Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

A Novel Phytotherapy Application: Preparation, Characterization, Antioxidant Activities and Determination of Anti-inflammatory Effects by In vivo HET-CAM Assay of Chitosan-based DDSs Containing Endemic Helichrysum pamphylicum P.H. Davis & Kupicha Methanolic Extract

Author(s): Nurlan Ismailovi, H. Tuba Kıyan and A. Alper Öztürk*

Volume 21, Issue 6, 2024

Published on: 04 September, 2023

Page: [901 - 916] Pages: 16

DOI: 10.2174/1567201820666230328122504

open access plus

Abstract

Background: Numerous pharmaceutical applications for chitosan, a polysaccharide made from the shells of crustaceans by deacetylating chitin that occurs naturally, are currently being researched. Chitosan, a natural polymer, is successfully used to prepare many drug-carrier systems, such as gel, film, nanoparticle, and wound dressing.

Objective: Preparing chitosan gels without external crosslinkers is less toxic and environmentally friendly.

Methods: Chitosan-based gels containing Helichrysum pamphylicum P.H. Davis & Kupicha methanolic extract (HP) were produced successfully.

Results: The F9-HP coded gel prepared with high molecular weight chitosan was chosen as the optimum formulation in terms of pH and rheological properties. The amount of HP was found to be 98.83% ± 0.19 in the F9-HP coded formulation. The HP release from the F9-HP coded formula was determined to be slower and 9 hours prolonged release compared to pure HP. It was determined that HP release from F9-HP coded formulation with the DDSolver program was by anomalous (non-fickian) diffusion mechanism. The F9-HP coded formulation significantly showed DPPH free radical scavenger, ABTS•+ cation decolorizing and metal chelating antioxidant activity while weakly reducing antioxidant potential. According to the HET-CAM scores, strong anti-inflammatory activity was obtained by the F9-HP coded gel at a dose of 20 μg.embryo-1 (p<0.05 compared with SDS).

Conclusion: In conclusion, it can be said that chitosan-based gels containing HP, which can be used in both antioxidant and anti-inflammatory treatment, were successfully formulated and characterized.

Keywords: Antioxidant, chitosan gel, Helichrysum pamphylicum P.H. Davis & Kupicha, HET-CAM, polysaccharide, F9-HP.

« Previous
Graphical Abstract
[1]
Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. Herb. Med. Pharmacol., 2018, 7(1), 1-7.
[http://dx.doi.org/10.15171/jhp.2018.01]
[2]
Albayrak, S.; Aksoy, A.; Sagdic, O.; Hamzaoglu, E. Compositions, antioxidant and antimicrobial activities of Helichrysum (Asteraceae) species collected from Turkey. Food Chem., 2010, 119(1), 114-122.
[http://dx.doi.org/10.1016/j.foodchem.2009.06.003]
[3]
Pietta, P.G. Flavonoids as Antioxidants. J. Nat. Prod., 2000, 63(7), 1035-1042.
[http://dx.doi.org/10.1021/np9904509] [PMID: 10924197]
[4]
Akaberi, M.; Sahebkar, A.; Azizi, N.; Emami, S.A. Everlasting flowers: Phytochemistry and pharmacology of the genus Helichrysum. Ind. Crops Prod., 2019, 138, 111471.
[http://dx.doi.org/10.1016/j.indcrop.2019.111471]
[5]
Erolu, E.H.; Hamzaolu, E.; Aksoy, A.; Budak, Ü.; Özkul, Y. In vitro genotoxic effects of four Helichrysum species in human lymphocytes cultures. Biol. Res., 2010, 43(2), 177-182.
[http://dx.doi.org/10.4067/S0716-97602010000200005] [PMID: 21031262]
[6]
Goldansaz, S.M.; Mahboubi, A.; Yazdi-nejad, A.; Jahanbakhshi, M.; Mojab, F. Investigation on total phenolic content, antibacterial, and antioxidant activity of ethanolic extract of Helichrysum leucocephalum Boiss. America J. Essen. Oils Nat. Pro, 2018, 6, 20-24.
[7]
Topcu, Z.; Ozturk, B.; Kucukoglu, O.; Kilinc, E. Flavonoids in Helichrysum pamphylicum inhibit mammalian type I DNA topoisomerase. Z. Naturforsch. C J. Biosci., 2008, 63(1-2), 69-74.
[http://dx.doi.org/10.1515/znc-2008-1-213] [PMID: 18386491]
[8]
Albayrak, S.; Aksoy, A. Sağdiç, O.; Budak, Ü. Phenolic compounds and antioxidant and antimicrobial properties of Helichrysum species collected from eastern Anatolia, Turkey. Turk. J. Biol., 2010, 34, 463-473.
[http://dx.doi.org/10.3906/biy-0901-4]
[9]
Ası̇l, H.; Taşgin, S. Bioactive properties of red immortal flower (Helichrysum sanguineum (L.) kostel and yellow immortal flower (Helichrysum stoeshas spp. barallieri) native to Hatay). Türk Doğa ve Fen Dergisi 2021, 10(2), 48-52.
[http://dx.doi.org/10.46810/tdfd.851177]
[10]
Antunes Viegas, D.; Palmeira-de-Oliveira, A.; Salgueiro, L.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, R. Helichrysum italicum: From traditional use to scientific data. J. Ethnopharmacol., 2014, 151(1), 54-65.
[http://dx.doi.org/10.1016/j.jep.2013.11.005] [PMID: 24239849]
[11]
Nkemzi, A.Q.; Ekpo, O.E.; Oguntibeju, O.O. Reproductive, antioxidant, anti-inflammatory, antimicrobial, protective and antidiabetic activities of Helichrysum Mill. species. Plant Sci. Today, 2022, 9(4), 794-801.
[http://dx.doi.org/10.14719/pst.1484]
[12]
Aslan, M. Katırcıoğlu, H.; Orhan, İ.; Atıcı T.; Sezik, E. Antibacterial potential of the capitula of eight anatolian Helichrysum species. Turkish J. Pharm. Sci, 2007, 4, 71-77.
[13]
Kutluk, I.; Aslan, M.; Orhan, I.E.; Özçelik, B. Antibacterial, antifungal and antiviral bioactivities of selected Helichrysum species. S. Afr. J. Bot., 2018, 119, 252-257.
[http://dx.doi.org/10.1016/j.sajb.2018.09.009]
[14]
Albayrak, S.; Sagdic, O.; Aksoy, A.; Hamzaoglu, E. Antimicrobial and antioxidant activities of Helichrysum species from the Mediterranean region of Turkey. Asian J. Chem., 2008, 20(4), 3143-3152.
[15]
Kou, S.G.; Peters, L.; Mucalo, M. Chitosan: A review of molecular structure, bioactivities and interactions with the human body and micro-organisms. Carbohydr. Polym., 2022, 282, 119132.
[http://dx.doi.org/10.1016/j.carbpol.2022.119132] [PMID: 35123764]
[16]
Yurtdaş Kirimlioğlu, G.; Öztürk, A.A. Levocetirizine dihydrochloride-loaded chitosan nanoparticles: formulation and in vitro evaluation. Turkish Journal of Pharmaceutical Sciences, 2020, 17(1), 27-35.
[http://dx.doi.org/10.4274/tjps.galenos.2018.34392] [PMID: 32454757]
[17]
Hamedi, H.; Moradi, S.; Hudson, S.M.; Tonelli, A.E.; King, M.W. Chitosan based bioadhesives for biomedical applications: A review. Carbohydr. Polym., 2022, 282, 119100.
[http://dx.doi.org/10.1016/j.carbpol.2022.119100] [PMID: 35123739]
[18]
Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Heras Caballero, A.; Acosta, N. Chitosan: An overview of its properties and applications. Polymers, 2021, 13(19), 3256.
[http://dx.doi.org/10.3390/polym13193256] [PMID: 34641071]
[19]
Azuma, K.; Osaki, T.; Minami, S.; Okamoto, Y. Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J. Funct. Biomater., 2015, 6(1), 33-49.
[http://dx.doi.org/10.3390/jfb6010033] [PMID: 25594943]
[20]
Öztürk, A.A. Kıyan, H.T. Treatment of oxidative stress-induced pain and inflammation with dexketoprofen trometamol loaded different molecular weight chitosan nanoparticles: Formulation, characterization and anti-inflammatory activity by using in vivo HET-CAM assay. Microvasc. Res., 2020, 128, 103961.
[http://dx.doi.org/10.1016/j.mvr.2019.103961] [PMID: 31758946]
[21]
Shih, P.Y.; Liao, Y.T.; Tseng, Y.K.; Deng, F.S.; Lin, C.H. A potential antifungal effect of chitosan against Candida albicans is mediated via the inhibition of SAGA complex component expression and the subsequent alteration of cell surface integrity. Front. Microbiol., 2019, 10, 602.
[http://dx.doi.org/10.3389/fmicb.2019.00602] [PMID: 30972050]
[22]
Sarkar, S.; Das, D.; Dutta, P.; Kalita, J.; Wann, S.B.; Manna, P. Chitosan: A promising therapeutic agent and effective drug delivery system in managing diabetes mellitus. Carbohydr. Polym., 2020, 247, 116594.
[http://dx.doi.org/10.1016/j.carbpol.2020.116594] [PMID: 32829787]
[23]
Ke, C.L.; Deng, F.S.; Chuang, C.Y.; Lin, C.H. Antimicrobial actions and applications of chitosan. Polymers, 2021, 13(6), 904.
[http://dx.doi.org/10.3390/polym13060904] [PMID: 33804268]
[24]
Amirani, E.; Hallajzadeh, J.; Asemi, Z.; Mansournia, M.A.; Yousefi, B. Effects of chitosan and oligochitosans on the phosphatidylinositol 3-kinase-AKT pathway in cancer therapy. Int. J. Biol. Macromol., 2020, 164, 456-467.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.137] [PMID: 32693135]
[25]
Sizílio, R.H.; Galvão, J.G.; Trindade, G.G.G.; Pina, L.T.S.; Andrade, L.N.; Gonsalves, J.K.M.C.; Lira, A.A.M.; Chaud, M.V.; Alves, T.F.R.; Arguelho, M.L.P.M.; Nunes, R.S. Chitosan/pvp-based mucoadhesive membranes as a promising delivery system of betamethasone-17-valerate for aphthous stomatitis. Carbohydr. Polym., 2018, 190, 339-345.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.079] [PMID: 29628256]
[26]
Ueno, H.; Mori, T.; Fujinaga, T. Topical formulations and wound healing applications of chitosan. Adv. Drug Deliv. Rev., 2001, 52(2), 105-115.
[http://dx.doi.org/10.1016/S0169-409X(01)00189-2] [PMID: 11718934]
[27]
Sacco, P.; Furlani, F.; de Marzo, G.; Marsich, E.; Paoletti, S.; Donati, I. Concepts for developing physical gels of chitosan and of chitosan derivatives. Gels, 2018, 4(3), 67.
[http://dx.doi.org/10.3390/gels4030067] [PMID: 30674843]
[28]
Jiang, Y.; Chen, J.; Deng, C.; Suuronen, E.J.; Zhong, Z. Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. Biomaterials, 2014, 35(18), 4969-4985.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.001] [PMID: 24674460]
[29]
Boucard, N.; Viton, C.; Agay, D.; Mari, E.; Roger, T.; Chancerelle, Y.; Domard, A. The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials, 2007, 28(24), 3478-3488.
[http://dx.doi.org/10.1016/j.biomaterials.2007.04.021] [PMID: 17482258]
[30]
Yenilmez, E. Başaran, E.; Arslan, R.; Berkman, M.S.; Güven, U.M.; Bayçu, C.; Yazan, Y. Chitosan gel formulations containing egg yolk oil and epidermal growth factor for dermal burn treatment. Pharmazie, 2015, 70(2), 67-73.
[PMID: 25997244]
[31]
Bektas, N. Şenel, B.; Yenilmez, E.; Özatik, O.; Arslan, R. Evaluation of wound healing effect of chitosan-based gel formulation containing vitexin Saudi Pharm. J., 2020, 28(1), 87-94.
[http://dx.doi.org/10.1016/j.jsps.2019.11.008] [PMID: 31933527]
[32]
Alemdaroğlu, C.; Değim, Z.; Çelebi, N.; Zor, F.; Öztürk, S.; Erdoğan, D. An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns, 2006, 32(3), 319-327.
[http://dx.doi.org/10.1016/j.burns.2005.10.015] [PMID: 16527411]
[33]
Alsarra, I.A. Chitosan topical gel formulation in the management of burn wounds. Int. J. Biol. Macromol., 2009, 45(1), 16-21.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.03.010] [PMID: 19447254]
[34]
Akıncıbay, H.; Şenel, S.; Yetkin Ay, Z. Application of chitosan gel in the treatment of chronic periodontitis. J. Biomed. Mater. Res. B Appl. Biomater., 2007, 80B(2), 290-296.
[http://dx.doi.org/10.1002/jbm.b.30596] [PMID: 16767723]
[35]
Öztürk, A.A.; Güven, U.M.; Yenilmez, E. Flurbiprofen loaded gel based topical delivery system: Formulation and in vitro characterization with new developed UPLC method. ACTA Pharm. Sci., 2018, 56(4), 81-105.
[36]
Öztürk, A.A.; Güven, U.M. Cefaclor monohydrate loaded microemulsion formulation for topical application: Characterization with new developed UPLC method and stability study. J Res Pharm., 2019, 23(3), 426-440.
[37]
Jain, P.S.; Chaudhari, A.J.; Patel, S.A.; Patel, Z.N.; Patel, D.T. Development and validation of the UV-spectrophotometric method for determination of terbinafine hydrochloride in bulk and in formulation. Pharm. Methods, 2011, 2(3), 198-202.
[http://dx.doi.org/10.4103/2229-4708.90364] [PMID: 23781456]
[38]
Luna, V.S.; Randau, K.P.; Ferreira, M.R.A.; Soares, L.A.L. Development and validation of analytical method by spectrophotometry UV-Vis for quantification of flavonoids in leaves of Senna occidentalis Link. Res. Soc. Develop., 2022, 11(1), e14411118584.
[http://dx.doi.org/10.33448/rsd-v11i1.18584]
[39]
Araújo, L.B.D.C.; Silva, S.L.; Galvão, M.A.M.; Ferreira, M.R.A.; Araújo, E.L.; Randau, K.P.; Soares, L.A.L. Total phytosterol content in drug materials and extracts from roots of Acanthospermum hispidum by UV-VIS spectrophotometry. Rev. Bras. Farmacogn., 2013, 23(5), 736-742.
[http://dx.doi.org/10.1590/S0102-695X2013000500004]
[40]
Öztürk, A.A. Aygül, A.; Şenel, B. Influence of glyceryl behenate, tripalmitin and stearic acid on the properties of clarithromycin incorporated solid lipid nanoparticles (SLNs): Formulation, characterization, antibacterial activity and cytotoxicity. J. Drug Deliv. Sci. Technol., 2019, 54, 101240.
[http://dx.doi.org/10.1016/j.jddst.2019.101240]
[41]
Abdelmalak, N.S.; El-Menshawe, S.F. A new topical fluconazole microsponge loaded hydrogel: preparation and characterization. Int. J. Pharm. Pharm. Sci., 2012, 4, 460-468.
[42]
Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J., 2010, 12(3), 263-271.
[http://dx.doi.org/10.1208/s12248-010-9185-1] [PMID: 20373062]
[43]
Alper Öztürk, A. Namlı, İ Aygül, A. Cefaclor monohydrate-loaded colon-targeted nanoparticles for use in COVID-19 dependent coinfections and intestinal symptoms: formulation, characterization, release kinetics, and antimicrobial activity. Assay Drug Dev. Technol., 2021, 19(3), 156-175.
[http://dx.doi.org/10.1089/adt.2020.1014] [PMID: 33728979]
[44]
Başaran, E.; Öztürk, A.A.; Şenel, B.; Demiı̇rel, M.; Sarica, Ş. Quercetin, Rutin And Quercetin-Rutin Incorporated Hydroxypropyl β--. Cyclodextrin Inclusion Complexes. Eur. J. Pharm. Sci., 2022, 172, 106153.
[http://dx.doi.org/10.1016/j.ejps.2022.106153] [PMID: 35227839]
[45]
Orhan, I.; Üstün, O. Determination of total phenol content, antioxidant activity and acetylcholinesterase inhibition in selected mushrooms from Turkey. J. Food Compos. Anal., 2011, 24(3), 386-390.
[http://dx.doi.org/10.1016/j.jfca.2010.11.005]
[46]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[47]
Shon, M.; Kim, T-H.; Sung, N-J. Antioxidants and free radical scavenging activity of Phellinus baumii (Phellinus of Hymenochaetaceae) extracts. Food Chem., 2003, 82(4), 593-597.
[http://dx.doi.org/10.1016/S0308-8146(03)00015-3]
[48]
Sánchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric., 1998, 76(2), 270-276.
[http://dx.doi.org/10.1002/(SICI)1097-0010(199802)76:2<270:AID-JSFA945>3.0.CO;2-9]
[49]
Öztürk, A.A.; Yenilmez, E.; Şenel, B.; Kıyan, H.T.; Güven, U.M. Effect of different molecular weight PLGA on flurbiprofen nanoparticles: formulation, characterization, cytotoxicity, and in vivo anti-inflammatory effect by using HET-CAM assay. Drug Dev. Ind. Pharm., 2020, 46(4), 682-695.
[http://dx.doi.org/10.1080/03639045.2020.1755304] [PMID: 32281428]
[50]
Öztürk, A.A.; Namlı, I.; Güleç, K.; Kıyan, H.T. Diclofenac sodium loaded PLGA nanoparticles for inflammatory diseases with high anti-inflammatory properties at low dose: Formulation, characterization and in vivo HET-CAM analysis. Microvasc. Res., 2020, 130, 103991.
[http://dx.doi.org/10.1016/j.mvr.2020.103991] [PMID: 32105668]
[51]
Das, S.; Haldar, P.K.; Pramanik, G.; Suresh, R. Evaluation of anti-inflammatory activity of Clerodendron infortunatum Linn. extract in rats. Glob. J. Pharmacol., 2010, 4, 48-50.
[52]
Das, S.; Haldar, P.K.; Pramanik, G.; Panda, S.P.; Bera, S. Evaluation of analgesic and anti-inflammatory activity of diospyros cordifolia extract. Afr. J. Tradit. Complement. Altern. Med., 2011, 8(1), 11-14.
[PMID: 22238477]
[53]
Wilson, T.D.; Steck, W.F. A modified HET–CAM assay approach to the assessment of anti-irritant properties of plant extracts. Food Chem. Toxicol., 2000, 38(10), 867-872.
[http://dx.doi.org/10.1016/S0278-6915(00)00091-0] [PMID: 11039320]
[54]
Zwadlo-Klarwasser, G.; Görlitz, K.; Hafemann, B.; Klee, D.; Klosterhalfen, B. The chorioallantoic membrane of the chick embryo as a simple model for the study of the angiogenic and inflammatory response to biomaterials. J. Mater. Sci. Mater. Med., 2001, 12(3), 195-199.
[http://dx.doi.org/10.1023/A:1008950713001] [PMID: 15348302]
[55]
Öztürk, A.A.; Çevikelli, T.; Tilki, E.K.; Güven, U.M. Kıyan, H.T. Ketorolac Tromethamine Loaded Nano-Spray Dried Nanoparticles: Preparation, Characterization, Cell Viability, COL1A1 Gene Simulation and Determination of Anti-inflammatory Activity by in vivo HET-CAM Assay. Curr. Drug Deliv., 2023, 20(6), 830-840.
[http://dx.doi.org/10.2174/1567201820666230125144133] [PMID: 36698231]
[56]
Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm., 2010, 67(3), 217-223.
[PMID: 20524422]
[57]
Das, S.; Samanta, A.; Bankura, K.; Roy, D.; Nayak, A. Fabrication and release kinetics of liposomes containing leuprolide acetate. J. Basic Appl. Res. Biomed., 2021, 7(1), 35-38.
[http://dx.doi.org/10.51152/jbarbiomed.v7i1.213]
[58]
Das, S.; Samanta, A.; Mondal, S.; Roy, D.; Nayak, A.K. Design and release kinetics of liposomes containing abiraterone acetate for treatment of prostate cancer. Sensors Int., 2021, 2, 100077.
[http://dx.doi.org/10.1016/j.sintl.2020.100077]
[59]
Ibrahim, H.; El-Zairy, E. Chitosan as a biomaterial—structure, properties, and electrospun nanofibers. Concepts, compounds and the alternatives of antibacterials., 2015, 1, 81-101.
[60]
Lambers, H.; Piessens, S.; Bloem, A.; Pronk, H.; Finkel, P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int. J. Cosmet. Sci., 2006, 28(5), 359-370.
[http://dx.doi.org/10.1111/j.1467-2494.2006.00344.x] [PMID: 18489300]
[61]
Segger, D.; Aßmus, U.; Brock, M.; Erasmy, J.; Finkel, P.; Fitzner, A.; Heuss, H.; Kortemeier, U.; Munke, S.; Rheinländer, T.; Schmidt-Lewerkühne, H.; Schneider, W.; Weser, G. Multicenter study on measurement of the natural pH of the skin surface. Int. J. Cosmet. Sci., 2008, 30(1), 75-75.
[http://dx.doi.org/10.1111/j.1468-2494.2007.00403_1.x]
[62]
Lukić, M.; Pantelić, I.; Savić, S.D. Towards optimal ph of the skin and topical formulations: From the current state of the art to tailored products. Cosmetics, 2021, 8(3), 69.
[http://dx.doi.org/10.3390/cosmetics8030069]
[63]
Lukic, M.; Filipovic, M.; Pajic, N.; Lunter, D.; Bozic, D.; Savic, S. Formulation of topical acidic products and acidification of the skin – Contribution of glycolic acid. Int. J. Cosmet. Sci., 2021, 43(4), 419-431.
[http://dx.doi.org/10.1111/ics.12707] [PMID: 33864274]
[64]
Barradas, T.N.; Senna, J.P.; Cardoso, S.A.; de Holanda e Silva, K.G.; Elias Mansur, C.R. Formulation characterization and in vitro drug release of hydrogel-thickened nanoemulsions for topical delivery of 8-methoxypsoralen. Mater. Sci. Eng. C, 2018, 92, 245-253.
[http://dx.doi.org/10.1016/j.msec.2018.06.049] [PMID: 30184748]
[65]
Lee, B.C.; Pangeni, R.; Na, J.; Koo, K.T.; Park, J.W. Preparation and in vivo evaluation of a highly skin- and nail-permeable efinaconazole topical formulation for enhanced treatment of onychomycosis. Drug Deliv., 2019, 26(1), 1167-1177.
[http://dx.doi.org/10.1080/10717544.2019.1687612] [PMID: 31738083]
[66]
Silva, N.H.C.S.; Drumond, I.; Almeida, I.F.; Costa, P.; Rosado, C.F.; Neto, C.P.; Freire, C.S.R.; Silvestre, A.J.D. Topical caffeine delivery using biocellulose membranes: a potential innovative system for cellulite treatment. Cellulose, 2014, 21(1), 665-674.
[http://dx.doi.org/10.1007/s10570-013-0114-1]
[67]
Bimbrawh, S.; Chopra, S.; Ansari, M.J.; Alrobaian, M.; Almalki, W.H.; Alharbi, K.S.; Alenezi, S.K.; Kaur, R.; Beg, S.; Bhatia, A. Biocompatible phospholipid-based nanovesicular drug delivery system of ketoprofen: Systematic development, optimization, and preclinical evaluation. Biotechnol. Appl. Biochem., 2022, 70(1), 51-67.
[http://dx.doi.org/10.1002/bab.2328] [PMID: 35262954]
[68]
Abdel-Hamid, S.M.; Abdel-Hady, S.E.; El-Shamy, A.A.; El-Dessouky, H.F. Formulation of an antispasmodic drug as a topical local anesthetic. Int. J. Pharm., 2006, 326(1-2), 107-118.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.028] [PMID: 16935442]
[69]
Cerda-Opazo, P.; Gotteland, M.; Oyarzun-Ampuero, F.A.; Garcia, L. Design, development and evaluation of nanoemulsion containing avocado peel extract with anticancer potential: A novel biological active ingredient to enrich food. Food Hydrocoll., 2021, 111, 106370.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106370]
[70]
Manne, A.A.; Arigela, B.; Giduturi, A.K.; Komaravolu, R.K.; Mangamuri, U.; Poda, S. Pterocarpus marsupium Roxburgh heartwood extract/chitosan nanoparticles loaded hydrogel as an innovative wound healing agent in the diabetic rat model. Mater. Today Commun., 2021, 26, 101916.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101916]
[71]
Mouro, C.; Dunne, C.P.; Gouveia, I.C. Designing new antibacterial wound dressings: development of a dual layer cotton material coated with poly (vinyl alcohol) _chitosan nanofibers incorporating Agrimonia eupatoria L. extract. Molecules, 2020, 26(1), 83.
[http://dx.doi.org/10.3390/molecules26010083] [PMID: 33375482]
[72]
Chen, H.W.; Chang, Y.W.; Fang, W.P. A new approach for the microencapsulation of clitoria ternatea petal extracts by a high-pressure processing method. Pharmaceutics, 2020, 13(1), 23.
[http://dx.doi.org/10.3390/pharmaceutics13010023] [PMID: 33374428]
[73]
Nejat, H.; Rabiee, M.; Varshochian, R.; Tahriri, M.; Jazayeri, H.E.; Rajadas, J.; Ye, H.; Cui, Z.; Tayebi, L. Preparation and characterization of cardamom extract-loaded gelatin nanoparticles as effective targeted drug delivery system to treat glioblastoma. React. Funct. Polym., 2017, 120, 46-56.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.09.008]
[74]
Badawi, N.; El-Say, K.; Attia, D.; El-Nabarawi, M.; Elmazar, M.; Teaima, M. Development of pomegranate extract-loaded solid lipid nanoparticles: quality by design approach to screen the variables affecting the quality attributes and characterization. ACS Omega, 2020, 5(34), 21712-21721.
[http://dx.doi.org/10.1021/acsomega.0c02618] [PMID: 32905321]
[75]
Abo Mansour, H.E.; El-Batsh, M.M.; Badawy, N.S.; Mehanna, E.T.; Mesbah, N.M.; Abo-Elmatty, D.M. Ginger extract loaded into chitosan nanoparticles enhances cytotoxicity and reduces cardiotoxicity of doxorubicin in hepatocellular carcinoma in mice. Nutr. Cancer, 2021, 73(11-12), 2347-2362.
[http://dx.doi.org/10.1080/01635581.2020.1823436] [PMID: 32972241]
[76]
Baby, A.R.; Maciel, C.P.M.; Kaneko, T.M.; Velasco, M.V.R. UV spectrophotometric determination of bioflavonoids from a semisolid pharmaceutical dosage form containing Trichilia catigua Adr. Juss and Ptychopetalum olacoides Bentham standardized extract: analytical method validation and statistical procedures. J. AOAC Int., 2006, 89(6), 1532-1537.
[http://dx.doi.org/10.1093/jaoac/89.6.1532] [PMID: 17225598]
[77]
Rolim, A.; Oishi, T.; Maciel, C.P.M.; Zague, V.; Pinto, C.A.S.O.; Kaneko, T.M.; Consiglieri, V.O.; Velasco, M.V.R. Total flavonoids quantification from O/W emulsion with extract of Brazilian plants. Int. J. Pharm., 2006, 308(1-2), 107-114.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.031] [PMID: 16324808]
[78]
Rapalli, V.K.; Kaul, V.; Gorantla, S.; Waghule, T.; Dubey, S.K.; Pandey, M.M.; Singhvi, G.U.V. Spectrophotometric method for characterization of curcumin loaded nanostructured lipid nanocarriers in simulated conditions: Method development, in vitro and ex vivo applications in topical delivery. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 224, 117392.
[http://dx.doi.org/10.1016/j.saa.2019.117392] [PMID: 31330421]
[79]
El-Badry, M.; Fetih, G. Preparation, charactarization and anti-inflammatory activity of celecoxib chitosan gel formulations. J. Drug Deliv. Sci. Technol., 2011, 21(2), 201-206.
[http://dx.doi.org/10.1016/S1773-2247(11)50023-1]
[80]
Nithya, S.; Nimal, T.R.; Baranwal, G.; Suresh, M.K. C P, A.; Anil Kumar, V.; Gopi Mohan, C.; Jayakumar, R.; Biswas, R. Preparation, characterization and efficacy of lysostaphin-chitosan gel against Staphylococcus aureus. Int. J. Biol. Macromol., 2018, 110, 157-166.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.083] [PMID: 29410001]
[81]
Varshosaz, J.; Jaffari, F.; Karimzadeh, S. Development of bioadhesive chitosan gels for topical delivery of lidocaine. Sci. Pharm., 2006, 74(4), 209-232.
[http://dx.doi.org/10.3797/scipharm.2006.74.209]
[82]
Zuo, J.; Gao, Y.; Bou-Chacra, N.; Löbenberg, R. Evaluation of the DDSolver software applications. Biomed Res. Int. Article ID, 2014, 204925, 1-9.
[83]
Yang, H.; Li, J.; Patel, S.K.; Palmer, K.E.; Devlin, B.; Rohan, L.C. Design of poly (lactic-co-glycolic acid)(PLGA) nanoparticles for vaginal co-delivery of griffithsin and dapivirine and their synergistic effect for HIV prophylaxis. Pharmaceutics, 2019, 11(4), 184.
[http://dx.doi.org/10.3390/pharmaceutics11040184] [PMID: 30995761]
[84]
Basak, S.C.; Jayakumar Reddy, B.M.; Lucas Mani, K.P. Formulation and release behaviour of sustained release ambroxol hydrochloride HPMC matrix tablet. Indian J. Pharm. Sci., 2006, 68(5), 594-598.
[http://dx.doi.org/10.4103/0250-474X.29626]
[85]
Chanda, S.; Dave, R. In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: An overview. Afr. J. Microbiol. Res., 2009, 3, 981-996.
[86]
Gupta, R.K.; Patel, A.K.; Shah, N.; Choudhary, A.K.; Jha, U.K.; Yadav, U.C.; Gupta, P.K.; Pakuwal, U. Oxidative stress and antioxidants in disease and cancer: a review. Asian Pac. J. Cancer Prev., 2014, 15(11), 4405-4409.
[http://dx.doi.org/10.7314/APJCP.2014.15.11.4405] [PMID: 24969860]
[87]
Kattoor, A.J.; Pothineni, N.V.K.; Palagiri, D.; Mehta, J.L. Oxidative stress in atherosclerosis. Curr. Atheroscler. Rep., 2017, 19(11), 42.
[http://dx.doi.org/10.1007/s11883-017-0678-6] [PMID: 28921056]
[88]
Senoner, T.; Dichtl, W. Oxidative stress in cardiovascular diseases: still a therapeutic target? Nutrients, 2019, 11(9), 2090.
[http://dx.doi.org/10.3390/nu11092090] [PMID: 31487802]
[89]
Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov., 2021, 20(9), 689-709.
[http://dx.doi.org/10.1038/s41573-021-00233-1] [PMID: 34194012]
[90]
Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13, 757-772.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[91]
Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process., 2011, 89(3), 217-233.
[http://dx.doi.org/10.1016/j.fbp.2010.04.008]
[92]
Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules, 2015, 20(12), 21138-21156.
[http://dx.doi.org/10.3390/molecules201219753] [PMID: 26633317]
[93]
Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Zabermawi, N.M.; Arif, M.; Batiha, G.E.; Khafaga, A.F.; Abd El-Hakim, Y.M.; Al-Sagheer, A.A. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int. J. Biol. Macromol., 2020, 164, 2726-2744.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.153] [PMID: 32841671]
[94]
Bürgermeister, J.; Paper, D.H.; Vogl, H.; Linhardt, R.J.; Franz, G. LaPSvS1, a (1→3)-β-galactan sulfate and its effect on angiogenesis in vivo and in vitro. Carbohydr. Res., 2002, 337(16), 1459-1466.
[http://dx.doi.org/10.1016/S0008-6215(02)00163-5] [PMID: 12204607]
[95]
Ribatti, D. The discovery of tumor angiogenesis factors: a historical overview. Methods Mol. Biol., 2016, 1464, 1-12.
[http://dx.doi.org/10.1007/978-1-4939-3999-2_1] [PMID: 27858351]
[96]
Kim, S. Competitive biological activities of chitosan and its derivatives: antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int. J. Polym. Sci. Int. J. Polym. Sci., 2018, 2018, 1-13.
[http://dx.doi.org/10.1155/2018/1708172]

© 2024 Bentham Science Publishers | Privacy Policy