Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

二氢丹参酮I通过Hedgehog/ Gli信号通路抑制胰腺癌进展

卷 23, 期 9, 2023

发表于: 09 May, 2023

页: [731 - 741] 页: 11

弟呕挨: 10.2174/1568009623666230328123915

价格: $65

conference banner
摘要

介绍:胰腺癌是高度致命的,其发病率在世界范围内呈上升趋势。其预后不良是由于缺乏有效的诊断和治疗策略。二氢丹参酮I (Dihydrotanshinone I, DHT)是一种来自丹参的菲醌类脂溶性化合物,通过抑制细胞增殖、促进细胞凋亡、诱导细胞分化等途径发挥抗肿瘤作用。然而,它对胰腺癌的影响尚不清楚。 方法:采用实时细胞分析(RTCA)、集落形成实验和CCK-8检测DHT在肿瘤细胞生长中的作用。采用Transwell和迁移试验评估DHT对肿瘤细胞侵袭和迁移的影响。western blot检测肿瘤细胞中促凋亡因子和转移因子的表达。流式细胞术观察肿瘤细胞凋亡率。通过裸鼠肿瘤移植研究DHT在体内的抗癌作用。 结果:我们的分析表明DHT通过Hedgehog/Gli信号传导抑制Patu8988和PANC-1细胞的上皮-间质转化(EMT)、侵袭性、增殖和迁移能力。此外,它通过caspases/BCL2/BAX信号通路驱动细胞凋亡。裸鼠肿瘤移植实验表明DHT在体内具有抗癌作用。 结论:我们的数据表明DHT可以有效抑制胰腺癌细胞的增殖和转移,并通过Hedgehog/Gli信号诱导细胞凋亡。据报道,这些影响与剂量和时间有关。因此,二氢睾酮可以作为胰腺癌的潜在治疗方法。

关键词: 二氢丹参酮I,胰腺癌,Hedgehog/Gli信号通路,细胞凋亡,细胞增殖,上皮间质转化。

图形摘要
[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Lucas, A.L.; Malvezzi, M.; Carioli, G.; Negri, E.; La Vecchia, C.; Boffetta, P.; Bosetti, C. Global trends in pancreatic cancer mortality from 1980 through 2013 and predictions for 2017. Clin. Gastroenterol. Hepatol., 2016, 14(10), 1452-1462.
[http://dx.doi.org/10.1016/j.cgh.2016.05.034] [PMID: 27266982]
[3]
Yang, Y.; Bai, X.; Bian, D.; Cai, S.; Chen, R.; Cao, F.; Dai, M.; Fang, C.; Fu, D.; Ge, C.; Guo, X.; Hao, C.; Hao, J.; Huang, H.; Jian, Z.; Jin, G.; Li, F.; Li, H.; Li, S.; Li, W.; Li, Y.; Li, H.; Liang, T.; Liu, X.; Lou, W.; Miao, Y.; Mou, Y.; Peng, C.; Qin, R.; Shao, C.; Sun, B.; Tan, G.; Tian, X.; Wang, H.; Wang, L.; Wang, W.; Wang, W.; Wei, J.; Wu, H.; Wu, W.; Wu, Z.; Xu, J.; Yan, C.; Yin, X.; Yu, X.; Yuan, C.; Zhang, T.; Zhang, J.; Zhou, J.; Zhao, Y. Guidelines for the diagnosis and treatment of pancreatic cancer in China (2021). J. Pancreatol., 2021, 4(2), 49-66.
[http://dx.doi.org/10.1097/JP9.0000000000000072]
[4]
Vincent, A.; Herman, J.; Schulick, R.; Hruban, R.H.; Goggins, M. Pancreatic cancer. Lancet, 2011, 378(9791), 607-620.
[http://dx.doi.org/10.1016/S0140-6736(10)62307-0] [PMID: 21620466]
[5]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[6]
McGuigan, A.; Kelly, P.; Turkington, R.C.; Jones, C.; Coleman, H.G.; McCain, R.S. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol., 2018, 24(43), 4846-4861.
[http://dx.doi.org/10.3748/wjg.v24.i43.4846] [PMID: 30487695]
[7]
Xu, J.; Wei, K.; Zhang, G.; Lei, L.; Yang, D.; Wang, W.; Han, Q.; Xia, Y.; Bi, Y.; Yang, M.; Li, M. Ethnopharmacology, phytochemistry, and pharmacology of Chinese Salvia species: A review. J. Ethnopharmacol., 2018, 225, 18-30.
[http://dx.doi.org/10.1016/j.jep.2018.06.029] [PMID: 29935346]
[8]
Li, X.; Yang, J.H.; Jin, Y.; Jin, F.; Kim, D.Y.; Chang, J.H.; Kim, J.A.; Son, J.K.; Moon, T.C.; Son, K.H.; Chang, H.W. 15,16-Dihydrotanshinone I suppresses IgE-Ag stimulated mouse bone marrow-derived mast cell activation by inhibiting Syk kinase. J. Ethnopharmacol., 2015, 169, 138-144.
[http://dx.doi.org/10.1016/j.jep.2015.04.022] [PMID: 25917838]
[9]
Yue, H.; Yang, Z.; Ou, Y.; Liang, S.; Deng, W.; Chen, H.; Zhang, C.; Hua, L.; Hu, W.; Sun, P. Tanshinones inhibit NLRP3 inflammasome activation by alleviating mitochondrial damage to protect against septic and gouty inflammation. Int. Immunopharmacol., 2021, 97, 107819.
[http://dx.doi.org/10.1016/j.intimp.2021.107819] [PMID: 34098486]
[10]
Han, J.Y.; Fan, J.Y.; Horie, Y.; Miura, S.; Cui, D.H.; Ishii, H.; Hibi, T.; Tsuneki, H.; Kimura, I. Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion. Pharmacol. Ther., 2008, 117(2), 280-295.
[http://dx.doi.org/10.1016/j.pharmthera.2007.09.008] [PMID: 18048101]
[11]
Jeong, H.; Koh, A.; Lee, J.; Park, D.; Lee, J.O.; Lee, M.N.; Jo, K.J.; Tran, H.N.K.; Kim, E.; Min, B.S.; Kim, H.S.; Berggren, P.O.; Ryu, S.H. Inhibition of C1-Ten PTPase activity reduces insulin resistance through IRS-1 and AMPK pathways. Sci. Rep., 2017, 7(1), 17777.
[http://dx.doi.org/10.1038/s41598-017-18081-8] [PMID: 29259227]
[12]
Sung, B.; Chung, H.S.; Kim, M.; Kang, Y.J.; Kim, D.H.; Hwang, S.Y.; Kim, M.J.; Kim, C.M.; Chung, H.Y.; Kim, N.D. Cytotoxic effects of solvent-extracted active components of Salvia miltiorrhiza Bunge on human cancer cell lines. Exp. Ther. Med., 2015, 9(4), 1421-1428.
[http://dx.doi.org/10.3892/etm.2015.2252] [PMID: 25780445]
[13]
Lee, D.S.; Lee, S.H. Biological activity of dihydrotanshinone I: Effect on apoptosis. J. Biosci. Bioeng., 2000, 89(3), 292-293.
[http://dx.doi.org/10.1016/S1389-1723(00)88838-6] [PMID: 16232748]
[14]
Tsai, S.L.; Suk, F.M.; Wang, C.I.; Liu, D.Z.; Hou, W.C.; Lin, P.J.; Hung, L.F.; Liang, Y.C. Anti-tumor potential of 15,16-dihydrotanshinone I against breast adenocarcinoma through inducing G1 arrest and apoptosis. Biochem. Pharmacol., 2007, 74(11), 1575-1586.
[http://dx.doi.org/10.1016/j.bcp.2007.08.009] [PMID: 17869226]
[15]
Hu, X.; Jiao, F.; Zhang, L.; Jiang, Y. Dihydrotanshinone inhibits hepatocellular carcinoma by suppressing the JAK2/STAT3 pathway. Front. Pharmacol., 2021, 12, 654986.
[http://dx.doi.org/10.3389/fphar.2021.654986] [PMID: 33995073]
[16]
Wang, X.; Xu, X.; Jiang, G.; Zhang, C.; Liu, L.; Kang, J.; Wang, J.; Owusu, L.; Zhou, L.; Zhang, L.; Li, W. Dihydrotanshinone I inhibits ovarian cancer cell proliferation and migration by transcriptional repression of PIK3CA gene. J. Cell. Mol. Med., 2020, 24(19), 11177-11187.
[http://dx.doi.org/10.1111/jcmm.15660] [PMID: 32860347]
[17]
Wang, L.; Hu, T.; Shen, J.; Zhang, L.; Chan, R.L.Y.; Lu, L.; Li, M.; Cho, C.H.; Wu, W.K.K. Dihydrotanshinone I induced apoptosis and autophagy through caspase dependent pathway in colon cancer. Phytomedicine, 2015, 22(12), 1079-1087.
[http://dx.doi.org/10.1016/j.phymed.2015.08.009] [PMID: 26547530]
[18]
Chuang, M.T.; Ho, F.M.; Wu, C.C.; Zhuang, S.Y.; Lin, S.Y.; Suk, F.M.; Liang, Y.C. 15,16-dihydrotanshinone I, a compound of Salvia miltiorrhiza bunge, induces apoptosis through inducing endoplasmic reticular stress in human prostate carcinoma cells. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-9.
[http://dx.doi.org/10.1155/2011/865435] [PMID: 21274285]
[19]
Tan, T.; Chen, J.; Hu, Y.; Wang, N.; Chen, Y.; Yu, T.; Lin, D.; Yang, S.; Luo, J.; Luo, X. Dihydrotanshinone I inhibits the growth of osteosarcoma through the Wnt/β-catenin signaling pathway. OncoTargets Ther., 2019, 12, 5111-5122.
[http://dx.doi.org/10.2147/OTT.S204574] [PMID: 31308689]
[20]
Guo, X.; Wang, X.F. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res., 2009, 19(1), 71-88.
[http://dx.doi.org/10.1038/cr.2008.302] [PMID: 19002158]
[21]
Arlt, A.; Schäfer, H.; Kalthoff, H. The ‘N-factors’ in pancreatic cancer: Functional relevance of NF-κB, NFAT and Nrf2 in pancreatic cancer. Oncogenesis, 2012, 1(11), e35.
[http://dx.doi.org/10.1038/oncsis.2012.35] [PMID: 23552468]
[22]
Georgiadou, D.; Sergentanis, T.N.; Sakellariou, S.; Vlachodimitropoulos, D.; Psaltopoulou, T.; Lazaris, A.C.; Gounaris, A.; Zografos, G.C. Prognostic role of sex steroid receptors in pancreatic adenocarcinoma. Pathol. Res. Pract., 2016, 212(1), 38-43.
[http://dx.doi.org/10.1016/j.prp.2015.11.007] [PMID: 26652605]
[23]
Ramacciato, G.; Nigri, G.; Petrucciani, N.; Pinna, A.D.; Ravaioli, M.; Jovine, E.; Minni, F.; Grazi, G.L.; Chirletti, P.; Tisone, G.; Napoli, N.; Boggi, U. Pancreatectomy with mesenteric and portal vein resection for borderline resectable pancreatic cancer: Multicenter study of 406 patients. Ann. Surg. Oncol., 2016, 23(6), 2028-2037.
[http://dx.doi.org/10.1245/s10434-016-5123-5] [PMID: 26893222]
[24]
Dhir, M.; Zenati, M.S.; Hamad, A.; Singhi, A.D.; Bahary, N.; Hogg, M.E.; Zeh, H.J., III; Zureikat, A.H. Folfirinox versus gemcitabine/nab-paclitaxel for neoadjuvant treatment of resectable and borderline resectable pancreatic head adenocarcinoma. Ann. Surg. Oncol., 2018, 25(7), 1896-1903.
[http://dx.doi.org/10.1245/s10434-018-6512-8] [PMID: 29761331]
[25]
Macedo, F.I.; Ryon, E.; Maithel, S.K.; Lee, R.M.; Kooby, D.A.; Fields, R.C.; Hawkins, W.G.; Williams, G.; Maduekwe, U.; Kim, H.J.; Ahmad, S.A.; Patel, S.H.; Abbott, D.E.; Schwartz, P.; Weber, S.M.; Scoggins, C.R.; Martin, R.C.G.; Dudeja, V.; Franceschi, D.; Livingstone, A.S.; Merchant, N.B. Survival outcomes associated with clinical and pathological response following neoadjuvant folfirinox or gemcitabine/nab-paclitaxel chemotherapy in resected pancreatic cancer. Ann. Surg., 2019, 270(3), 400-413.
[http://dx.doi.org/10.1097/SLA.0000000000003468] [PMID: 31283563]
[26]
Liu, J.; Wang, S.; Zhang, Y.; Fan, H.; Lin, H. Traditional chinese medicine and cancer: History, present situation, and development. Thorac. Cancer, 2015, 6(5), 561-569.
[http://dx.doi.org/10.1111/1759-7714.12270] [PMID: 26445604]
[27]
Liu, S.H.; Chen, P.S.; Huang, C.C.; Hung, Y.T.; Lee, M.Y.; Lin, W.H.; Lin, Y.C.; Lee, A.Y.L. Unlocking the mystery of the therapeutic effects of chinese medicine on cancer. Front. Pharmacol., 2021, 11, 601785.
[http://dx.doi.org/10.3389/fphar.2020.601785] [PMID: 33519464]
[28]
Tang, C.; Zhao, C.C.; Yi, H.; Geng, Z.J.; Wu, X.Y.; Zhang, Y.; Liu, Y.; Fan, G. Traditional tibetan medicine in cancer therapy by targeting apoptosis pathways. Front. Pharmacol., 2020, 11, 976.
[http://dx.doi.org/10.3389/fphar.2020.00976] [PMID: 32774302]
[29]
Solano-Gálvez, S.; Abadi-Chiriti, J.; Gutiérrez-Velez, L.; Rodríguez-Puente, E.; Konstat-Korzenny, E.; Álvarez-Hernández, D.A.; Franyuti-Kelly, G.; Gutiérrez-Kobeh, L.; Vázquez-López, R. Apoptosis: Activation and inhibition in health and disease. Med. Sci., 2018, 6(3), 54.
[http://dx.doi.org/10.3390/medsci6030054] [PMID: 29973578]
[30]
Peng Li, D.N.; Xiaodong, W. Mitochondrial activation of apoptosis. Cell, 2004, 2004(2 Suppl(116)), S57-S59.
[31]
Cain, K.; Bratton, S.B.; Cohen, G.M. The Apaf-1 apoptosome: A large caspase-activating complex. Biochimie, 2002, 84(2-3), 203-214.
[http://dx.doi.org/10.1016/S0300-9084(02)01376-7]
[32]
Slapak, E.J.; Duitman, J.; Tekin, C.; Bijlsma, M.F.; Spek, C.A. Matrix metalloproteases in pancreatic ductal adenocarcinoma: Key drivers of disease progression? Biology, 2020, 9(4), 80.
[http://dx.doi.org/10.3390/biology9040080] [PMID: 32325664]
[33]
Rodriguez-Aznar, E.; Wiesmüller, L.; Sainz, B., Jr; Hermann, P.C. EMT and stemness—key players in pancreatic cancer stem cells. Cancers, 2019, 11(8), 1136.
[http://dx.doi.org/10.3390/cancers11081136] [PMID: 31398893]
[34]
Puisieux, A.; Brabletz, T.; Caramel, J. Oncogenic roles of EMTinducing transcription factors. Nat. Cell Biol., 2014, 16(6), 488-494.
[http://dx.doi.org/10.1038/ncb2976] [PMID: 24875735]
[35]
Ng, Y.H.; Zhu, H.; Leung, P.C.K. Twist modulates human trophoblastic cell invasion via regulation of N-cadherin. Endocrinology, 2012, 153(2), 925-936.
[http://dx.doi.org/10.1210/en.2011-1488] [PMID: 22166980]
[36]
Yang, J.; Mani, S.A.; Donaher, J.L.; Ramaswamy, S.; Itzykson, R.A.; Come, C.; Savagner, P.; Gitelman, I.; Richardson, A.; Weinberg, R.A. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 2004, 117(7), 927-939.
[http://dx.doi.org/10.1016/j.cell.2004.06.006] [PMID: 15210113]
[37]
Rhim, A.D.; Mirek, E.T.; Aiello, N.M.; Maitra, A.; Bailey, J.M.; McAllister, F.; Reichert, M.; Beatty, G.L.; Rustgi, A.K.; Vonderheide, R.H.; Leach, S.D.; Stanger, B.Z. EMT and dissemination precede pancreatic tumor formation. Cell, 2012, 148(1-2), 349-361.
[http://dx.doi.org/10.1016/j.cell.2011.11.025] [PMID: 22265420]
[38]
Gulino, A.; Ferretti, E.; De Smaele, E. Hedgehog signalling in colon cancer and stem cells. EMBO Mol. Med., 2009, 1(6-7), 300-302.
[http://dx.doi.org/10.1002/emmm.200900042] [PMID: 20049733]
[39]
Briscoe, J.; Thérond, P.P. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol., 2013, 14(7), 416-429.
[http://dx.doi.org/10.1038/nrm3598] [PMID: 23719536]
[40]
Bai, Y.; Bai, Y.; Dong, J.; Li, Q.; Jin, Y.; Chen, B.; Zhou, M. Hedgehog signaling in pancreatic fibrosis and cancer. Medicine, 2016, 95(10), e2996.
[http://dx.doi.org/10.1097/MD.0000000000002996] [PMID: 26962810]
[41]
Gorojankina, T. Hedgehog signaling pathway: A novel model and molecular mechanisms of signal transduction. Cell. Mol. Life Sci., 2016, 73(7), 1317-1332.
[http://dx.doi.org/10.1007/s00018-015-2127-4] [PMID: 26762301]
[42]
Ingham, P.W. Hedgehog signaling. Cold Spring Harb. Perspect. Biol., 2012, 4(6), a011221.
[http://dx.doi.org/10.1101/cshperspect.a011221] [PMID: 22661636]
[43]
Fendrich, V.; Esni, F.; Garay, M.V.R.; Feldmann, G.; Habbe, N.; Jensen, J.N.; Dor, Y.; Stoffers, D.; Jensen, J.; Leach, S.D.; Maitra, A. Hedgehog signaling is required for effective regeneration of exocrine pancreas. Gastroenterology, 2008, 135(2), 621-631.e8.
[http://dx.doi.org/10.1053/j.gastro.2008.04.011] [PMID: 18515092]
[44]
Stecca, B.; Ruiz i Altaba, A. Context-dependent regulation of the GLI code in cancer by hedgehog and non-hedgehog signals. J. Mol. Cell Biol., 2010, 2(2), 84-95.
[http://dx.doi.org/10.1093/jmcb/mjp052] [PMID: 20083481]
[45]
Ding, Q.; Motoyama, J.; Gasca, S.; Mo, R.; Sasaki, H.; Rossant, J.; Hui, C.C. Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development, 1998, 125(14), 2533-2543.
[http://dx.doi.org/10.1242/dev.125.14.2533] [PMID: 9636069]
[46]
Dosch, J.S.; Pasca di Magliano, M.; Simeone, D.M. Pancreatic cancer and hedgehog pathway signaling: New insights. Pancreatology, 2010, 10(2-3), 151-157.
[http://dx.doi.org/10.1159/000225923] [PMID: 20453550]
[47]
Lee, J.J.; Perera, R.M.; Wang, H.; Wu, D.C.; Liu, X.S.; Han, S.; Fitamant, J.; Jones, P.D.; Ghanta, K.S.; Kawano, S.; Nagle, J.M.; Deshpande, V.; Boucher, Y.; Kato, T.; Chen, J.K.; Willmann, J.K.; Bardeesy, N.; Beachy, P.A. Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc. Natl. Acad. Sci., 2014, 111(30), E3091-E3100.
[http://dx.doi.org/10.1073/pnas.1411679111] [PMID: 25024225]
[48]
Nakashima, H.; Nakamura, M.; Yamaguchi, H.; Yamanaka, N.; Akiyoshi, T.; Koga, K.; Yamaguchi, K.; Tsuneyoshi, M.; Tanaka, M.; Katano, M. Nuclear factor-kappaB contributes to hedgehog signaling pathway activation through sonic hedgehog induction in pancreatic cancer. Cancer Res., 2006, 66(14), 7041-7049.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4588] [PMID: 16849549]
[49]
Yamasaki, A.; Kameda, C.; Xu, R.; Tanaka, H.; Tasaka, T.; Chikazawa, N.; Suzuki, H.; Morisaki, T.; Kubo, M.; Onishi, H.; Tanaka, M.; Katano, M. Nuclear factor kappaB-activated monocytes contribute to pancreatic cancer progression through the production of Shh. Cancer Immunol. Immunother., 2010, 59(5), 675-686.
[http://dx.doi.org/10.1007/s00262-009-0783-7] [PMID: 19862523]
[50]
Feldmann, G.; Dhara, S.; Fendrich, V.; Bedja, D.; Beaty, R.; Mullendore, M.; Karikari, C.; Alvarez, H.; Iacobuzio-Donahue, C.; Jimeno, A.; Gabrielson, K.L.; Matsui, W.; Maitra, A. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: A new paradigm for combination therapy in solid cancers. Cancer Res., 2007, 67(5), 2187-2196.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3281] [PMID: 17332349]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy