [PMID: 28351381]
[47]
Jain, R.K.; Martin, J.D.; Stylianopoulos, T. The role of mechanical forces in tumor growth and therapy. Annu. Rev. Biomed. Eng., 2014, 16(1), 321-346.
[http://dx.doi.org/10.1146/annurev-bioeng-071813-105259] [PMID: 25014786]
[48]
Meng, H.; Nel, A.E. Use of nano engineered approaches to overcome the stromal barrier in pancreatic cancer. Adv. Drug Deliv. Rev., 2018, 130, 50-57.
[http://dx.doi.org/10.1016/j.addr.2018.06.014] [PMID: 29958925]
[49]
The role of stroma in pancreatic cancer: Diagnostic and therapeutic implications. Nat. Rev. Gastroenterol. Hepatol., 2012, 9, 454-467.
[http://dx.doi.org/10.1038/nrgastro.2012.115]
[50]
Ligorio, M.; Sil, S.; Malagon-Lopez, J.; Nieman, L.T.; Misale, S.; Di Pilato, M.; Ebright, R.Y.; Karabacak, M.N.; Kulkarni, A.S.; Liu, A.; Vincent Jordan, N.; Franses, J.W.; Philipp, J.; Kreuzer, J.; Desai, N.; Arora, K.S.; Rajurkar, M.; Horwitz, E.; Neyaz, A.; Tai, E.; Magnus, N.K.C.; Vo, K.D.; Yashaswini, C.N.; Marangoni, F.; Boukhali, M.; Fatherree, J.P.; Damon, L.J.; Xega, K.; Desai, R.; Choz, M.; Bersani, F.; Langenbucher, A.; Thapar, V.; Morris, R.; Wellner, U.F.; Schilling, O.; Lawrence, M.S.; Liss, A.S.; Rivera, M.N.; Deshpande, V.; Benes, C.H.; Maheswaran, S.; Haber, D.A.; Fernandez-Del-Castillo, C.; Ferrone, C.R.; Haas, W.; Aryee, M.J.; Ting, D.T. Stromal microenvironment shapes the intratumoral architecture of pancreatic cancer. Cell, 2019, 178(1), 160-175.e27.
[http://dx.doi.org/10.1016/j.cell.2019.05.012] [PMID: 31155233]
[51]
Dougan, S.K. The pancreatic cancer microenvironment. Cancer J., 2017, 23(6), 321-325.
[http://dx.doi.org/10.1097/PPO.0000000000000288] [PMID: 29189327]
[52]
Nia, H.T.; Munn, L.L.; Jain, R.K. Mapping Physical Tumor Microenvironment and Drug Delivery. Clin. Cancer Res., 2019, 25(7), 2024-2026.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3724] [PMID: 30630829]
[53]
Wang, J.; Chan, D.K.W.; Sen, A.; Ma, W.W.; Straubinger, R.M. Tumor Priming by SMO inhibition enhances antibody delivery and efficacy in a pancreatic ductal adenocarcinoma model. Mol. Cancer Ther., 2019, 18(11), 2074-2084.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0354] [PMID: 31363010]
[54]
Cros, J.; Raffenne, J.; Couvelard, A.; Poté, N. Tumor heterogeneity in pancreatic adenocarcinoma. Pathobiology, 2018, 85(1-2), 64-71.
[http://dx.doi.org/10.1159/000477773] [PMID: 28787741]
[55]
Zhang, Z.; Han, H.; Rong, Y.; Zhu, K.; Zhu, Z.; Tang, Z.; Xiong, C.; Tao, J. Hypoxia potentiates gemcitabine-induced stemness in pancreatic cancer cells through AKT/Notch1 signaling. J. Exp. Clin. Cancer Res., 2018, 37(1), 291.
[http://dx.doi.org/10.1186/s13046-018-0972-3] [PMID: 30486896]
[56]
Balachandran, V.P.; Beatty, G.L.; Dougan, S.K. Broadening the impact of immunotherapy to pancreatic cancer: challenges and opportunities. Gastroenterology, 2019, 156(7), 2056-2072.
[http://dx.doi.org/10.1053/j.gastro.2018.12.038] [PMID: 30660727]
[57]
Looi, C.K.; Chung, F.F.L.; Leong, C.O.; Wong, S.F.; Rosli, R.; Mai, C.W. Therapeutic challenges and current immunomodulatory strategies in targeting the immunosuppressive pancreatic tumor microenvironment. J. Exp. Clin. Cancer Res., 2019, 38(1), 162.
[http://dx.doi.org/10.1186/s13046-019-1153-8] [PMID: 30987642]
[58]
Li, K.Y.; Yuan, J.L.; Trafton, D.; Wang, J.X.; Niu, N.; Yuan, C.H.; Liu, X.B.; Zheng, L. Pancreatic ductal adenocarcinoma immune microenvironment and immunotherapy prospects. Chronic Dis. Transl. Med., 2020, 6(1), 6-17.
[http://dx.doi.org/10.1016/j.cdtm.2020.01.002] [PMID: 32226930]
[59]
Parayath, N.; Padmakumar, S.; Nair, S.V.; Menon, D.; Amiji, M.M. Strategies for targeting cancer immunotherapy through modulation of the tumor microenvironment. Regen. Eng. Transl. Med., 2020, 6(1), 29-49.
[http://dx.doi.org/10.1007/s40883-019-00113-6]
[60]
Shen, H.; Sun, T.; Hoang, H.H.; Burchfield, J.S.; Hamilton, G.F.; Mittendorf, E.A.; Ferrari, M. Enhancing cancer immunotherapy through nanotechnology-mediated tumor infiltration and activation of immune cells. Semin. Immunol., 2017, 34, 114-122.
[http://dx.doi.org/10.1016/j.smim.2017.09.002]
[61]
Liu, Y.; Guo, J.; Huang, L. Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies. Theranostics, 2020, 10(7), 3099-3117.
[http://dx.doi.org/10.7150/thno.42998] [PMID: 32194857]
[62]
Lu, J.; Liu, X.; Liao, Y.P.; Salazar, F.; Sun, B.; Jiang, W.; Chang, C.H.; Jiang, J.; Wang, X.; Wu, A.M.; Meng, H.; Nel, A.E. Nanoenabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat. Commun., 2017, 8(1), 1811.
[http://dx.doi.org/10.1038/s41467-017-01651-9] [PMID: 29180759]
[63]
Suto, A.; Kudo, D.; Yoshida, E.; Nagase, H.; Suto, S.; Mimura, J.; Itoh, K.; Hakamada, K. Increase of tumor infiltrating γδ T-cells in pancreatic ductal adenocarcinoma through remodeling of the extracellular matrix by a hyaluronan synthesis suppressor, 4-methylumbelliferone. Pancreas, 2019, 48(2), 292-298.
[http://dx.doi.org/10.1097/MPA.0000000000001211] [PMID: 30589828]
[64]
Das, M.; Shen, L.; Liu, Q.; Goodwin, T.J.; Huang, L. Nanoparticle delivery of RIG-I agonist enables effective and safe adjuvant therapy in pancreatic cancer. Mol. Ther., 2019, 27(3), 507-517.
[http://dx.doi.org/10.1016/j.ymthe.2018.11.012] [PMID: 30545600]
[65]
Liu, L.; Kshirsagar, P.G.; Gautam, S.K.; Gulati, M.; Wafa, E.I.; Christiansen, J.C.; White, B.M.; Mallapragada, S.K.; Wannemuehler, M.J.; Kumar, S.; Solheim, J.C.; Batra, S.K.; Salem, A.K.; Narasimhan, B.; Jain, M. Nanocarriers for pancreatic cancer imaging, treatments, and immunotherapies. Theranostics, 2022, 12(3), 1030-1060.
[http://dx.doi.org/10.7150/thno.64805] [PMID: 35154473]
[66]
Giustarini, G.; Pavesi, A.; Adriani, G. Nanoparticle-based therapies for turning cold tumors hot: How to treat an immunosuppressive tumor microenvironment. Front. Bioeng. Biotechnol., 2021, 9, 689245.
[http://dx.doi.org/10.3389/fbioe.2021.689245] [PMID: 34150739]
[67]
Zhen, Z.; Tang, W.; Wang, M.; Zhou, S.; Wang, H.; Wu, Z.; Hao, Z.; Li, Z.; Liu, L.; Xie, J. Protein nanocage mediated fibroblastactivation protein targeted photoimmunotherapy to enhance cytotoxic T cell infiltration and tumor control. Nano Lett., 2017, 17(2), 862-869.
[http://dx.doi.org/10.1021/acs.nanolett.6b04150] [PMID: 28027646]
[68]
Han, X.; Li, Y.; Xu, Y.; Zhao, X.; Zhang, Y.; Yang, X.; Wang, Y.; Zhao, R.; Anderson, G.J.; Zhao, Y.; Nie, G. Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem. Nat. Commun., 2018, 9(1), 3390.
[http://dx.doi.org/10.1038/s41467-018-05906-x] [PMID: 30139933]
[69]
Abdolahinia, E.D.; Nadri, S.; Rahbarghazi, R.; Barar, J.; Aghanejad, A.; Omidi, Y. Enhanced penetration and cytotoxicity of metformin and collagenase conjugated gold nanoparticles in breast cancer spheroids. Life Sci., 2019, 231, 116545.
[http://dx.doi.org/10.1016/j.lfs.2019.116545] [PMID: 31176782]
[70]
Zinger, A.; Koren, L.; Adir, O.; Poley, M.; Alyan, M.; Yaari, Z.; Noor, N.; Krinsky, N.; Simon, A.; Gibori, H.; Krayem, M.; Mumblat, Y.; Kasten, S.; Ofir, S.; Fridman, E.; Milman, N.; Lübtow, M.M.; Liba, L.; Shklover, J.; Shainsky-Roitman, J.; Binenbaum, Y.; Hershkovitz, D.; Gil, Z.; Dvir, T.; Luxenhofer, R.; Satchi-Fainaro, R.; Schroeder, A. Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano, 2019, 13(10), 11008-11021.
[http://dx.doi.org/10.1021/acsnano.9b02395] [PMID: 31503443]
[71]
Xu, F.; Huang, X.; Wang, Y.; Zhou, S. A size‐changeable collagenase‐modified nanoscavenger for increasing penetration and retention of nanomedicine in deep tumor tissue. Adv. Mater., 2020, 32(16), 1906745.
[http://dx.doi.org/10.1002/adma.201906745] [PMID: 32105374]
[72]
Adiseshaiah, P.P.; Crist, R.M.; Hook, S.S.; McNeil, S.E. Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat. Rev. Clin. Oncol., 2016, 13(12), 750-765.
[http://dx.doi.org/10.1038/nrclinonc.2016.119] [PMID: 27531700]
[73]
Kolodecik, T.; Shugrue, C.; Ashat, M.; Thrower, E.C. Risk factors for pancreatic cancer: underlying mechanisms and potential targets. Front. Physiol., 2014, 4, 415.
[http://dx.doi.org/10.3389/fphys.2013.00415] [PMID: 24474939]
[74]
Ling, J.; Kang, Y.; Zhao, R.; Xia, Q.; Lee, D.F.; Chang, Z.; Li, J.; Peng, B.; Fleming, J.B.; Wang, H.; Liu, J.; Lemischka, I.R.; Hung, M.C.; Chiao, P.J. KrasG12D-induced IKK2/β/NF-κB activation by IL-1α and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell, 2012, 21(1), 105-120.
[http://dx.doi.org/10.1016/j.ccr.2011.12.006] [PMID: 22264792]
[75]
Rahib, L.; Fleshman, J.M.; Matrisian, L.M.; Berlin, J.D. Evaluation of pancreatic cancer clinical trials and benchmarks for clinically meaningful future trials: a systematic review. JAMA Oncol., 2016, 2(9), 1209-1216.
[http://dx.doi.org/10.1001/jamaoncol.2016.0585] [PMID: 27270617]
[76]
Goji, T.; Kimura, T.; Miyamoto, H.; Takehara, M.; Kagemoto, K.; Okada, Y.; Okazaki, J.; Takaoka, Y.; Miyamoto, Y.; Mitsui, Y.; Matsumoto, S.; Sueuchi, T.; Tanaka, K.; Fujino, Y.; Takaoka, T.; Kitamura, S.; Okamoto, K.; Kimura, M.; Sogabe, M.; Muguruma, N.; Okahisa, T.; Sato, Y.; Sagawa, T.; Fujikawa, K.; Sato, Y.; Ikushima, H.; Takayama, T. A phase I/II study of fixed-dose-rate gemcitabine and S-1 with concurrent radiotherapy for locally advanced pancreatic cancer. Cancer Chemother. Pharmacol., 2015, 76(3), 615-620.
[http://dx.doi.org/10.1007/s00280-015-2835-3] [PMID: 26220846]
[77]
Wang, J.P.; Wu, C.Y.; Yeh, Y.C.; Shyr, Y.M.; Wu, Y.Y.; Kuo, C.Y.; Hung, Y.P.; Chen, M.H.; Lee, W.P.; Luo, J.C.; Chao, Y.; Li, C.P. Erlotinib is effective in pancreatic cancer with epidermal growth factor receptor mutations: A randomized, open-label, prospective trial. Oncotarget, 2015, 6(20), 18162-18173.
[http://dx.doi.org/10.18632/oncotarget.4216] [PMID: 26046796]
[78]
Goldstein, D.; El-Maraghi, R.H.; Hammel, P.; Heinemann, V.; Kunzmann, V.; Sastre, J.; Scheithauer, W.; Siena, S.; Tabernero, J.; Teixeira, L.; Tortora, G.; Van Laethem, J.L.; Young, R.; Penenberg, D.N.; Lu, B.; Romano, A.; Von Hoff, D.D. nab-Paclitaxel plus gemcitabine for metastatic pancreatic cancer: long-term survival from a phase III trial. J. Natl. Cancer Inst., 2015, 107(2), dju413.
[http://dx.doi.org/10.1093/jnci/dju413] [PMID: 25638248]
[79]
Bennett, K.M.; Jo, J.; Cabral, H.; Bakalova, R.; Aoki, I. MR imaging techniques for nano-pathophysiology and theranostics. Adv. Drug Deliv. Rev., 2014, 74, 75-94.
[http://dx.doi.org/10.1016/j.addr.2014.04.007] [PMID: 24787226]
[80]
McCarroll, J.; Teo, J.; Boyer, C.; Goldstein, D.; Kavallaris, M.; Phillips, P.A. Potential applications of nanotechnology for the diagnosis and treatment of pancreatic cancer. Front. Physiol., 2014, 5, 2.
[http://dx.doi.org/10.3389/fphys.2014.00002] [PMID: 24478715]
[81]
Schnittert, J.; Bansal, R.; Prakash, J. Targeting pancreatic stellate cells in cancer. Trends Cancer, 2019, 5(2), 128-142.
[http://dx.doi.org/10.1016/j.trecan.2019.01.001] [PMID: 30755305]
[82]
Campbell, P.M.; Groehler, A.L.; Lee, K.M.; Ouellette, M.M.; Khazak, V.; Der, C.J. K-Ras promotes growth transformation and invasion of immortalized human pancreatic cells by Raf and phosphatidylinositol 3-kinase signaling. Cancer Res., 2007, 67(5), 2098-2106.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3752] [PMID: 17332339]
[83]
Frakes, J.; Mellon, E.A.; Springett, G.M.; Hodul, P.; Malafa, M.P.; Fulp, W.J.; Zhao, X.; Hoffe, S.E.; Shridhar, R.; Meredith, K.L. Outcomes of adjuvant radiotherapy and lymph node resection in elderly patients with pancreatic cancer treated with surgery and chemotherapy. J. Gastrointest. Oncol., 2017, 8(5), 758-765.
[http://dx.doi.org/10.21037/jgo.2017.08.05] [PMID: 29184679]
[84]
Landau, E.; Kalnicki, S. The evolving role of radiation in pancreatic cancer. Surg. Clin. North Am., 2018, 98(1), 113-125.
[http://dx.doi.org/10.1016/j.suc.2017.09.008] [PMID: 29191268]
[85]
Sherman, W.H.; Hecht, E.; Leung, D.; Chu, K. Predictors of response and survival in locally advanced adenocarcinoma of the pancreas following neoadjuvant GTX with or without radiation therapy. Oncologist, 2018, 23(1), 4-e10.
[http://dx.doi.org/10.1634/theoncologist.2017-0208] [PMID: 29212734]
[86]
Eggen, S.; Afadzi, M.; Nilssen, E.A.; Haugstad, S.B.; Angelsen, B.; Davies, C.L. Ultrasound improves the uptake and distribution of liposomal Doxorubicin in prostate cancer xenografts. Ultrasound Med. Biol., 2013, 39(7), 1255-1266.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2013.02.010] [PMID: 23643054]
[87]
Badiyan, S.N.; Molitoris, J.K.; Chuong, M.D.; Regine, W.F.; Kaiser, A. The role of radiation therapy for pancreatic cancer in the adjuvant and neoadjuvant settings. Surg. Oncol. Clin. N. Am., 2017, 26(3), 431-453.
[http://dx.doi.org/10.1016/j.soc.2017.01.012] [PMID: 28576181]
[88]
Koay, E.J.; Hanania, A.N.; Hall, W.A.; Taniguchi, C.M.; Rebueno, N.; Myrehaug, S.; Aitken, K.L.; Dawson, L.A.; Crane, C.H.; Herman, J.M.; Erickson, B. Dose-escalated radiation therapy for pancreatic cancer: a simultaneous integrated boost approach. Pract. Radiat. Oncol., 2020, 10(6), e495-e507.
[http://dx.doi.org/10.1016/j.prro.2020.01.012] [PMID: 32061993]
[89]
Regine, W.F.; Winter, K.W.; Abrams, R.; Safran, H.; Hoffman, J.P.; Konski, A.; Benson, A.B.; MacDonald, J.S.; Willett, C.G.; Rich, T.A. RTOG 9704 a phase III study of adjuvant pre and post chemoradiation (CRT) 5-FU vs. gemcitabine (G) for resected pancreatic adenocarcinoma. J. Clin. Oncol., 2006, 24(Suppl. 18), 4007.
[http://dx.doi.org/10.1200/jco.2006.24.18_suppl.4007]
[90]
Evans, D.B.; Varadhachary, G.R.; Crane, C.H.; Sun, C.C.; Lee, J.E.; Pisters, P.W.T.; Vauthey, J.N.; Wang, H.; Cleary, K.R.; Staerkel, G.A.; Charnsangavej, C.; Lano, E.A.; Ho, L.; Lenzi, R.; Abbruzzese, J.L.; Wolff, R.A. Preoperative gemcitabine-based chemoradiation for patients with resectable adenocarcinoma of the pancreatic head. J. Clin. Oncol., 2008, 26(21), 3496-3502.
[http://dx.doi.org/10.1200/JCO.2007.15.8634] [PMID: 18640930]
[91]
Hoffman, J.P.; Lipsitz, S.; Pisansky, T.; Weese, J.L.; Solin, L.; Benson, A.B., III Phase II trial of preoperative radiation therapy and chemotherapy for patients with localized, resectable adenocarcinoma of the pancreas: an eastern cooperative oncology group study. J. Clin. Oncol., 1998, 16(1), 317-323.
[http://dx.doi.org/10.1200/JCO.1998.16.1.317] [PMID: 9440759]
[92]
Bown, S.G.; Rogowska, A.Z.; Whitelaw, D.E.; Lees, W.R.; Lovat, L.B.; Ripley, P.; Jones, L.; Wyld, P.; Gillams, A.; Hatfield, A.W. Photodynamic therapy for cancer of the pancreas. Gut, 2002, 50(4), 549-557.
[http://dx.doi.org/10.1136/gut.50.4.549] [PMID: 11889078]
[93]
Huggett, M.T.; Jermyn, M.; Gillams, A.; Illing, R.; Mosse, S.; Novelli, M.; Kent, E.; Bown, S.G.; Hasan, T.; Pogue, B.W.; Pereira, S.P. Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br. J. Cancer, 2014, 110(7), 1698-1704.
[http://dx.doi.org/10.1038/bjc.2014.95] [PMID: 24569464]
[94]
DeWitt, J.M.; Sandrasegaran, K.; O’Neil, B.; House, M.G.; Zyromski, N.J.; Sehdev, A.; Perkins, S.M.; Flynn, J.; McCranor, L.; Shahda, S. Phase 1 study of EUS-guided photodynamic therapy for locally advanced pancreatic cancer. Gastrointest. Endosc., 2019, 89(2), 390-398.
[http://dx.doi.org/10.1016/j.gie.2018.09.007] [PMID: 30222972]
[95]
Sivasubramanian, M.; Chuang, Y.; Lo, L.W. Evolution of nanoparticle-mediated photodynamic therapy: from superficial to deepseated cancers. Molecules, 2019, 24(3), 520.
[http://dx.doi.org/10.3390/molecules24030520] [PMID: 30709030]
[96]
Vogl, T.J.; Farshid, P.; Naguib, N.N.N.; Darvishi, A.; Bazrafshan, B.; Mbalisike, E.; Burkhard, T.; Zangos, S. Thermal ablation of liver metastases from colorectal cancer: radiofrequency, microwave and laser ablation therapies. Radiol. Med. (Torino), 2014, 119(7), 451-461.
[http://dx.doi.org/10.1007/s11547-014-0415-y] [PMID: 24894923]
[97]
Schizas, D.; Charalampakis, N.; Kole, C.; Economopoulou, P.; Koustas, E.; Gkotsis, E.; Ziogas, D.; Psyrri, A.; Karamouzis, M.V. Immunotherapy for pancreatic cancer: A 2020 update. Cancer Treat. Rev., 2020, 86, 102016.
[98]
Bennett, C. Microbiome May Join Immunotherapy-Boosting Efforts: Patient responses to immunotherapy are influenced by the sometimes shifty but always well-connected factor known as the microbiome. Genet. Eng. Biotechnol. News, 2020, 40(S1), S16-S18.
[http://dx.doi.org/10.1089/gen.40.S1.06]
[99]
Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.M.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; Pitot, H.C.; Hamid, O.; Bhatia, S.; Martins, R.; Eaton, K.; Chen, S.; Salay, T.M.; Alaparthy, S.; Grosso, J.F.; Korman, A.J.; Parker, S.M.; Agrawal, S.; Goldberg, S.M.; Pardoll, D.M.; Gupta, A.; Wigginton, J.M. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med., 2012, 366(26), 2455-2465.
[http://dx.doi.org/10.1056/NEJMoa1200694] [PMID: 22658128]
[100]
Winograd, R.; Byrne, K.T.; Evans, R.A.; Odorizzi, P.M.; Meyer, A.R.L.; Bajor, D.L.; Clendenin, C.; Stanger, B.Z.; Furth, E.E.; Wherry, E.J.; Vonderheide, R.H. Induction of t-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol. Res., 2015, 3(4), 399-411.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0215] [PMID: 25678581]
[101]
Vogelstein, B; Papadopoulos, N; Velculescu, VE; Zhou, S; Diaz, LA, Jr; Kinzler, KW Cancer genome landscapes. Science, 2013, 339, 6127, 1546-.
[102]
Fukunaga, A.; Miyamoto, M.; Cho, Y.; Murakami, S.; Kawarada, Y.; Oshikiri, T.; Kato, K.; Kurokawa, T.; Suzuoki, M.; Nakakubo, Y.; Hiraoka, K.; Itoh, T.; Morikawa, T.; Okushiba, S.; Kondo, S.; Katoh, H. CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas, 2004, 28(1), e26-e31.
[http://dx.doi.org/10.1097/00006676-200401000-00023] [PMID: 14707745]
[103]
Schmitz-Winnenthal, F.H.; Volk, C.; Z’graggen, K.; Galindo, L.; Nummer, D.; Ziouta, Y.; Bucur, M.; Weitz, J.; Schirrmacher, V.; Büchler, M.W.; Beckhove, P. High frequencies of functional tumor-reactive T cells in bone marrow and blood of pancreatic cancer patients. Cancer Res., 2005, 65(21), 10079-10087.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1098] [PMID: 16267034]
[104]
Mittal, D.; Gubin, M.M.; Schreiber, R.D.; Smyth, M.J. New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr. Opin. Immunol., 2014, 27, 16-25.
[http://dx.doi.org/10.1016/j.coi.2014.01.004] [PMID: 24531241]
[105]
Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science, 1996, 271(5256), 1734-1736.
[http://dx.doi.org/10.1126/science.271.5256.1734] [PMID: 8596936]
[106]
Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; Akerley, W.; van den Eertwegh, A.J.M.; Lutzky, J.; Lorigan, P.; Vaubel, J.M.; Linette, G.P.; Hogg, D.; Ottensmeier, C.H.; Lebbé, C.; Peschel, C.; Quirt, I.; Clark, J.I.; Wolchok, J.D.; Weber, J.S.; Tian, J.; Yellin, M.J.; Nichol, G.M.; Hoos, A.; Urba, W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med., 2010, 363(8), 711-723.
[http://dx.doi.org/10.1056/NEJMoa1003466] [PMID: 20525992]
[107]
Andersson, R.; Pereira, C.F.; Bauden, M.; Ansari, D. Is immunotherapy the holy grail for pancreatic cancer? Immunotherapy, 2019, 11(17), 1435-1438.
[http://dx.doi.org/10.2217/imt-2019-0164] [PMID: 31747808]
[108]
Torphy, R.J.; Zhu, Y.; Schulick, R.D. Immunotherapy for pancreatic cancer: Barriers and breakthroughs. Ann. Gastroenterol. Surg., 2018, 2(4), 274-281.
[http://dx.doi.org/10.1002/ags3.12176] [PMID: 30003190]
[109]
Sutton, J.M.; Abbott, D.E. Neoadjuvant therapy for pancreas cancer: Past lessons and future therapies. World J. Gastroenterol., 2014, 20(42), 15564-15579.
[http://dx.doi.org/10.3748/wjg.v20.i42.15564] [PMID: 25400440]
[110]
Cameron, J.L.; Riall, T.S.; Coleman, J.; Belcher, K.A. One thousand consecutive pancreaticoduodenectomies. Ann. Surg., 2006, 244(1), 10-15.
[http://dx.doi.org/10.1097/01.sla.0000217673.04165.ea] [PMID: 16794383]
[111]
Lowy, A.M. Neoadjuvant therapy for pancreatic cancer. J. Gastrointest. Surg., 2008, 12(9), 1600-1608.
[http://dx.doi.org/10.1007/s11605-008-0482-2] [PMID: 18259825]
[112]
Jagannath, P.; Dhir, V.; Shrikhande, S.; Shah, R.C.; Mullerpatan, P.; Mohandas, K.M. Effect of preoperative biliary stenting on immediate outcome after pancreaticoduodenectomy. Br. J. Surg., 2005, 92(3), 356-361.
[http://dx.doi.org/10.1002/bjs.4864] [PMID: 15672425]
[113]
Hartwig, W.; Werner, J.; Jäger, D.; Debus, J.; Büchler, M.W. Improvement of surgical results for pancreatic cancer. Lancet Oncol., 2013, 14(11), e476-e485.
[http://dx.doi.org/10.1016/S1470-2045(13)70172-4] [PMID: 24079875]
[114]
Hidalgo, M. Pancreatic Cancer. N. Engl. J. Med., 2010, 362(17), 1605-1617.
[http://dx.doi.org/10.1056/NEJMra0901557] [PMID: 20427809]
[115]
Gandhi, N.S.; Tekade, R.K.; Chougule, M.B. Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: Current progress and advances. J. Control. Release, 2014, 194, 238-256.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.001] [PMID: 25204288]
[116]
Majeed, H.; Gupta, V Adverse Effects of Radiation Therapy. In: StatPearls; StatPearls Publishing: Florida, USA, 2021.
[117]
Hu, J.; Tang, Y.; Elmenoufy, A.H.; Xu, H.; Cheng, Z.; Yang, X. Nanocomposite‐based photodynamic therapy strategies for deep tumor treatment. Small, 2015, 11(44), 5860-5887.
[http://dx.doi.org/10.1002/smll.201501923] [PMID: 26398119]
[118]
Blankenstein, T.; Coulie, P.G.; Gilboa, E.; Jaffee, E.M. The determinants of tumour immunogenicity. Nat. Rev. Cancer, 2012, 12(4), 307-313.
[http://dx.doi.org/10.1038/nrc3246] [PMID: 22378190]
[119]
Fogel, E.L.; Shahda, S.; Sandrasegaran, K.; DeWitt, J.; Easler, J.J.; Agarwal, D.M.; Eagleson, M.; Zyromski, N.J.; House, M.G.; Ellsworth, S.; El Hajj, I.; O’Neil, B.H.; Nakeeb, A.; Sherman, S. A multidisciplinary approach to pancreas cancer in 2016: a review. Am. J. Gastroenterol., 2017, 112(4), 537-554.
[http://dx.doi.org/10.1038/ajg.2016.610] [PMID: 28139655]
[120]
Huguet, F.; André, T.; Hammel, P.; Artru, P.; Balosso, J.; Selle, F.; Deniaud-Alexandre, E.; Ruszniewski, P.; Touboul, E.; Labianca, R.; de Gramont, A.; Louvet, C. Impact of chemoradiotherapy after disease control with chemotherapy in locally advanced pancreatic adenocarcinoma in GERCOR phase II and III studies. J. Clin. Oncol., 2007, 25(3), 326-331.
[http://dx.doi.org/10.1200/JCO.2006.07.5663] [PMID: 17235048]
[121]
Burris, H.A., III; Moore, M.J.; Andersen, J.; Green, M.R.; Rothenberg, M.L.; Modiano, M.R.; Cripps, M.C.; Portenoy, R.K.; Storniolo, A.M.; Tarassoff, P.; Nelson, R.; Dorr, F.A.; Stephens, C.D.; Von Hoff, D.D. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol., 1997, 15(6), 2403-2413.
[http://dx.doi.org/10.1200/JCO.1997.15.6.2403] [PMID: 9196156]
[122]
Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; Harris, M.; Reni, M.; Dowden, S.; Laheru, D.; Bahary, N.; Ramanathan, R.K.; Tabernero, J.; Hidalgo, M.; Goldstein, D.; Van Cutsem, E.; Wei, X.; Iglesias, J.; Renschler, M.F. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med., 2013, 369(18), 1691-1703.
[http://dx.doi.org/10.1056/NEJMoa1304369] [PMID: 24131140]
[123]
Regine, W.F.; Winter, K.A.; Abrams, R.; Safran, H.; Hoffman, J.P.; Konski, A.; Benson, A.B.; Macdonald, J.S.; Rich, T.A.; Willett, C.G. Fluorouracil-based chemoradiation with either gemcitabine or fluorouracil chemotherapy after resection of pancreatic adenocarcinoma: 5-year analysis of the U.S. Intergroup/RTOG 9704 phase III trial. Ann. Surg. Oncol., 2011, 18(5), 1319-1326.
[http://dx.doi.org/10.1245/s10434-011-1630-6] [PMID: 21499862]
[124]
Oettle, H.; Neuhaus, P.; Hochhaus, A.; Hartmann, J.T.; Gellert, K.; Ridwelski, K.; Niedergethmann, M.; Zülke, C.; Fahlke, J.; Arning, M.B.; Sinn, M.; Hinke, A.; Riess, H. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA, 2013, 310(14), 1473-1481.
[http://dx.doi.org/10.1001/jama.2013.279201] [PMID: 24104372]
[125]
Oettle, H.; Post, S.; Neuhaus, P.; Gellert, K.; Langrehr, J.; Ridwelski, K.; Schramm, H.; Fahlke, J.; Zuelke, C.; Burkart, C.; Gutberlet, K.; Kettner, E.; Schmalenberg, H.; Weigang-Koehler, K.; Bechstein, W.O.; Niedergethmann, M.; Schmidt-Wolf, I.; Roll, L.; Doerken, B.; Riess, H. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA, 2007, 297(3), 267-277.
[http://dx.doi.org/10.1001/jama.297.3.267] [PMID: 17227978]
[126]
Triesscheijn, M.; Ruevekamp, M.; Antonini, N.; Neering, H.; Stewart, F.A.; Baas, P. Optimizing meso-tetra-hydroxyphenylchlorin-mediated photodynamic therapy for basal cell carcinoma. Photochem. Photobiol., 2006, 82(6), 1686-1690.
[http://dx.doi.org/10.1111/j.1751-1097.2006.tb09831.x] [PMID: 16984216]
[127]
Royal, R.E.; Levy, C.; Turner, K.; Mathur, A.; Hughes, M.; Kammula, U.S.; Sherry, R.M.; Topalian, S.L.; Yang, J.C.; Lowy, I.; Rosenberg, S.A. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J. Immuno., 2010, 33(8), 828.
[http://dx.doi.org/10.1097/CJI.0b013e3181eec14c]
[128]
Farkona, S.; Diamandis, E.P.; Blasutig, I.M. Cancer immunotherapy: the beginning of the end of cancer? BMC Med., 2016, 14(1), 73.
[http://dx.doi.org/10.1186/s12916-016-0623-5] [PMID: 27151159]
[129]
Ventola, C.L. Cancer immunotherapy, part 3: challenges and future trends. P&T, 2017, 42(8), 514-521.
[PMID: 28781505]
[130]
Ventola, C.L. Cancer immunotherapy, part 2: efficacy, safety, and other clinical considerations. P&T, 2017, 42(7), 452-463.
[PMID: 28674473]
[131]
Cao, J.; Huang, D.; Peppas, N.A. Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Adv. Drug Deliv. Rev., 2020, 167, 170-188.
[http://dx.doi.org/10.1016/j.addr.2020.06.030] [PMID: 32622022]
[132]
Saeed, M.; Gao, J.; Shi, Y.; Lammers, T.; Yu, H. Engineering nanoparticles to reprogram the tumor immune microenvironment for improved cancer immunotherapy. Theranostics, 2019, 9(26), 7981-8000.
[http://dx.doi.org/10.7150/thno.37568] [PMID: 31754376]
[133]
Tong, Q.S.; Miao, W.M.; Huang, H.; Luo, J.Q.; Liu, R.; Huang, Y.C.; Zhao, D.K.; Shen, S.; Du, J.Z.; Wang, J. A Tumorpenetrating nanomedicine improves the chemoimmunotherapy of pancreatic cancer. Small, 2021, 17(29), 2101208.
[http://dx.doi.org/10.1002/smll.202101208] [PMID: 34145747]
[134]
Rhodes, K.R.; Green, J.J. Nanoscale artificial antigen presenting cells for cancer immunotherapy. Mol. Immunol., 2018, 98, 13-18.
[http://dx.doi.org/10.1016/j.molimm.2018.02.016] [PMID: 29525074]
[135]
Kosmides, A.K.; Meyer, R.A.; Hickey, J.W.; Aje, K.; Cheung, K.N.; Green, J.J.; Schneck, J.P. Biomimetic biodegradable artificial antigen presenting cells synergize with PD-1 blockade to treat melanoma. Biomaterials, 2017, 118, 16-26.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.038] [PMID: 27940380]
[136]
Irvine, D.J.; Dane, E.L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol., 2020, 20(5), 321-334.
[http://dx.doi.org/10.1038/s41577-019-0269-6] [PMID: 32005979]
[137]
Park, W.; Heo, Y.J.; Han, D.K. New opportunities for nanoparticles in cancer immunotherapy. Biomater. Res., 2018, 22(1), 24.
[http://dx.doi.org/10.1186/s40824-018-0133-y] [PMID: 30275967]
[138]
Chaturvedi, V.K.; Singh, A.; Singh, V.K.; Singh, M.P. Cancer nanotechnology: a new revolution for cancer diagnosis and therapy. Curr. Drug Metab., 2019, 20(6), 416-429.
[http://dx.doi.org/10.2174/1389200219666180918111528] [PMID: 30227814]
[139]
Mu, Q.; Wang, H.; Zhang, M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opin. Drug Deliv., 2017, 14(1), 123-136.
[http://dx.doi.org/10.1080/17425247.2016.1208650] [PMID: 27401941]
[140]
Kumari, P.; Ghosh, B.; Biswas, S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target., 2016, 24(3), 179-191.
[http://dx.doi.org/10.3109/1061186X.2015.1051049] [PMID: 26061298]
[141]
Caruthers, S.D.; Wickline, S.A.; Lanza, G.M. Nanotechnological applications in medicine. Curr. Opin. Biotechnol., 2007, 18(1), 26-30.
[http://dx.doi.org/10.1016/j.copbio.2007.01.006] [PMID: 17254762]
[142]
Dorai, T.; Cao, Y.C.; Dorai, B.; Buttyan, R.; Katz, A.E. Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. Prostate, 2001, 47(4), 293-303.
[http://dx.doi.org/10.1002/pros.1074] [PMID: 11398177]
[143]
Xu, R.; Zhang, G.; Mai, J.; Deng, X.; Segura-Ibarra, V.; Wu, S.; Shen, J.; Liu, H.; Hu, Z.; Chen, L.; Huang, Y.; Koay, E.; Huang, Y.; Liu, J.; Ensor, J.E.; Blanco, E.; Liu, X.; Ferrari, M.; Shen, H. An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat. Biotechnol., 2016, 34(4), 414-418.
[http://dx.doi.org/10.1038/nbt.3506] [PMID: 26974511]
[144]
Arya, G.; Das, M.; Sahoo, S.K. Evaluation of curcumin loaded chitosan/PEG blended PLGA nanoparticles for effective treatment of pancreatic cancer. Biomed. Pharmacother., 2018, 102, 555-566.
[http://dx.doi.org/10.1016/j.biopha.2018.03.101] [PMID: 29597089]
[145]
Aggarwal, S.; Yadav, S.; Gupta, S. EGFR targeted PLGA nanoparticles using gemcitabine for treatment of pancreatic cancer. J. Biomed. Nanotechnol., 2011, 7(1), 137-138.
[http://dx.doi.org/10.1166/jbn.2011.1238] [PMID: 21485840]
[146]
Niikura, K.; Matsunaga, T.; Suzuki, T.; Kobayashi, S.; Yamaguchi, H.; Orba, Y.; Kawaguchi, A.; Hasegawa, H.; Kajino, K.; Ninomiya, T.; Ijiro, K.; Sawa, H. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano, 2013, 7(5), 3926-3938.
[http://dx.doi.org/10.1021/nn3057005] [PMID: 23631767]
[147]
Salatin, S.; Maleki Dizaj, S.; Yari Khosroushahi, A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol. Int., 2015, 39(8), 881-890.
[http://dx.doi.org/10.1002/cbin.10459] [PMID: 25790433]
[148]
Barnaby, S.N.; Lee, A.; Mirkin, C.A. Probing the inherent stability of siRNA immobilized on nanoparticle constructs. Proc. Natl. Acad. Sci. USA, 2014, 111(27), 9739-9744.
[http://dx.doi.org/10.1073/pnas.1409431111] [PMID: 24946803]
[149]
Arvizo, R.R.; Bhattacharyya, S.; Kudgus, R.A.; Giri, K.; Bhattacharya, R.; Mukherjee, P. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem. Soc. Rev., 2012, 41(7), 2943-2970.
[http://dx.doi.org/10.1039/c2cs15355f] [PMID: 22388295]
[150]
Hwang, S.; Nam, J.; Jung, S.; Song, J.; Doh, H.; Kim, S. Gold nanoparticle-mediated photothermal therapy: current status and future perspective. Nanomedicine (Lond.), 2014, 9(13), 2003-2022.
[http://dx.doi.org/10.2217/nnm.14.147] [PMID: 25343350]
[151]
Balkrishna, A.; Sharma, V.K.; Das, S.K.; Mishra, N.; Bisht, L.; Joshi, A.; Sharma, N. Characterization and anti-cancerous effect of Putranjiva roxburghii seed extract mediated silver nanoparticles on human colon (HCT-116), pancreatic (PANC-1) and breast (MDAMB 231) cancer cell lines: a comparative study. Int. J. Nanomedicine, 2020, 15, 573-585.
[http://dx.doi.org/10.2147/IJN.S230244] [PMID: 32158209]
[152]
Kummara, S.; Patil, M.B.; Uriah, T. Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles – A comparative study. Biomed. Pharmacother., 2016, 84, 10-21.
[http://dx.doi.org/10.1016/j.biopha.2016.09.003] [PMID: 27621034]
[153]
Benguigui, M.; Weitz, I.S.; Timaner, M.; Kan, T.; Shechter, D.; Perlman, O.; Sivan, S.; Raviv, Z.; Azhari, H.; Shaked, Y. Copper oxide nanoparticles inhibit pancreatic tumor growth primarily by targeting tumor initiating cells. Sci. Rep., 2019, 9(1), 12613.
[http://dx.doi.org/10.1038/s41598-019-48959-8] [PMID: 31471546]
[154]
Chen, W.; Zhou, Y.; Zhi, X.; Ma, T.; Liu, H.; Chen, B.W.; Zheng, X.; Xie, S.; Zhao, B.; Feng, X.; Dang, X.; Liang, T. Delivery of miR-212 by chimeric peptide-condensed supramolecular nanoparticles enhances the sensitivity of pancreatic ductal adenocarcinoma to doxorubicin. Biomaterials, 2019, 192, 590-600.
[http://dx.doi.org/10.1016/j.biomaterials.2018.11.035] [PMID: 30553134]
[155]
Paciotti, G.F.; Myer, L.; Weinreich, D.; Goia, D.; Pavel, N.; McLaughlin, R.E.; Tamarkin, L. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv., 2004, 11(3), 169-183.
[http://dx.doi.org/10.1080/10717540490433895] [PMID: 15204636]
[156]
Sampathkumar, SG; Yarema, KJ Dendrimers in cancer treatment and diagnosis. In: Nanotechnologies for the Life Sciences; Springer: Berlin, 2007.
[http://dx.doi.org/10.1002/9783527610419.ntls0071]
[157]
Lee, C.C.; MacKay, J.A.; Fréchet, J.M.J.; Szoka, F.C. Designing dendrimers for biological applications. Nat. Biotechnol., 2005, 23(12), 1517-1526.
[http://dx.doi.org/10.1038/nbt1171] [PMID: 16333296]
[158]
Anitha, P.; Bhargavi, J.; Sravani, G.; Aruna, B.; S, R. Recent progress of dendrimers in drug delivery for cancer therapy. Int. J. Appl. Pharm., 2018, 10(5), 34-42.
[http://dx.doi.org/10.22159/ijap.2018v10i5.27075]
[159]
Dutta, T.; Jain, N.K.; McMillan, N.A.J.; Parekh, H.S. Retraction to “Dendrimer nanocarriers as versatile vectors in gene delivery”. Nanomedicine: NBM 2010; 6:25–34] Nanomedicine, 2010, 6(6), 815.
[http://dx.doi.org/10.1016/j.nano.2010.11.001] [PMID: 21174368]
[160]
Kaneshiro, T.L.; Lu, Z.R. Targeted intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimerbased nanoglobular carrier. Biomaterials, 2009, 30(29), 5660-5666.
[http://dx.doi.org/10.1016/j.biomaterials.2009.06.026] [PMID: 19595449]
[161]
Sharma, A.K.; Gothwal, A.; Kesharwani, P.; Alsaab, H.; Iyer, A.K.; Gupta, U. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov. Today, 2017, 22(2), 314-326.
[http://dx.doi.org/10.1016/j.drudis.2016.09.013] [PMID: 27671487]
[162]
Öztürk, K.; Esendağlı, G.; Gürbüz, M.U.; Tülü, M.; Çalış, S. Effective targeting of gemcitabine to pancreatic cancer through PEGcored Flt-1 antibody-conjugated dendrimers. Int. J. Pharm., 2017, 517(1-2), 157-167.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.009] [PMID: 27965135]
[163]
Opitz, A.W.; Czymmek, K.J.; Wickstrom, E.; Wagner, N.J. Uptake, efflux, and mass transfer coefficient of fluorescent PAMAM den-drimers into pancreatic cancer cells. Biochim. Biophys. Acta Biomembr., 2013, 1828(2), 294-301.
[http://dx.doi.org/10.1016/j.bbamem.2012.09.016] [PMID: 23022133]
[164]
Kiaie, S.H.; Mojarad-Jabali, S.; Khaleseh, F.; Allahyari, S.; Taheri, E.; Zakeri-Milani, P.; Valizadeh, H. Axial pharmaceutical properties of liposome in cancer therapy: Recent advances and perspectives. Int. J. Pharm., 2020, 581, 119269.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119269] [PMID: 32234427]
[165]
Yang, F.; Jin, C.; Jiang, Y.; Li, J.; Di, Y.; Ni, Q.; Fu, D. Liposome based delivery systems in pancreatic cancer treatment: From bench to bedside. Cancer Treat. Rev., 2011, 37(8), 633-642.
[http://dx.doi.org/10.1016/j.ctrv.2011.01.006] [PMID: 21330062]
[166]
Cheng, R.; Liu, L.; Xiang, Y.; Lu, Y.; Deng, L.; Zhang, H.; Santos, H.A.; Cui, W. Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials, 2020, 232, 119706.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119706] [PMID: 31918220]
[167]
Erten, A.; Wrasidlo, W.; Scadeng, M.; Esener, S.; Hoffman, R.M.; Bouvet, M.; Makale, M. Magnetic resonance and fluorescence imaging of doxorubicin-loaded nanoparticles using a novel in vivo model. Nanomedicine, 2010, 6(6), 797-807.
[http://dx.doi.org/10.1016/j.nano.2010.06.005] [PMID: 20599526]
[168]
Marengo, A.; Forciniti, S.; Dando, I.; Dalla Pozza, E.; Stella, B.; Tsapis, N.; Yagoubi, N.; Fanelli, G.; Fattal, E.; Heeschen, C.; Palmieri, M.; Arpicco, S. Pancreatic cancer stem cell proliferation is strongly inhibited by diethyldithiocarbamate-copper complex loaded into hyaluronic acid decorated liposomes. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(1), 61-72.
[http://dx.doi.org/10.1016/j.bbagen.2018.09.018] [PMID: 30267751]
[169]
Tangutoori, S.; Spring, B.Q.; Mai, Z.; Palanisami, A.; Mensah, L.B.; Hasan, T. Simultaneous delivery of cytotoxic and biologic therapeutics using nanophotoactivatable liposomes enhances treatment efficacy in a mouse model of pancreatic cancer. Nanomedicine, 2016, 12(1), 223-234.
[http://dx.doi.org/10.1016/j.nano.2015.08.007] [PMID: 26390832]
[170]
Li, Y.J.; Wu, J.Y.; Wang, J.M.; Xiang, D.X. Emerging nanomedicine-based strategies for preventing metastasis of pancreatic cancer. J. Control. Release, 2020, 320, 105-111.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.041] [PMID: 31978441]
[171]
Makler, A.; Asghar, W. Exosomal biomarkers for cancer diagnosis and patient monitoring. Expert Rev. Mol. Diagn., 2020, 20(4), 387-400.
[http://dx.doi.org/10.1080/14737159.2020.1731308] [PMID: 32067543]
[172]
Li, Y.J.; Wu, J.Y.; Wang, J.M.; Hu, X.B.; Cai, J.X.; Xiang, D.X. Gemcitabine loaded autologous exosomes for effective and safe chemo-therapy of pancreatic cancer. Acta Biomater., 2020, 101, 519-530.
[http://dx.doi.org/10.1016/j.actbio.2019.10.022] [PMID: 31629893]
[173]
Ingato, D.; Edson, J.A.; Zakharian, M.; Kwon, Y.J. Cancer cell-derived, drug-loaded nanovesicles induced by sulfhydryl-blocking for effective and safe cancer therapy. ACS Nano, 2018, 12(9), 9568-9577.
[http://dx.doi.org/10.1021/acsnano.8b05377] [PMID: 30130093]
[174]
Anitha, V.; Reddy, P.D.; Ramkanth, S. Phytosomes: A promising technology in novel herbal drug delivery system. PharmaTutor., 2019, 7(6), 18-25.
[175]
Lagoa, R.; Silva, J.; Rodrigues, J.R.; Bishayee, A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol. Adv., 2020, 38, 107382.
[http://dx.doi.org/10.1016/j.biotechadv.2019.04.004] [PMID: 30978386]
[176]
Pastorelli, D.; Fabricio, A.S.C.; Giovanis, P.; D’Ippolito, S.; Fiduccia, P.; Soldà, C.; Buda, A.; Sperti, C.; Bardini, R.; Da Dalt, G.; Rainato, G.; Gion, M.; Ursini, F. Phytosome complex of curcumin as complementary therapy of advanced pancreatic cancer improves safety and efficacy of gemcitabine: Results of a prospective phase II trial. Pharmacol. Res., 2018, 132, 72-79.
[http://dx.doi.org/10.1016/j.phrs.2018.03.013] [PMID: 29614381]
[177]
Tran, T.H.; Guo, Y.; Song, D.; Bruno, R.S.; Lu, X. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability. J. Pharm. Sci., 2014, 103(3), 840-852.
[http://dx.doi.org/10.1002/jps.23858] [PMID: 24464737]
[178]
Hani, U.; Osmani, R.A.; Bhosale, R.R.; Shivakumar, H.G.; Kulkarni, P.K. Current perspectives on novel drug delivery systems and approaches for management of cervical cancer: a comprehensive review. Curr. Drug Targets, 2016, 17(3), 337-352.
[http://dx.doi.org/10.2174/1389450116666150505154720] [PMID: 25944014]
[179]
Oerlemans, C.; Bult, W.; Bos, M.; Storm, G.; Nijsen, J.F.W.; Hennink, W.E. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm. Res., 2010, 27(12), 2569-2589.
[http://dx.doi.org/10.1007/s11095-010-0233-4] [PMID: 20725771]
[180]
Pittella, F.; Cabral, H.; Maeda, Y.; Mi, P.; Watanabe, S.; Takemoto, H.; Kim, H.J.; Nishiyama, N.; Miyata, K.; Kataoka, K. Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles. J. Control. Release, 2014, 178, 18-24.
[http://dx.doi.org/10.1016/j.jconrel.2014.01.008] [PMID: 24440662]
[181]
Gao, D.; Lo, P.C. Polymeric micelles encapsulating pH-responsive doxorubicin prodrug and glutathione-activated zinc(II) phthalocyanine for combined chemotherapy and photodynamic therapy. J. Control. Release, 2018, 282, 46-61.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.030] [PMID: 29673646]
[182]
Ge, Z.; Chen, Q.; Osada, K.; Liu, X.; Tockary, T.A.; Uchida, S.; Dirisala, A.; Ishii, T.; Nomoto, T.; Toh, K.; Matsumoto, Y.; Oba, M.; Kano, M.R.; Itaka, K.; Kataoka, K. Targeted gene delivery by polyplex micelles with crowded PEG palisade and cRGD moiety for systemic treatment of pancreatic tumors. Biomaterials, 2014, 35(10), 3416-3426.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.086] [PMID: 24439417]
[183]
Sarkar, F.; Banerjee, S.; Li, Y. Pancreatic cancer: Pathogenesis, prevention and treatment. Toxicol. Appl. Pharmacol., 2007, 224(3), 326-336.
[http://dx.doi.org/10.1016/j.taap.2006.11.007] [PMID: 17174370]
[184]
Hani, U.; Osmani, R.A.M.; Siddiqua, A.; Wahab, S.; Batool, S.; Ather, H.; Sheraba, N.; Alqahtani, A. A systematic study of novel drug delivery mechanisms and treatment strategies for pancreatic cancer. J. Drug Deliv. Sci. Technol., 2021, 63, 102539.
[http://dx.doi.org/10.1016/j.jddst.2021.102539]
[185]
Huai, Y.; Zhang, Y.; Xiong, X.; Das, S.; Bhattacharya, R.; Mukherjee, P. Gold Nanoparticles sensitize pancreatic cancer cells to gemcitabine. Cell Stress, 2019, 3(8), 267-279.
[http://dx.doi.org/10.15698/cst2019.08.195] [PMID: 31440741]
[186]
Tang, M.; Svirskis, D.; Leung, E.; Kanamala, M.; Wang, H.; Wu, Z. Can intracellular drug delivery using hyaluronic acid functionalised pH-sensitive liposomes overcome gemcitabine resistance in pancreatic cancer? J. Control. Release, 2019, 305, 89-100.
[http://dx.doi.org/10.1016/j.jconrel.2019.05.018] [PMID: 31096017]
[187]
Comandatore, A.; Immordino, B.; Balsano, R.; Capula, M.; Garajovà, I.; Ciccolini, J.; Giovannetti, E.; Morelli, L. Potential role of exosomes in the chemoresistance to gemcitabine and nab-paclitaxel in pancreatic cancer. Diagnostics (Basel), 2022, 12(2), 286.
[http://dx.doi.org/10.3390/diagnostics12020286] [PMID: 35204377]
[188]
Mirzaei, H.; Shakeri, A.; Rashidi, B.; Jalili, A.; Banikazemi, Z.; Sahebkar, A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomed. Pharmacother., 2017, 85, 102-112.
[http://dx.doi.org/10.1016/j.biopha.2016.11.098] [PMID: 27930973]
[189]
Ristori, S.; Ciani, L.; Candiani, G.; Battistini, C.; Frati, A.; Grillo, I.; In, M. Complexing a small interfering RNA with divalent cationic surfactants. Soft Matter, 2012, 8(3), 749-756.
[http://dx.doi.org/10.1039/C1SM06470C]
[190]
Harada-Shiba, M.; Yamauchi, K.; Harada, A.; Takamisawa, I.; Shimokado, K.; Kataoka, K. Polyion complex micelles as vectors in gene therapy – pharmacokinetics and in vivo gene transfer. Gene Ther., 2002, 9(6), 407-414.
[http://dx.doi.org/10.1038/sj.gt.3301665] [PMID: 11960317]
[191]
Daima, H.K.; Selvakannan, P.R.; Kandjani, A.E.; Shukla, R.; Bhargava, S.K.; Bansal, V. Synergistic influence of polyoxometalate surface corona towards enhancing the antibacterial performance of tyrosine-capped Ag nanoparticles. Nanoscale, 2014, 6(2), 758-765.
[http://dx.doi.org/10.1039/C3NR03806H] [PMID: 24165753]
[192]
Daima, H.K.; Selvakannan, P.R.; Shukla, R.; Bhargava, S.K.; Bansal, V. Fine-tuning the antimicrobial profile of biocompatible gold nanoparticles by sequential surface functionalization using polyoxometalates and lysine. PLoS One, 2013, 8(10), e79676.
[http://dx.doi.org/10.1371/journal.pone.0079676] [PMID: 24147146]
[193]
Navya, P.N.; Daima, H.K. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Converg., 2016, 3(1), 1-4.
[http://dx.doi.org/10.1186/s40580-016-0064-z] [PMID: 28191411]
[194]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[195]
Ruozi, B.; Belletti, D.; Sharma, H.S.; Sharma, A.; Muresanu, D.F.; Mössler, H.; Forni, F.; Vandelli, M.A.; Tosi, G. PLGA nanoparticles loaded cerebrolysin: studies on their preparation and investigation of the effect of storage and serum stability with reference to traumatic brain injury. Mol. Neurobiol., 2015, 52(2), 899-912.
[http://dx.doi.org/10.1007/s12035-015-9235-x] [PMID: 26108180]
[196]
Ma, S.; Zhou, J.; Zhang, Y.; He, Y.; Jiang, Q.; Yue, D.; Xu, X.; Gu, Z. Highly stable fluorinated nanocarriers with iRGD for overcoming the stability dilemma and enhancing tumor penetration in an orthotopic breast cancer. ACS Appl. Mater. Interfaces, 2016, 8(42), 28468-28479.
[http://dx.doi.org/10.1021/acsami.6b09633] [PMID: 27712073]
[197]
Wang, Y.; Santos, A.; Evdokiou, A.; Losic, D. An overview of nanotoxicity and nanomedicine research: principles, progress and implications for cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(36), 7153-7172.
[http://dx.doi.org/10.1039/C5TB00956A] [PMID: 32262822]
[198]
Coradeghini, R.; Gioria, S.; García, C.P.; Nativo, P.; Franchini, F.; Gilliland, D.; Ponti, J.; Rossi, F. Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol. Lett., 2013, 217(3), 205-216.
[http://dx.doi.org/10.1016/j.toxlet.2012.11.022] [PMID: 23246733]
[199]
Pepic, I.; Hafner, A.; Lovric, J.; Perina Lakos, G. Nanotherapeutics in the EU: an overview on current state and future directions. Int. J. Nanomedicine, 2014, 9, 1005-1023.
[http://dx.doi.org/10.2147/IJN.S55359] [PMID: 24600222]
[200]
Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg., 2019, 6(1), 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy