Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Harnessing the Therapeutic Potential of Antimicrobial Peptides for Cancers: State of the Art

Author(s): Maryam Mahjoubin-Tehran, Samaneh Rezaei, Seyed Hamid Aghaee-Bakhtiari, Amirhossein Sahebkar, Reza Kazemi Oskuee, Ali Mahmoudi and Amin Jalili*

Volume 23, Issue 16, 2023

Published on: 28 April, 2023

Page: [1542 - 1558] Pages: 17

DOI: 10.2174/1568026623666230328161236

Price: $65

conference banner
Abstract

Despite significant breakthroughs in cancer treatment, cancer remains a serious global health concern that takes thousands of lives each year. Still, drug resistance and adverse effects are the main problems in conventional cancer therapeutic approaches. Thus, the discovery of new anticancer agents with distinct mechanisms of action is a critical requirement that offers significant obstacles. Antimicrobial peptides (AMPs), which can be found in various forms of life, are recognized as defensive weapons against infections of microbial pathogens. Surprisingly, they are also capable of killing a variety of cancer cells. These powerful peptides can cause cell death in the gastrointestinal, urinary tract, and reproductive cancer cell lines. To emphasize the anti-cancer properties of AMPs, we summarize the research that examined their impact on cancer cell lines in this review.

Keywords: Antimicrobial peptides, Anti-cancer, Gastrointestinal cancer, Urinary tract cancer, Reproductive system cancer, Respiratory system cancer.

Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[4]
Hargadon, K.M.; Johnson, C.E.; Williams, C.J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol., 2018, 62, 29-39.
[http://dx.doi.org/10.1016/j.intimp.2018.06.001] [PMID: 29990692]
[5]
Dobry, A.S.; Zogg, C.K.; Hodi, F.S.; Smith, T.R.; Ott, P.A.; Iorgulescu, J.B. Management of metastatic melanoma: Improved survival in a national cohort following the approvals of checkpoint blockade immunotherapies and targeted therapies. Cancer Immunol. Immunother., 2018, 67(12), 1833-1844.
[http://dx.doi.org/10.1007/s00262-018-2241-x] [PMID: 30191256]
[6]
Raguz, S.; Yagüe, E. Resistance to chemotherapy: New treatments and novel insights into an old problem. Br. J. Cancer, 2008, 99(3), 387-391.
[http://dx.doi.org/10.1038/sj.bjc.6604510] [PMID: 18665178]
[7]
Thundimadathil, J. Cancer treatment using peptides: Current therapies and future prospects. J. Amino Acids, 2012, 2012, 967347.
[http://dx.doi.org/10.1155/2012/967347]
[8]
Tyagi, A.; Tuknait, A.; Anand, P.; Gupta, S.; Sharma, M.; Mathur, D.; Joshi, A.; Singh, S.; Gautam, A.; Raghava, G.P.S. CancerPPD: A database of anticancer peptides and proteins. Nucleic Acids Res., 2015, 43(D1), D837-D843.
[http://dx.doi.org/10.1093/nar/gku892] [PMID: 25270878]
[9]
Tennessen, J.A. Molecular evolution of animal antimicrobial peptides: Widespread moderate positive selection. J. Evol. Biol., 2005, 18(6), 1387-1394.
[http://dx.doi.org/10.1111/j.1420-9101.2005.00925.x] [PMID: 16313451]
[10]
Bradshaw, J.P. Cationic antimicrobial peptides: Issues for potential clinical use. BioDrugs, 2003, 17(4), 233-240.
[http://dx.doi.org/10.2165/00063030-200317040-00002] [PMID: 12899640]
[11]
Waghu, F.H.; Gopi, L.; Barai, R.S.; Ramteke, P.; Nizami, B.; Idicula-Thomas, S. CAMP: Collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res., 2014, 42(D1), D1154-D1158.
[http://dx.doi.org/10.1093/nar/gkt1157] [PMID: 24265220]
[12]
Bessalle, R.; Haas, H.; Goria, A.; Shalit, I.; Fridkin, M. Augmentation of the antibacterial activity of magainin by positive-charge chain extension. Antimicrob. Agents Chemother., 1992, 36(2), 313-317.
[http://dx.doi.org/10.1128/AAC.36.2.313] [PMID: 1605597]
[13]
Tossi, A.; Scocchi, M.; Skerlavaj, B.; Gennaro, R. Identification and characterization of a primary antibacterial domain in CAP18, a lipopolysaccharide binding protein from rabbit leukocytes. FEBS Lett., 1994, 339(1-2), 108-112.
[http://dx.doi.org/10.1016/0014-5793(94)80395-1] [PMID: 8313956]
[14]
Gorr, S.U. Antimicrobial peptides of the oral cavity. Periodontol. 2000, 2009, 51(1), 152-180.
[http://dx.doi.org/10.1111/j.1600-0757.2009.00310.x] [PMID: 19878474]
[15]
Allen, J.; Pellois, J.P. Hydrophobicity is a key determinant in the activity of arginine-rich cell penetrating peptides. Sci. Rep., 2022, 12(1), 15981.
[http://dx.doi.org/10.1038/s41598-022-20425-y] [PMID: 36156072]
[16]
Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250.
[http://dx.doi.org/10.1038/nrmicro1098] [PMID: 15703760]
[17]
Tossi, A.; Sandri, L.; Giangaspero, A. Amphipathic, α-helical antimicrobial peptides. Biopolymers, 2000, 55(1), 4-30.
[http://dx.doi.org/10.1002/1097-0282(2000)55:1<4:AID-BIP30>3.0.CO;2-M] [PMID: 10931439]
[18]
Edwards, I.A.; Elliott, A.G.; Kavanagh, A.M.; Zuegg, J.; Blaskovich, M.A.T.; Cooper, M.A. Contribution of amphipathicity and hydrophobicity to the antimicrobial activity and cytotoxicity of β-hairpin peptides. ACS Infect. Dis., 2016, 2(6), 442-450.
[http://dx.doi.org/10.1021/acsinfecdis.6b00045] [PMID: 27331141]
[19]
Liu, X.; Cao, R.; Wang, S.; Jia, J.; Fei, H. Amphipathicity determines different cytotoxic mechanisms of lysine-or arginine-rich cationic hydrophobic peptides in cancer cells. J. Med. Chem., 2016, 59(11), 5238-5247.
[http://dx.doi.org/10.1021/acs.jmedchem.5b02016] [PMID: 27195657]
[20]
Uematsu, N.; Matsuzaki, K. Polar angle as a determinant of amphipathic α-helix-lipid interactions: A model peptide study. Biophys. J., 2000, 79(4), 2075-2083.
[http://dx.doi.org/10.1016/S0006-3495(00)76455-1] [PMID: 11023911]
[21]
Fernandez, D.I.; Gehman, J.D.; Separovic, F. Membrane interactions of antimicrobial peptides from Australian frogs. Biochim. Biophys. Acta Biomembr., 2009, 1788(8), 1630-1638.
[http://dx.doi.org/10.1016/j.bbamem.2008.10.007] [PMID: 19013126]
[22]
Shai, Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta Biomembr., 1999, 1462(1-2), 55-70.
[http://dx.doi.org/10.1016/S0005-2736(99)00200-X] [PMID: 10590302]
[23]
Utsugi, T.; Schroit, A.J.; Connor, J.; Bucana, C.D.; Fidler, I.J. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res., 1991, 51(11), 3062-3066.
[PMID: 2032247]
[24]
Cole, C.L.; Rushton, G.; Jayson, G.C.; Avizienyte, E. Ovarian cancer cell heparan sulfate 6-O-sulfotransferases regulate an angiogenic program induced by heparin-binding Epidermal Growth Factor (EGF)-like growth factor/EGF receptor signaling. J. Biol. Chem., 2014, 289(15), 10488-10501.
[http://dx.doi.org/10.1074/jbc.M113.534263] [PMID: 24563483]
[25]
Osinaga, E. Expression of cancer-associated simple mucin-type O-glycosylated antigens in parasites. IUBMB Life, 2007, 59(4), 269-273.
[http://dx.doi.org/10.1080/15216540601188553] [PMID: 17505964]
[26]
Hui, L.; Leung, K.; Chen, H.M. The combined effects of antibacterial peptide cecropin A and anti-cancer agents on leukemia cells. Anticancer Res., 2002, 22(5), 2811-2816.
[PMID: 12530001]
[27]
Cruciani, R.A.; Barker, J.L.; Zasloff, M.; Chen, H.C.; Colamonici, O. Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc. Natl. Acad. Sci. USA, 1991, 88(9), 3792-3796.
[http://dx.doi.org/10.1073/pnas.88.9.3792] [PMID: 1708887]
[28]
Westerhoff, H.V.; Hendler, R.W.; Zasloff, M. Juretić D. Interactions between a new class of eukaryotic antimicrobial agents and isolated rat liver mitochondria. Biochim. Biophys. Acta Bioenerg., 1989, 975(3), 361-369.
[http://dx.doi.org/10.1016/S0005-2728(89)80344-5] [PMID: 2758042]
[29]
Mai, J.C.; Mi, Z.; Kim, S.H.; Ng, B.; Robbins, P.D. A proapoptotic peptide for the treatment of solid tumors. Cancer Res., 2001, 61(21), 7709-7712.
[PMID: 11691780]
[30]
Ghavami, S.; Asoodeh, A.; Klonisch, T.; Halayko, A.J.; Kadkhoda, K.; Kroczak, T.J.; Gibson, S.B.; Booy, E.P.; Naderi-Manesh, H.; Los, M. Brevinin-2R1 semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway. J. Cell. Mol. Med., 2008, 12(3), 1005-1022.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00129.x] [PMID: 18494941]
[31]
Risso, A.; Braidot, E.; Sordano, M.C.; Vianello, A.; Macrì, F.; Skerlavaj, B.; Zanetti, M.; Gennaro, R.; Bernardi, P. BMAP-28, an antibiotic peptide of innate immunity, induces cell death through opening of the mitochondrial permeability transition pore. Mol. Cell. Biol., 2002, 22(6), 1926-1935.
[http://dx.doi.org/10.1128/MCB.22.6.1926-1935.2002] [PMID: 11865069]
[32]
Li, J.; Post, M.; Volk, R.; Gao, Y.; Li, M.; Metais, C.; Sato, K.; Tsai, J.; Aird, W.; Rosenberg, R.D.; Hampton, T.G.; Li, J.; Sellke, F.; Carmeliet, P.; Simons, M. PR39, a peptide regulator of angiogenesis. Nat. Med., 2000, 6(1), 49-55.
[http://dx.doi.org/10.1038/71527] [PMID: 10613823]
[33]
Hassan, M.; Kjos, M.; Nes, I.F.; Diep, D.B.; Lotfipour, F. Natural antimicrobial peptides from bacteria: Characteristics and potential applications to fight against antibiotic resistance. J. Appl. Microbiol., 2012, 113(4), 723-736.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05338.x] [PMID: 22583565]
[34]
Pfalzgraff, A.; Brandenburg, K.; Weindl, G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front. Pharmacol., 2018, 9(281), 281.
[http://dx.doi.org/10.3389/fphar.2018.00281] [PMID: 29643807]
[35]
Kang, S.J.; Park, S.J.; Mishig-Ochir, T.; Lee, B.J. Antimicrobial peptides: therapeutic potentials. Expert Rev. Anti Infect. Ther., 2014, 12(12), 1477-1486.
[http://dx.doi.org/10.1586/14787210.2014.976613] [PMID: 25371141]
[36]
Mahlapuu, M.; Björn, C.; Ekblom, J. Antimicrobial peptides as therapeutic agents: Opportunities and challenges. Crit. Rev. Biotechnol., 2020, 40(7), 978-992.
[http://dx.doi.org/10.1080/07388551.2020.1796576] [PMID: 32781848]
[37]
Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today, 2010, 15(1-2), 40-56.
[http://dx.doi.org/10.1016/j.drudis.2009.10.009] [PMID: 19879957]
[38]
Zhang, W.; Li, J.; Liu, L.W.; Wang, K.R.; Song, J.J.; Yan, J.X.; Li, Z.Y.; Zhang, B.Z.; Wang, R. A novel analog of antimicrobial peptide Polybia-MPI, with thioamide bond substitution, exhibits increased therapeutic efficacy against cancer and diminished toxicity in mice. Peptides, 2010, 31(10), 1832-1838.
[http://dx.doi.org/10.1016/j.peptides.2010.06.019] [PMID: 20600424]
[39]
Douglas, S.; Hoskin, D.W.; Hilchie, A.L. Assessment of antimicrobial (host defense) peptides as anti-cancer agents. Methods Mol. Biol., 2014, 1088, 159-170.
[40]
Ghodsi, Z.; Kalbassi, M.R.; Farzaneh, P.; Mobarez, A.M.; Beemelmanns, C.; Amiri Moghaddam, J. Immunomodulatory function of antimicrobial peptide EC-Hepcidin1 modulates the induction of inflammatory gene expression in primary cells of Caspian Trout (Salmo trutta caspius Kessler, 1877). Fish Shellfish Immunol., 2020, 104, 55-61.
[http://dx.doi.org/10.1016/j.fsi.2020.05.067] [PMID: 32473358]
[41]
Okumura, K.; Itoh, A.; Isogai, E.; Hirose, K.; Hosokawa, Y.; Abiko, Y.; Shibata, T.; Hirata, M.; Isogai, H. C-terminal domain of human CAP18 antimicrobial peptide induces apoptosis in oral squamous cell carcinoma SAS-H1 cells. Cancer Lett., 2004, 212(2), 185-194.
[http://dx.doi.org/10.1016/j.canlet.2004.04.006] [PMID: 15279899]
[42]
Arpornsuwan, T.; Sriwai, W.; Jaresitthikunchai, J.; Phaonakrop, N.; Sritanaudomchai, H.; Roytrakul, S. Anticancer activities of antimicrobial BmKn2 peptides against oral and colon cancer cells. Int. J. Pept. Res. Ther., 2014, 20(4), 501-509.
[http://dx.doi.org/10.1007/s10989-014-9417-9]
[43]
Pan, W.R.; Chen, Y.L.S.; Hsu, H.C.; Chen, W.J. Antimicrobial peptide GW-H1-induced apoptosis of human gastric cancer AGS cell line is enhanced by suppression of autophagy. Mol. Cell. Biochem., 2015, 400(1-2), 77-86.
[http://dx.doi.org/10.1007/s11010-014-2264-3] [PMID: 25380626]
[44]
Kuroda, K.; Fukuda, T.; Isogai, H.; Okumura, K.; Krstic-Demonacos, M.; Isogai, E. Antimicrobial peptide FF/CAP18 induces apoptotic cell death in HCT116 colon cancer cells via changes in the metabolic profile. Int. J. Oncol., 2015, 46(4), 1516-1526.
[http://dx.doi.org/10.3892/ijo.2015.2887] [PMID: 25672949]
[45]
Tsai, T.L.; Li, A.C.; Chen, Y.C.; Liao, Y.S.; Lin, T.H. Antimicrobial peptide m2163 or m2386 identified from Lactobacillus casei ATCC 334 can trigger apoptosis in the human colorectal cancer cell line SW480. Tumour Biol., 2015, 36(5), 3775-3789.
[http://dx.doi.org/10.1007/s13277-014-3018-2] [PMID: 25557887]
[46]
Kuroda, K.; Fukuda, T.; Yoneyama, H.; Katayama, M.; Isogai, H.; Okumura, K.; Isogai, E. Anti-proliferative effect of an analogue of the LL-37 peptide in the colon cancer derived cell line HCT116 p53+/+ and p53−/−. Oncol. Rep., 2012, 28(3), 829-834.
[http://dx.doi.org/10.3892/or.2012.1876] [PMID: 22736062]
[47]
Hayashi, M.; Kuroda, K.; Ihara, K.; Iwaya, T.; Isogai, E. Suppressive effect of an analog of the antimicrobial peptide of LL 37 on colon cancer cells via exosome encapsulated miRNAs. Int. J. Mol. Med., 2018, 42(6), 3009-3016.
[http://dx.doi.org/10.3892/ijmm.2018.3875] [PMID: 30221678]
[48]
Maijaroen, S.; Jangpromma, N.; Daduang, J.; Klaynongsruang, S. KT2 and RT2 modified antimicrobial peptides derived from Crocodylus siamensis Leucrocin I show activity against human colon cancer HCT-116 cells. Environ. Toxicol. Pharmacol., 2018, 62, 164-176.
[http://dx.doi.org/10.1016/j.etap.2018.07.007] [PMID: 30031283]
[49]
Liu, S.; Aweya, J.; Zheng, L.; Wang, F.; Zheng, Z.; Zhong, M.; Lun, J.; Zhang, Y. A Litopenaeus vannamei Hemocyanin-Derived Antimicrobial Peptide (Peptide B11) attenuates cancer cells’ proliferation. Molecules, 2018, 23(12), 3202.
[http://dx.doi.org/10.3390/molecules23123202] [PMID: 30563041]
[50]
Lehmann, J.; Retz, M.; Sidhu, S.S.; Suttmann, H.; Sell, M.; Paulsen, F.; Harder, J.; Unteregger, G.; Stöckle, M. Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur. Urol., 2006, 50(1), 141-147.
[http://dx.doi.org/10.1016/j.eururo.2005.12.043] [PMID: 16476519]
[51]
Suttmann, H.; Retz, M.; Paulsen, F.; Harder, J.; Zwergel, U.; Kamradt, J.; Wullich, B.; Unteregger, G.; Stöckle, M.; Lehmann, J. Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells. BMC Urol., 2008, 8(1), 5.
[http://dx.doi.org/10.1186/1471-2490-8-5] [PMID: 18315881]
[52]
Huang, H.N.; Rajanbabu, V.; Pan, C.Y.; Chan, Y.L.; Wu, C.J.; Chen, J.Y. A cancer vaccine based on the marine antimicrobial peptide pardaxin (GE33) for control of bladder-associated tumors. Biomaterials, 2013, 34(38), 10151-10159.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.041] [PMID: 24075482]
[53]
Meng, M.; Ning, J.; Yu, J.; Chen, D.; Meng, X.; Xu, J.; Zhang, J. Antitumor activity of recombinant antimicrobial peptide penaeidin-2 against kidney cancer cells. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2014, 34(4), 529-534.
[http://dx.doi.org/10.1007/s11596-014-1310-4] [PMID: 25135722]
[54]
Avand, A.; Akbari, V.; Shafizadegan, S. In vitro cytotoxic activity of a lactococcus lactis antimicrobial peptide against breast cancer cells. Iran. J. Biotechnol., 2018, 16(3), 213-220.
[http://dx.doi.org/10.21859/ijb.1867] [PMID: 31457026]
[55]
Wang, C.; Tian, L.L.; Li, S.; Li, H.B.; Zhou, Y.; Wang, H.; Yang, Q.Z.; Ma, L.J.; Shang, D.J. Rapid cytotoxicity of antimicrobial peptide tempoprin-1CEa in breast cancer cells through membrane destruction and intracellular calcium mechanism. PLoS One, 2013, 8(4), e60462.
[http://dx.doi.org/10.1371/journal.pone.0060462] [PMID: 23577112]
[56]
Wang, C.; Zhou, Y.; Li, S.; Li, H.; Tian, L.; Wang, H.; Shang, D. Anticancer mechanisms of temporin-1CEa, an amphipathic α-helical antimicrobial peptide, in Bcap-37 human breast cancer cells. Life Sci., 2013, 92(20-21), 1004-1014.
[http://dx.doi.org/10.1016/j.lfs.2013.03.016] [PMID: 23583573]
[57]
Hou, L.; Zhao, X.; Wang, P.; Ning, Q.; Meng, M.; Liu, C. Antitumor activity of antimicrobial peptides containing CisoDGRC in CD13 negative breast cancer cells. PLoS One, 2013, 8(1), e53491.
[http://dx.doi.org/10.1371/journal.pone.0053491] [PMID: 23326440]
[58]
Ting, C.H.; Chen, Y.C.; Wu, C.J.; Chen, J.Y. Targeting FOSB with a cationic antimicrobial peptide, TP4, for treatment of triple-negative breast cancer. Oncotarget, 2016, 7(26), 40329-40347.
[http://dx.doi.org/10.18632/oncotarget.9612] [PMID: 27248170]
[59]
Li, C.; Liu, H.; Yang, Y.; Xu, X.; Lv, T.; Zhang, H.; Liu, K.; Zhang, S.; Chen, Y. N-myristoylation of antimicrobial peptide CM4 enhances its anticancer activity by interacting with cell membrane and targeting mitochondria in breast cancer cells. Front. Pharmacol., 2018, 9(11), 1297.
[http://dx.doi.org/10.3389/fphar.2018.01297] [PMID: 30483133]
[60]
Theansungnoen, T.; Maijaroen, S.; Jangpromma, N.; Yaraksa, N.; Daduang, S.; Temsiripong, T.; Daduang, J.; Klaynongsruang, S. Cationic antimicrobial peptides derived from Crocodylus siamensis leukocyte extract, revealing anticancer activity and apoptotic induction on human cervical cancer cells. Protein J., 2016, 35(3), 202-211.
[http://dx.doi.org/10.1007/s10930-016-9662-1] [PMID: 27129462]
[61]
Kelly, G.J.; Kia, A.F.A.; Hassan, F.; O’Grady, S.; Morgan, M.P.; Creaven, B.S.; McClean, S.; Harmey, J.H.; Devocelle, M. Polymeric prodrug combination to exploit the therapeutic potential of antimicrobial peptides against cancer cells. Org. Biomol. Chem., 2016, 14(39), 9278-9286.
[http://dx.doi.org/10.1039/C6OB01815G] [PMID: 27722734]
[62]
Cha, H.R.; Lee, J.H.; Hensel, J.A.; Sawant, A.B.; Davis, B.H.; Lee, C.M.; Deshane, J.S.; Ponnazhagan, S. Prostate cancer-derived cathelicidin-related antimicrobial peptide facilitates macrophage differentiation and polarization of immature myeloid progenitors to protumorigenic macrophages. Prostate, 2016, 76(7), 624-636.
[http://dx.doi.org/10.1002/pros.23155] [PMID: 26856684]
[63]
Zhou, H.M.; Li, D.C.; Wang, Y.Y.; Zhu, H.; Su, Y.Q.; Mao, Y. Antimicrobial peptide Pc-pis: A new cancer cell killer. Fish Shellfish Immunol., 2018, 81, 368-373.
[http://dx.doi.org/10.1016/j.fsi.2018.07.026] [PMID: 30031065]
[64]
Banković J.; Andrä, J.; Todorović N.; Podolski-Renić A.; Milošević Z.; Miljković Đ Krause, J.; Ruždijić S.; Tanić N.; Pešić M. The elimination of P-glycoprotein over-expressing cancer cells by antimicrobial cationic peptide NK-2: The unique way of multi-drug resistance modulation. Exp. Cell Res., 2013, 319(7), 1013-1027.
[http://dx.doi.org/10.1016/j.yexcr.2012.12.017] [PMID: 23298945]
[65]
Wu, X.; Pan, J.; Wu, Y.; Xi, X.; Ma, C.; Wang, L.; Zhou, M.; Chen, T. PSN-PC: A Novel Antimicrobial and Anti-Biofilm peptide from the skin secretion of phyllomedusa-camba with cytotoxicity on human lung cancer cell. Molecules, 2017, 22(11), 1896.
[http://dx.doi.org/10.3390/molecules22111896] [PMID: 29112170]
[66]
Chen, X.; Zhang, L.; Ma, C.; Zhang, Y.; Xi, X.; Wang, L.; Zhou, M.; Burrows, J.F.; Chen, T. A novel antimicrobial peptide, Ranatuerin-2PLx, showing therapeutic potential in inhibiting proliferation of cancer cells. Biosci. Rep., 2018, 38(6), BSR20180710.
[http://dx.doi.org/10.1042/BSR20180710] [PMID: 30279210]
[67]
Du, Q.; Hou, X.; Ge, L.; Li, R.; Zhou, M.; Wang, H.; Wang, L.; Wei, M.; Chen, T.; Shaw, C. Cationicity-enhanced analogues of the antimicrobial peptides, AcrAP1 and AcrAP2, from the venom of the scorpion, Androctonus crassicauda, display potent growth modulation effects on human cancer cell lines. Int. J. Biol. Sci., 2014, 10(10), 1097-1107.
[http://dx.doi.org/10.7150/ijbs.9859] [PMID: 25332684]
[68]
Mechkarska, M.; Attoub, S.; Sulaiman, S.; Pantic, J.; Lukic, M.L.; Michael Conlon, J. Anti-cancer, immunoregulatory, and antimicrobial activities of the frog skin host-defense peptides pseudhymenochirin-1Pb and pseudhymenochirin-2Pa. Regul. Pept., 2014, 194-195, 69-76.
[http://dx.doi.org/10.1016/j.regpep.2014.11.001] [PMID: 25447194]
[69]
Wan, Y.; Ma, C.; Zhou, M.; Xi, X.; Li, L.; Wu, D.; Wang, L.; Lin, C.; Lopez, J.; Chen, T.; Shaw, C. Phylloseptin-PBa—a novel broad-spectrum antimicrobial peptide from the skin secretion of the Peruvian purple-sided leaf frog (Phyllomedusa baltea) which exhibits cancer cell cytotoxicity. Toxins, 2015, 7(12), 5182-5193.
[http://dx.doi.org/10.3390/toxins7124878] [PMID: 26633506]
[70]
Lu, J.; Chen, Z. Isolation, characterization and anti-cancer activity of SK84, a novel glycine-rich antimicrobial peptide from Drosophila virilis. Peptides, 2010, 31(1), 44-50.
[http://dx.doi.org/10.1016/j.peptides.2009.09.028] [PMID: 19799950]
[71]
Chang, W.T.; Pan, C.Y.; Rajanbabu, V.; Cheng, C.W.; Chen, J.Y. Tilapia (Oreochromis mossambicus) antimicrobial peptide, hepcidin 1-5, shows antitumor activity in cancer cells. Peptides, 2011, 32(2), 342-352.
[http://dx.doi.org/10.1016/j.peptides.2010.11.003] [PMID: 21093514]
[72]
Slaninová, J.; Mlsová, V.; Kroupová, H.; Alán, L. Tůmová, T.; Monincová, L.; Borovičková, L.; Fučík, V.; Čeřovský, V. Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells. Peptides, 2012, 33(1), 18-26.
[http://dx.doi.org/10.1016/j.peptides.2011.11.002] [PMID: 22100226]
[73]
Wu, S.P.; Huang, T.C.; Lin, C.C.; Hui, C.F.; Lin, C.H.; Chen, J.Y. Pardaxin, a fish antimicrobial peptide, exhibits antitumor activity toward murine fibrosarcoma in vitro and in vivo. Mar. Drugs, 2012, 10(12), 1852-1872.
[http://dx.doi.org/10.3390/md10081852] [PMID: 23015777]
[74]
Wang, C.; Li, H.B.; Li, S.; Tian, L.L.; Shang, D.J. Antitumor effects and cell selectivity of temporin-1CEa, an antimicrobial peptide from the skin secretions of the Chinese brown frog (Rana chensinensis). Biochimie, 2012, 94(2), 434-441.
[http://dx.doi.org/10.1016/j.biochi.2011.08.011] [PMID: 21871946]
[75]
Nakatsuji, T.; Gallo, R.L. Antimicrobial peptides: old molecules with new ideas. J. Invest. Dermatol., 2012, 132(3), 887-895.
[http://dx.doi.org/10.1038/jid.2011.387] [PMID: 22158560]
[76]
Gaspar, D.; Veiga, A.S.; Castanho, M.A.R.B. From antimicrobial to anticancer peptides. A review. Front. Microbiol., 2013, 4, 294-294.
[http://dx.doi.org/10.3389/fmicb.2013.00294] [PMID: 24101917]
[77]
Huang, Y.; Huang, J.; Chen, Y. Alpha-helical cationic antimicrobial peptides: Relationships of structure and function. Protein Cell, 2010, 1(2), 143-152.
[http://dx.doi.org/10.1007/s13238-010-0004-3] [PMID: 21203984]
[78]
Nooranian, S.; Oskuee, R.K.; Jalili, A. Antimicrobial peptides, a pool for novel cell penetrating peptides development and vice versa. Int. J. Pept. Res. Ther., 2021, 27(2), 1205-1220.
[http://dx.doi.org/10.1007/s10989-021-10161-8]
[79]
Deslouches, B.; Di, Y.P. Antimicrobial peptides with selective antitumor mechanisms: Prospect for anticancer applications. Oncotarget, 2017, 8(28), 46635-46651.
[http://dx.doi.org/10.18632/oncotarget.16743] [PMID: 28422728]
[80]
Mader, J.S.; Hoskin, D.W. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin. Investig. Drugs, 2006, 15(8), 933-946.
[http://dx.doi.org/10.1517/13543784.15.8.933] [PMID: 16859395]
[81]
Kumar, P.; Kizhakkedathu, J.; Straus, S. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), 4.
[http://dx.doi.org/10.3390/biom8010004] [PMID: 29351202]
[82]
Rusiecka, I. Gągało, I.; Kocić I. Cell-penetrating peptides improve pharmacokinetics and pharmacodynamics of anticancer drugs. Tissue Barriers, 2022, 10(1), 1965418.
[http://dx.doi.org/10.1080/21688370.2021.1965418] [PMID: 34402743]
[83]
Jafari, A.; Babajani, A.; Sarrami Forooshani, R.; Yazdani, M.; Rezaei-Tavirani, M. Clinical applications and anticancer effects of antimicrobial peptides: From bench to bedside. Front. Oncol., 2022, 12, 819563.
[http://dx.doi.org/10.3389/fonc.2022.819563] [PMID: 35280755]
[84]
Zhong, C.; Zhang, L.; Yu, L.; Huang, J.; Huang, S.; Yao, Y. A review for antimicrobial peptides with anticancer properties: Re-purposing of potential anticancer agents. BIO Integration, 2021, 1(4), 156-167.
[http://dx.doi.org/10.15212/bioi-2020-0013]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy