Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

An Insight on the Prospect of Quinazoline and Quinazolinone Derivatives as Anti-tubercular Agents

Author(s): Namrata Kushwaha, Adarsh Sahu*, Jyotika Mishra, Ankit Soni and Dhawal Dorwal

Volume 20, Issue 8, 2023

Published on: 11 May, 2023

Page: [838 - 869] Pages: 32

DOI: 10.2174/1570179420666230316094435

Price: $65

Abstract

Multiple potential drugs have been developed based on the heterocyclic molecules for the treatment of different symptoms. Among the existing heterocyclic molecules, quinazoline and quinazolinone derivatives have been found to exhibit extensive pharmacological and biological characteristics. One significant property of these molecules is their potency as anti-tubercular agents. Thus, both quinazoline and quinazolinone derivatives are modified using different functional groups as substituents for investigating their anti-tubercular activities. We present a summary of the reported anti-tubercular drugs, designed using quinazoline and quinazolinone derivatives, in this review.

Keywords: Quinazoline, quinazolinone, anti-tubercular activity, SAR, heterocycles, drug.

Graphical Abstract
[1]
Cabrele, C.; Reiser, O. The modern face of synthetic heterocyclic chemistry. J. Org. Chem., 2016, 81(21), 10109-10125.
[http://dx.doi.org/10.1021/acs.joc.6b02034] [PMID: 27680573]
[2]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules, 2019, 24(21), 3839.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[3]
Shaikh, A.R.; Farooqui, M.; Satpute, R.H.; Abed, S. Overview on nitrogen containing compounds and their assessment based on ‘international regulatory standards’. J. Drug Deliv. Ther., 2018, 8(6-s), 424-428.
[http://dx.doi.org/10.22270/jddt.v8i6-s.2156]
[4]
Jafari, E.; Khajouei, M.R.; Hassanzadeh, F.; Hakimelahi, G.H.; Khodarahmi, G.A. Quinazolinone and quinazoline derivatives: Recent structures with potent antimicrobial and cytotoxic activities. Res. Pharm. Sci., 2016, 11(1), 1-14.
[PMID: 27051427]
[5]
Ajani, O.O. Present status of quinoxaline motifs: Excellent pathfinders in therapeutic medicine. Eur. J. Med. Chem., 2014, 85, 688-715.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.034] [PMID: 25128670]
[6]
Theivendren, P.; Kumar, P. Quinazoline marketed drugs-A review. Res Pharm, 2011, 1, 1-21.
[7]
Ajani, O.O.; Aderohunmu, D.V.; Umeokoro, E.N.; Olomieja, A.O. Quinazoline pharmacophore in therapeutic medicine. Bangladesh J. Pharmacol., 2016, 11(3), 716.
[http://dx.doi.org/10.3329/bjp.v11i3.25731]
[8]
Luo, H.; Yang, S.; Cai, Y.; Peng, Z.; Liu, T. Synthesis and biological evaluation of novel 6-chloro-quinazolin derivatives as potential antitumor agents. Eur. J. Med. Chem., 2014, 84, 746-752.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.053] [PMID: 25064351]
[9]
Werbel, L.M.; Degnan, M.J. Antimalarial drugs. 63. Synthesis and antimalarial and antitumor effects of 2-amino-4-(hydrazino and hydroxyamino)-6-[(aryl)thio]quinazolines. J. Med. Chem., 1987, 30(11), 2151-2154.
[http://dx.doi.org/10.1021/jm00394a038] [PMID: 3669022]
[10]
Aly, M.M.; Mohamed, Y.A.; El-Bayouki, K.A.M.; Basyouni, W.M.; Abbas, S.Y. Synthesis of some new 4(3H)-quinazolinone-2-carboxaldehyde thiosemicarbazones and their metal complexes and a study on their anticonvulsant, analgesic, cytotoxic and antimicrobial activities-Part-1. Eur. J. Med. Chem., 2010, 45(8), 3365-3373.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.020] [PMID: 20510483]
[11]
Keam, S.J. Pretomanid: First approval. Drugs, 2019, 79(16), 1797-1803.
[http://dx.doi.org/10.1007/s40265-019-01207-9] [PMID: 31583606]
[12]
Sotgiu, G.; Centis, R.; D’ambrosio, L.; Migliori, G.B. Tuberculosis Treatment and Drug Regimens., 2015, 5, 017822. [incomplete]
[13]
Diacon, A.H.; Pym, A.; Grobusch, M.P. De los, R.J.M. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N. Engl. J. Med., 2014, 371(8), 723-732.
[14]
Gler, M.T.; Skripconoka, V.; Sanchez-Garavito, E.; Xiao, H.; Cabrera-Rivero, J.L.; Vargas-Vasquez, D.E.; Gao, M.; Awad, M.; Park, S.K.; Shim, T.S.; Suh, G.Y.; Danilovits, M.; Ogata, H.; Kurve, A.; Chang, J.; Suzuki, K.; Tupasi, T.; Koh, W.J.; Seaworth, B.; Geiter, L.J.; Wells, C.D. Delamanid for multidrug-resistant pulmonary tuberculosis. N. Engl. J. Med., 2012, 366(23), 2151-2160.
[http://dx.doi.org/10.1056/NEJMoa1112433] [PMID: 22670901]
[15]
Hoffmann, H.; Kohl, T.A.; Hofmann-Thiel, S.; Merker, M.; Beckert, P.; Jaton, K.; Nedialkova, L.; Sahalchyk, E.; Rothe, T.; Keller, P.M.; Niemann, S. Delamanid and bedaquiline resistance in Mycobacterium tuberculosis ancestral Beijing genotype causing extensively drug-resistant tuberculosis in a Tibetan refugee. Am. J. Respir. Crit. Care Med., 2016, 193(3), 337-340.
[http://dx.doi.org/10.1164/rccm.201502-0372LE] [PMID: 26829425]
[16]
Jong, A.Y.; Kuo, C.L.; Campbell, J.L. The CDC8 gene of yeast encodes thymidylate kinase. J. Biol. Chem., 1984, 259(17), P11052-P11059.
[http://dx.doi.org/10.1016/S0021-9258(18)90621-6]
[17]
Song, L.; Merceron, R.; Gracia, B.; Quintana, A.L.; Risseeuw, M.D.P.; Hulpia, F.; Cos, P.; Aínsa, J.A.; Munier-Lehmann, H.; Savvides, S.N.; Van Calenbergh, S. Structure Guided Lead Generation toward Nonchiral M. tuberculosis thymidylate kinase inhibitors. J. Med. Chem., 2018, 61(7), 2753-2775.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01570] [PMID: 29510037]
[18]
O’Shea, R.; Moser, H.E. Physicochemical properties of antibacterial compounds: Implications for drug discovery. J. Med. Chem., 2008, 51(10), 2871-2878.
[http://dx.doi.org/10.1021/jm700967e] [PMID: 18260614]
[19]
Ritchie, T.J.; Luscombe, C.N.; Macdonald, S.J.F. Analysis of the calculated physicochemical properties of respiratory drugs: can we design for inhaled drugs yet? J. Chem. Inf. Model., 2009, 49(4), 1025-1032.
[http://dx.doi.org/10.1021/ci800429e] [PMID: 19275169]
[20]
Koul, A.; Herget, T.; Klebl, B.; Ullrich, A. Interplay between mycobacteria and host signalling pathways. Nat. Rev. Microbiol., 2004, 2(3), 189-202.
[http://dx.doi.org/10.1038/nrmicro840] [PMID: 15083155]
[21]
Székely, R.; Wáczek, F.; Szabadkai, I.; Németh, G.; Hegymegi-Barakonyi, B. Erős, D.; Szokol, B.; Pató, J.; Hafenbradl, D.; Satchell, J.; Saint-Joanis, B.; Cole, S.T.; Őrfi, L.; Klebl, B.M.; Kéri, G. A novel drug discovery concept for tuberculosis: Inhibition of bacterial and host cell signalling. Immunol. Lett., 2008, 116(2), 225-231.
[http://dx.doi.org/10.1016/j.imlet.2007.12.005] [PMID: 18258308]
[22]
Zhou, B.; He, Y.; Zhang, X.; Xu, J.; Luo, Y.; Wang, Y.; Franzblau, S.G.; Yang, Z.; Chan, R.J.; Liu, Y.; Zheng, J.; Zhang, Z.Y. Targeting mycobacterium protein tyrosine phosphatase B for antituberculosis agents. Proc. Natl. Acad. Sci. USA, 2010, 107(10), 4573-4578.
[http://dx.doi.org/10.1073/pnas.0909133107] [PMID: 20167798]
[23]
Kumar, D.; Nath, L.; Kamal, M.A.; Varshney, A.; Jain, A.; Singh, S.; Rao, K.V.S. Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell, 2010, 140(5), 731-743.
[http://dx.doi.org/10.1016/j.cell.2010.02.012] [PMID: 20211141]
[24]
Hosford, J.D.; von Fricken, M.E.; Lauzardo, M.; Chang, M.; Dai, Y.; Lyon, J.A.; Shuster, J.; Fennelly, K.P. Hepatotoxicity from antituberculous therapy in the elderly: A systematic review. Tuberculosis, 2015, 95(2), 112-122.
[http://dx.doi.org/10.1016/j.tube.2014.10.006] [PMID: 25595441]
[25]
Pepper, D.J.; Meintjes, G.A.; McIlleron, H.; Wilkinson, R.J. Combined therapy for tuberculosis and HIV-1: The challenge for drug discovery. Drug Discov. Today, 2007, 12(21-22), 980-989.
[http://dx.doi.org/10.1016/j.drudis.2007.08.001] [PMID: 17993418]
[26]
Ramaswamy, S.; Musser, J.M. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber. Lung Dis., 1998, 79(1), 3-29.
[http://dx.doi.org/10.1054/tuld.1998.0002] [PMID: 10645439]
[27]
Louw, G.E.; Warren, R.M.; Gey van Pittius, N.C.; McEvoy, C.R.E.; Van Helden, P.D.; Victor, T.C. A balancing act: Efflux/influx in mycobacterial drug resistance. Antimicrob. Agents Chemother., 2009, 53(8), 3181-3189.
[http://dx.doi.org/10.1128/AAC.01577-08] [PMID: 19451293]
[28]
Spies, F.S.; Almeida da Silva, P.E.; Ribeiro, M.O.; Rossetti, M.L.; Zaha, A. Identification of mutations related to streptomycin resistance in clinical isolates of Mycobacterium tuberculosis and possible involvement of efflux mechanism. Antimicrob. Agents Chemother., 2008, 52(8), 2947-2949.
[http://dx.doi.org/10.1128/AAC.01570-07] [PMID: 18541729]
[30]
Mohr, E.; Ferlazzo, G.; Hewison, C.; De Azevedo, V.; Isaakidis, P. Bedaquiline and delamanid in combination for treatment of drug-resistant tuberculosis. Lancet Infect. Dis., 2019, 19(5), 470.
[http://dx.doi.org/10.1016/S1473-3099(19)30168-9] [PMID: 31034392]
[31]
Hameed, H.M.A.; Islam, M.M.; Chhotaray, C.; Wang, C.; Liu, Y.; Tan, Y.; Li, X.; Tan, S.; Delorme, V.; Yew, W.W.; Liu, J.; Zhang, T. Molecular targets related drug resistance mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis strains. Front. Cell. Infect. Microbiol., 2018, 8, 114.
[http://dx.doi.org/10.3389/fcimb.2018.00114] [PMID: 29755957]
[32]
Islam, M.M.; Hameed, H.M.A.; Mugweru, J.; Chhotaray, C.; Wang, C.; Tan, Y.; Liu, J.; Li, X.; Tan, S.; Ojima, I.; Yew, W.W.; Nuermberger, E.; Lamichhane, G.; Zhang, T. Drug resistance mechanisms and novel drug targets for tuberculosis therapy. J. Genet. Genomics, 2017, 44(1), 21-37.
[http://dx.doi.org/10.1016/j.jgg.2016.10.002] [PMID: 28117224]
[33]
Gandhi, N.R.; Nunn, P.; Dheda, K.; Schaaf, H.S.; Zignol, M.; van Soolingen, D.; Jensen, P.; Bayona, J. Multidrug-resistant and extensively drug-resistant tuberculosis: A threat to global control of tuberculosis. Lancet, 2010, 375(9728), 1830-1843.
[http://dx.doi.org/10.1016/S0140-6736(10)60410-2] [PMID: 20488523]
[34]
Ginsberg, A.M. Tuberculosis drug development: Progress, challenges, and the road ahead. Spec. Sect. Celebr. Profr. Mitchison 60 Years Contrib. Chemother. Tuberc., 2010, 90, 162-167.
[35]
Avorn, J. Approval of a tuberculosis drug based on a paradoxical surrogate measure. JAMA, 2013, 309(13), 1349-1350.
[http://dx.doi.org/10.1001/jama.2013.623] [PMID: 23430122]
[36]
Kuok, K.I. Supramolecular strategy for reducing the cardiotoxicity of bedaquiline without compromising its antimycobacterial efficacy. 3rd Int. Symp. Phytochem. Med. Food 3-ISPMF, 2018, pp. 425-429.
[http://dx.doi.org/10.1016/j.fct.2017.12.022]
[37]
McLaughlin, N.P.; Evans, P.; Pines, M. The chemistry and biology of febrifugine and halofuginone. Bioorg. Med. Chem., 2014, 22(7), 1993-2004.
[http://dx.doi.org/10.1016/j.bmc.2014.02.040] [PMID: 24650700]
[38]
Chang, F.R.; Lee, Y.H.; Yang, Y.L.; Hsieh, P.W.; Khalil, A.T.; Chen, C.Y.; Wu, Y.C. Secoiridoid glycoside and alkaloid constituents of Hydrangea chinensis. J. Nat. Prod., 2003, 66(9), 1245-1248.
[http://dx.doi.org/10.1021/np0302394] [PMID: 14510608]
[39]
Gabriel, S. Synthesis and pharmacological evaluation of 3-alkyl/aryl–2- methylquinazolin-4-one derivatives. Bernoulli Society, 1903, 36, 800-845.
[40]
Asif, M. Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Int. J. Med. Chem., 2014, 2014, 1-27.
[http://dx.doi.org/10.1155/2014/395637] [PMID: 25692041]
[41]
Faisal, M.; Saeed, A. Chemical insights into the synthetic chemistry of quinazolines: Recent advances. Front Chem., 2021, 8, 594717.
[http://dx.doi.org/10.3389/fchem.2020.594717] [PMID: 33585397]
[42]
Vijayakumar, K.; Ahamed, A.J.; Thiruneelakandan, G. Synthesis, antimicrobial, and Anti-HIV1 activity of quinazoline-4(3H)-one derivatives. J. Appl. Chem., 2013, 2013, 1-5.
[http://dx.doi.org/10.1155/2013/387191]
[43]
Dey, S.K. Applied Organic Chemistry: Reaction Mechanisms and Experimental Procedures in Medicinal Chemistry; Wiley, 2020.
[44]
Von Niementowski, S. Synthesen von Chinazolinverbindungen. J. Prakt. Chem., 1894, 51(1), 564-572.
[http://dx.doi.org/10.1002/prac.18950510150]
[45]
Kim, N.Y.; Cheon, C.H. Synthesis of quinazolinones from anthranilamides and aldehydes via metal-free aerobic oxidation in DMSO. Tetrahedron Lett., 2014, 55(15), 2340-2344.
[http://dx.doi.org/10.1016/j.tetlet.2014.02.065]
[46]
Bogert, M.T.; Hand, W.F. The synthesis of alkylketodihydroquinazolines from anthranilic nitrile. J. Am. Chem. Soc., 1902, 24(11), 1031-1050.
[http://dx.doi.org/10.1021/ja02025a001]
[47]
Chen, J.; Natte, K.; Spannenberg, A.; Neumann, H.; Langer, P.; Beller, M.; Wu, X.F. Base-controlled selectivity in the synthesis of linear and angular fused quinazolinones by a palladium-catalyzed carbonylation/nucleophilic aromatic substitution sequence. Angew. Chem. Int. Ed., 2014, 53(29), 7579-7583.
[http://dx.doi.org/10.1002/anie.201402779] [PMID: 24891190]
[48]
Welch, W.M.; Ewing, F.E.; Huang, J.; Menniti, F.S.; Pagnozzi, M.J.; Kelly, K.; Seymour, P.A.; Guanowsky, V.; Guhan, S.; Guinn, M.R.; Critchett, D.; Lazzaro, J.; Ganong, A.H.; DeVries, K.M.; Staigers, T.L.; Chenard, B.L. Atropisomeric quinazolin-4-one derivatives are potent noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists. Bioorg. Med. Chem. Lett., 2001, 11(2), 177-181.
[http://dx.doi.org/10.1016/S0960-894X(00)00622-3] [PMID: 11206453]
[49]
Wang, H.; Cao, X.; Xiao, F.; Liu, S.; Deng, G.J. Iron-catalyzed one-pot 2,3-diarylquinazolinone formation from 2-nitrobenzamides and alcohols. Org. Lett., 2013, 15(18), 4900-4903.
[http://dx.doi.org/10.1021/ol402350x] [PMID: 24015845]
[50]
Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: The advances continue. Eur. J. Med. Chem., 2015, 90, 124-169.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.084] [PMID: 25461317]
[51]
Hrast, M.; Rožman, K. Jukič M.; Patin, D.; Gobec, S.; Sova, M. Synthesis and structure–activity relationship study of novel quinazolinone-based inhibitors of MurA. Bioorg. Med. Chem. Lett., 2017, 27(15), 3529-3533.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.064] [PMID: 28579123]
[52]
Kanuma, K.; Omodera, K.; Nishiguchi, M.; Funakoshi, T.; Chaki, S.; Nagase, Y.; Iida, I.; Yamaguchi, J.; Semple, G.; Tran, T.A.; Sekiguchi, Y. Identification of 4-amino-2-cyclohexylaminoquinazolines as metabolically stable melanin-concentrating hormone receptor 1 antagonists. Bioorg. Med. Chem., 2006, 14(10), 3307-3319.
[http://dx.doi.org/10.1016/j.bmc.2005.12.052] [PMID: 16434202]
[53]
Odingo, J.; O’Malley, T.; Kesicki, E.A.; Alling, T.; Bailey, M.A.; Early, J.; Ollinger, J.; Dalai, S.; Kumar, N.; Singh, R.V.; Hipskind, P.A.; Cramer, J.W.; Ioerger, T.; Sacchettini, J.; Vickers, R.; Parish, T. Synthesis and evaluation of the 2,4-diaminoquinazoline series as anti-tubercular agents. Bioorg. Med. Chem., 2014, 22(24), 6965-6979.
[http://dx.doi.org/10.1016/j.bmc.2014.10.007] [PMID: 25456390]
[54]
Gawad, J.; Bonde, C. Design, synthesis and biological evaluation of novel 6-(trifluoromethyl)-N-(4-oxothiazolidin-3-yl)quinazoline-2-carboxamide derivatives as a potential DprE1 inhibitors. J. Mol. Struct., 2020, 1217, 128394.
[http://dx.doi.org/10.1016/j.molstruc.2020.128394]
[55]
Chakraborti, A.K.; Kumar, R.; Selvam, C.; Kaur, G. Microwave-assisted direct synthesis of 2-substituted benzoxazoles from carboxylic acids under catalyst and solvent-free conditions. Synlett, 2005, 1401–1404(9), 1401-1404.
[http://dx.doi.org/10.1055/s-2005-868509]
[56]
Chakraborti, A.; Rudrawar, S.; Kondaskar, A. An efficient acid- and metal-free one-pot synthesis of benzothiazoles from carboxylic acids. Synthesis, 2005, 2005(15), 2521-2526.
[http://dx.doi.org/10.1055/s-2005-872092]
[57]
Chakraborti, A.K.; Rudrawar, S.; Kaur, G.; Sharma, L. An efficient conversion of phenolic esters to benzothiazoles under mild and virtually neutral conditions. Synlett, 2004, 1533–1536(9), 1533-1536.
[http://dx.doi.org/10.1055/s-2004-829089]
[58]
Taylor, E.C.; Yoneda, F. Condensed imidazoles fromo-diamines and isatoic anhydrides. Angew. Chem. Int. Ed. Engl., 1967, 6(10), 878-879.
[http://dx.doi.org/10.1002/anie.196708782]
[59]
Dhameliya, T.M.; Chourasiya, S.S.; Mishra, E.; Jadhavar, P.S.; Bharatam, P.V.; Chakraborti, A.K. Rationalization of benzazole-2-carboxylate versus benzazine-3-one/benzazine-2,3-dione selectivity switch during cyclocondensation of 2-aminothiophenols/phenols/anilines with 1,2-biselectrophiles in aqueous medium. J. Org. Chem., 2017, 82(19), 10077-10091.
[http://dx.doi.org/10.1021/acs.joc.7b01548] [PMID: 28846411]
[60]
Chakraborti, A.K.; Sharma, L.; Nayak, M.K. Demand-based thiolate anion generation under virtually neutral conditions: Influence of steric and electronic factors on chemo- and regioselective cleavage of aryl alkyl ethers. J. Org. Chem., 2002, 67(18), 6406-6414.
[http://dx.doi.org/10.1021/jo0256540] [PMID: 12201761]
[61]
Jadhavar, P.S.; Patel, K.I.; Dhameliya, T.M.; Saha, N.; Vaja, M.D.; Krishna, V.S.; Sriram, D.; Chakraborti, A.K. Benzimidazoquinazolines as new potent anti-TB chemotypes: Design, synthesis, and biological evaluation. Bioorg. Chem., 2020, 99, 103774.
[http://dx.doi.org/10.1016/j.bioorg.2020.103774] [PMID: 32224336]
[62]
Malasala, S.; Ahmad, M.N.; Akunuri, R.; Shukla, M.; Kaul, G.; Dasgupta, A.; Madhavi, Y.V.; Chopra, S.; Nanduri, S. Synthesis and evaluation of new quinazoline-benzimidazole hybrids as potent anti-microbial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis. Eur. J. Med. Chem., 2021, 212, 112996.
[http://dx.doi.org/10.1016/j.ejmech.2020.112996] [PMID: 33190958]
[63]
Maggini, M.; Menna, E. Addition of azomethine ylides: Fulleropyrrolidines.Fullerenes: From Synthesis to Optoelectronic Properties; Guldi, D.M; Martin, N., Ed.; Springer Netherlands, 2002, pp. 1-50.
[http://dx.doi.org/10.1007/978-94-015-9902-3_1]
[64]
Manishkumar, B. Novel cationic quinazolin-4(3H)-one conjugated fullerene nanoparticles as antimycobacterial and antimicrobial agents. Arch. Pharm., 2013, 346(3), 210-220.
[65]
Noolvi, M.N.; Patel, H.M.; Bhardwaj, V.; Chauhan, A. Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives: Search for anticancer agent. Eur. J. Med. Chem., 2011, 46(6), 2327-2346.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.015] [PMID: 21458891]
[66]
El-Hashash, M.A.; El-Badry, Y.A. Synthesis of a novel series of 2,3-disubstituted quinazolin-4(3H)-ones as a product of a nucleophilic attack at C(2) of the corresponding 4H-3,1-benzoxazin-4-one. Helv. Chim. Acta, 2011, 94(3), 389-396.
[http://dx.doi.org/10.1002/hlca.201000230]
[67]
Kumar, D.; Jadhavar, P.S.; Nautiyal, M.; Sharma, H.; Meena, P.K.; Adane, L.; Pancholia, S.; Chakraborti, A.K. Convenient synthesis of 2,3-disubstituted quinazolin-4(3H)-ones and 2-styryl-3-substituted quinazolin-4(3H)-ones: Applications towards the synthesis of drugs. RSC Advances, 2015, 5(39), 30819-30825.
[http://dx.doi.org/10.1039/C5RA03888J]
[68]
Couturier, C.; Lair, C.; Pellet, A.; Upton, A.; Kaneko, T.; Perron, C.; Cogo, E.; Menegotto, J.; Bauer, A.; Scheiper, B.; Lagrange, S.; Bacqué, E. Identification and optimization of a new series of anti-tubercular quinazolinones. Bioorg. Med. Chem. Lett., 2016, 26(21), 5290-5299.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.043] [PMID: 27671498]
[69]
Macchi, F.S.; Pissinate, K.; Villela, A.D.; Abbadi, B.L.; Rodrigues-Junior, V.; Nabinger, D.D.; Altenhofen, S.; Sperotto, N.; da Silva Dadda, A.; Subtil, F.T.; de Freitas, T.F.; Erhart Rauber, A.P.; Borsoi, A.F.; Bonan, C.D.; Bizarro, C.V.; Basso, L.A.; Santos, D.S.; Machado, P. 1H-Benzo[d]imidazoles and 3,4-dihydroquinazolin-4-ones: Design, synthesis and antitubercular activity. Eur. J. Med. Chem., 2018, 155, 153-164.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.005] [PMID: 29885576]
[70]
Sen, T.; Neog, K.; Sarma, S.; Manna, P.; Deka Boruah, H.P.; Gogoi, P.; Singh, A.K. Efflux pump inhibition by 11H-pyrido[2,1-b]quinazolin-11-one analogues in mycobacteria. Bioorg. Med. Chem., 2018, 26(17), 4942-4951.
[http://dx.doi.org/10.1016/j.bmc.2018.08.034] [PMID: 30190182]
[71]
Krishnarth, N.; Verma, S.K. Quinazolinone novel derivatives synthesis and their biological evaluation as antimicrobial and antitubercular agents. Int. J. Res. Pharm. Sci., 2019, 10(4), 3026-3034.
[72]
Leivers, A.L.; Tallant, M.; Shotwell, J.B.; Dickerson, S.; Leivers, M.R.; McDonald, O.B.; Gobel, J.; Creech, K.L.; Strum, S.L.; Mathis, A.; Rogers, S.; Moore, C.B.; Botyanszki, J. Discovery of selective small molecule type III phosphatidylinositol 4-kinase alpha (PI4KIIIα) inhibitors as anti hepatitis C (HCV) agents. J. Med. Chem., 2014, 57(5), 2091-2106.
[http://dx.doi.org/10.1021/jm400781h] [PMID: 23944386]
[73]
Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov., 2007, 6(11), 881-890.
[http://dx.doi.org/10.1038/nrd2445] [PMID: 17971784]
[74]
Pedgaonkar, G.S.; Sridevi, J.P.; Jeankumar, V.U.; Saxena, S.; Devi, P.B.; Renuka, J.; Yogeeswari, P.; Sriram, D. Development of 2-(4-oxoquinazolin-3(4H)-yl)acetamide derivatives as novel enoyl-acyl carrier protein reductase (InhA) inhibitors for the treatment of tuberculosis. Eur. J. Med. Chem., 2014, 86, 613-627.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.028] [PMID: 25218910]
[75]
Lu, W.; Baig, I.A.; Sun, H.J.; Cui, C.J.; Guo, R.; Jung, I.P.; Wang, D.; Dong, M.; Yoon, M.Y.; Wang, J.G. Synthesis, crystal structure and biological evaluation of substituted quinazolinone benzoates as novel antituberculosis agents targeting acetohydroxyacid synthase. Eur. J. Med. Chem., 2015, 94, 298-305.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.014] [PMID: 25771108]
[76]
Komarla, R.; Nizamuddin, N.D.; Surur, A.; Mekonnen, Y.T. Synthesis, characterization, antitubercular and antibacterial activity, and molecular docking of 2,3-disubstituted quinazolinone derivatives. Res. Rep. Med. Chem., 2016, 6, 15-26.
[77]
Jadhavar, P.S.; Dhameliya, T.M.; Vaja, M.D.; Kumar, D.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D.; Chakraborti, A.K. Synthesis, biological evaluation and structure–activity relationship of 2-styrylquinazolones as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2016, 26(11), 2663-2669.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.012] [PMID: 27095514]
[78]
Panneerselvam, T.; Sivakumar, A.; Arumugam, S.; Joshi, S.D. Design, docking analysis, identification, and synthesis of novel 3-(((substituted phenyl) amino)methyl)-2-methylquinazolin-4(3<i>H</i>)-one compounds to fight tuberculosis. Drug Discov. Ther., 2016, 10(4), 188-194.
[http://dx.doi.org/10.5582/ddt.2016.01048] [PMID: 27594295]
[79]
Gatadi, S.; Gour, J.; Shukla, M.; Kaul, G.; Dasgupta, A.; Madhavi, Y.V.; Chopra, S.; Nanduri, S. Synthesis and evaluation of new quinazolin-4(3H)-one derivatives as potent antibacterial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis. Eur. J. Med. Chem., 2019, 175, 287-308.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.067] [PMID: 31096152]
[80]
Kumar Pandey, S.; Yadava, U.; Upadhyay, A.; Sharma, M.L. Synthesis, biological evaluation and molecular docking studies of novel quinazolinones as antitubercular and antimicrobial agents. Bioorg. Chem., 2021, 108, 104611.
[http://dx.doi.org/10.1016/j.bioorg.2020.104611] [PMID: 33484939]
[81]
Jian, Y.; Forbes, H.E.; Hulpia, F.; Risseeuw, M.D.P.; Caljon, G.; Munier-Lehmann, H.; Boshoff, H.I.M.; Van Calenbergh, S. 2-((3,5-Dinitrobenzyl)thio)quinazolinones: Potent antimycobacterial agents activated by deazaflavin (F 420)-dependent nitroreductase (Ddn). J. Med. Chem., 2021, 64(1), 440-457.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01374] [PMID: 33347317]
[82]
Akester, J.N.; Njaria, P.; Nchinda, A.; Le Manach, C.; Myrick, A.; Singh, V.; Lawrence, N.; Njoroge, M.; Taylor, D.; Moosa, A.; Smith, A.J.; Brooks, E.J.; Lenaerts, A.J.; Robertson, G.T.; Ioerger, T.R.; Mueller, R.; Chibale, K. Synthesis, structure–activity relationship, and mechanistic studies of aminoquinazolinones displaying antimycobacterial activity. ACS Infect. Dis., 2020, 6(7), 1951-1964.
[http://dx.doi.org/10.1021/acsinfecdis.0c00252] [PMID: 32470286]
[83]
Kutilek, V.D.; Andrews, C.L.; Richards, M.P.; Xu, Z.; Sun, T.; Chen, Y.; Hashke, A.; Smotrov, N.; Fernandez, R.; Nickbarg, E.B.; Chamberlin, C.; Sauvagnat, B.; Curran, P.J.; Boinay, R.; Saradjian, P.; Allen, S.J.; Byrne, N.; Elsen, N.L.; Ford, R.E.; Hall, D.L.; Kornienko, M.; Rickert, K.W.; Sharma, S.; Shipman, J.M.; Lumb, K.J.; Coleman, K.; Dandliker, P.J.; Kariv, I.; Beutel, B. Integration of affinity selection–mass spectrometry and functional cell-based assays to rapidly triage druggable target space within the NF-κB pathway. SLAS Discov., 2016, 21(6), 608-619.
[http://dx.doi.org/10.1177/1087057116637353] [PMID: 26969322]
[84]
Santa Maria, J.P., Jr; Park, Y.; Yang, L.; Murgolo, N.; Altman, M.D.; Zuck, P.; Adam, G.; Chamberlin, C.; Saradjian, P.; Dandliker, P.; Boshoff, H.I.M.; Barry, C.E., III; Garlisi, C.; Olsen, D.B.; Young, K.; Glick, M.; Nickbarg, E.; Kutchukian, P.S. Linking high-throughput screens to identify moas and novel inhibitors of Mycobacterium tuberculosis dihydrofolate reductase. ACS Chem. Biol., 2017, 12(9), 2448-2456.
[http://dx.doi.org/10.1021/acschembio.7b00468] [PMID: 28806050]
[85]
Nixon, M.R.; Saionz, K.W.; Koo, M.S.; Szymonifka, M.J.; Jung, H.; Roberts, J.P.; Nandakumar, M.; Kumar, A.; Liao, R.; Rustad, T.; Sacchettini, J.C.; Rhee, K.Y.; Freundlich, J.S.; Sherman, D.R. Folate pathway disruption leads to critical disruption of methionine derivatives in Mycobacterium tuberculosis. Chem. Biol., 2014, 21(7), 819-830.
[http://dx.doi.org/10.1016/j.chembiol.2014.04.009] [PMID: 24954008]
[86]
Cocco, L.; Roth, B.; Temple, C., Jr; Montgomery, J.A.; London, R.E.; Blakley, R.L. Protonated state of methotrexate, trimethoprim, and pyrimethamine bound to dihydrofolate reductase. Arch. Biochem. Biophys., 1983, 226(2), 567-577.
[http://dx.doi.org/10.1016/0003-9861(83)90326-0] [PMID: 6416176]
[87]
Hong, W.; Wang, Y.; Chang, Z.; Yang, Y.; Pu, J.; Sun, T.; Kaur, S.; Sacchettini, J.C.; Jung, H.; Lin Wong, W.; Fah Yap, L.; Fong Ngeow, Y.; Paterson, I.C.; Wang, H. The identification of novel Mycobacterium tuberculosis DHFR inhibitors and the investigation of their binding preferences by using molecular modelling. Sci. Rep., 2015, 5(1), 15328.
[http://dx.doi.org/10.1038/srep15328] [PMID: 26471125]
[88]
Trefzer, C.; Škovierová, H.; Buroni, S.; Bobovská, A.; Nenci, S.; Molteni, E.; Pojer, F.; Pasca, M.R.; Makarov, V.; Cole, S.T.; Riccardi, G.; Mikušová, K.; Johnsson, K. Benzothiazinones are suicide inhibitors of mycobacterial decaprenylphosphoryl-β-D-ribofuranose 2′-oxidase DprE1. J. Am. Chem. Soc., 2012, 134(2), 912-915.
[http://dx.doi.org/10.1021/ja211042r] [PMID: 22188377]
[89]
Riccardi, G.; Pasca, M.R.; Chiarelli, L.R.; Manina, G.; Mattevi, A.; Binda, C. The DprE1 enzyme, one of the most vulnerable targets of Mycobacterium tuberculosis. Appl. Microbiol. Biotechnol., 2013, 97(20), 8841-8848.
[http://dx.doi.org/10.1007/s00253-013-5218-x] [PMID: 24037308]
[90]
Liav, A.; Swiezewska, E.; Ciepichal, E.; Brennan, P.J. Stereoselectivity in the synthesis of polyprenylphosphoryl β-d-ribofuranoses. Tetrahedron Lett., 2006, 47(49), 8781-8783.
[http://dx.doi.org/10.1016/j.tetlet.2006.09.163]
[91]
Selvam, T.P.; Sivakumar, A.; Prabhu, P.P. Design and synthesis of quinazoline carboxylates against Gram-positive, Gram-negative, fungal pathogenic strains, and Mycobacterium tuberculosis. J. Pharm. Bioallied Sci., 2014, 6(4), 278-284.
[http://dx.doi.org/10.4103/0975-7406.142960]
[92]
Nakayama, H.; Ishihara, K.; Akiba, S.; Uenishi, J. Synthesis of N-[2-(2,4-Difluorophenoxy)trifluoromethyl-3-pyridyl]sulfonamides and their inhibitory activities against secretory phospholipase A₂. Chem. Pharm. Bull., 2011, 59(8), 1069-1072.
[http://dx.doi.org/10.1248/cpb.59.1069] [PMID: 21804258]
[93]
Lupien, A.; Foo, C.S-Y.; Savina, S.; Vocat, A.; Piton, J. Monakhova, N New 2-Ethylthio-4-methylaminoquinazoline derivatives inhibiting two subunits of cytochrome bc1 in Mycobacterium tuberculosis. PLoS Pathog., 2020, 16(1), e1008270.
[94]
Lakshminarayana, S.B.; Huat, T.B.; Ho, P.C.; Manjunatha, U.H.; Dartois, V.; Dick, T.; Rao, S.P.S. Comprehensive physicochemical, pharmacokinetic and activity profiling of anti-TB agents. J. Antimicrob. Chemother., 2015, 70(3), 857-867.
[http://dx.doi.org/10.1093/jac/dku457] [PMID: 25587994]
[95]
Shi, L.; Sohaskey, C.D.; Kana, B.D.; Dawes, S.; North, R.J.; Mizrahi, V.; Gennaro, M.L. Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15629-15634.
[http://dx.doi.org/10.1073/pnas.0507850102] [PMID: 16227431]
[96]
Small, J.L. Perturbation of Cytochrome <em>c</em> Maturation Reveals Adaptability of the Respiratory Chain in <span class=“named-content genus-species” id=“named-content-1”>Mycobacterium tuberculosis</span>. MBio, 2013, 4, e00475-e13.
[http://dx.doi.org/10.1128/mBio.00475-13] [PMID: 24045640]
[97]
Pethe, K.; Bifani, P.; Jang, J.; Kang, S.; Park, S.; Ahn, S.; Jiricek, J.; Jung, J.; Jeon, H.K.; Cechetto, J.; Christophe, T.; Lee, H.; Kempf, M.; Jackson, M.; Lenaerts, A.J.; Pham, H.; Jones, V.; Seo, M.J.; Kim, Y.M.; Seo, M.; Seo, J.J.; Park, D.; Ko, Y.; Choi, I.; Kim, R.; Kim, S.Y.; Lim, S.; Yim, S.A.; Nam, J.; Kang, H.; Kwon, H.; Oh, C.T.; Cho, Y.; Jang, Y.; Kim, J.; Chua, A.; Tan, B.H.; Nanjundappa, M.B.; Rao, S.P.S.; Barnes, W.S.; Wintjens, R.; Walker, J.R.; Alonso, S.; Lee, S.; Kim, J.; Oh, S.; Oh, T.; Nehrbass, U.; Han, S.J.; No, Z.; Lee, J.; Brodin, P.; Cho, S.N.; Nam, K.; Kim, J. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat. Med., 2013, 19(9), 1157-1160.
[http://dx.doi.org/10.1038/nm.3262] [PMID: 23913123]
[98]
Foo, C.S. Arylvinylpiperazine Amides, a New Class of Potent Inhibitors Targeting QcrB of <span class=“named-content genus-species” id=“named-content-1”>Mycobacterium tuberculosis</span>. MBio, 2018, 9, e01276-e18.
[http://dx.doi.org/10.1128/mBio.01276-18] [PMID: 30301850]
[99]
Gong, H.; Li, J.; Xu, A.; Tang, Y.; Ji, W.; Gao, R.; Wang, S.; Yu, L.; Tian, C.; Li, J.; Yen, H.Y.; Man Lam, S.; Shui, G.; Yang, X.; Sun, Y.; Li, X.; Jia, M.; Yang, C.; Jiang, B.; Lou, Z.; Robinson, C.V.; Wong, L.L.; Guddat, L.W.; Sun, F.; Wang, Q.; Rao, Z. An electron transfer path connects subunits of a mycobacterial respiratory supercomplex. Science, 2018, 362(6418), eaat8923.
[http://dx.doi.org/10.1126/science.aat8923] [PMID: 30361386]
[100]
Lamprecht, D.A.; Finin, P.M.; Rahman, M.A.; Cumming, B.M.; Russell, S.L.; Jonnala, S.R.; Adamson, J.H.; Steyn, A.J.C. Turning the respiratory flexibility of Mycobacterium tuberculosis against itself. Nat. Commun., 2016, 7(1), 12393.
[http://dx.doi.org/10.1038/ncomms12393] [PMID: 27506290]
[101]
Kalia, N.P.; Hasenoehrl, E.J.; Ab Rahman, N.B.; Koh, V.H.; Ang, M.L.T.; Sajorda, D.R.; Hards, K.; Grüber, G.; Alonso, S.; Cook, G.M.; Berney, M.; Pethe, K. Exploiting the synthetic lethality between terminal respiratory oxidases to kill Mycobacterium tuberculosis and clear host infection. Proc. Natl. Acad. Sci. USA, 2017, 114(28), 7426-7431.
[http://dx.doi.org/10.1073/pnas.1706139114] [PMID: 28652330]
[102]
Eoh, H.; Rhee, K.Y. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2013, 110(16), 6554-6559.
[http://dx.doi.org/10.1073/pnas.1219375110] [PMID: 23576728]
[103]
Ahmed, M.F.; Belal, A.; Youns, M. Design, synthesis, molecular modeling and anti-breast cancer activity of novel quinazolin-4-one derivatives linked to thiazolidinone, oxadiazole or pyrazole moieties. Med. Chem. Res., 2015, 24(7), 2993-3007.
[http://dx.doi.org/10.1007/s00044-015-1357-1]
[104]
Guiles, J.; Sun, X.; Critchley, I.A.; Ochsner, U.; Tregay, M.; Stone, K.; Bertino, J.; Green, L.; Sabin, R.; Dean, F.; Garry Dallmann, H.; McHenry, C.S.; Janjic, N. Quinazolin-2-ylamino-quinazolin-4-ols as novel non-nucleoside inhibitors of bacterial DNA polymerase III. Bioorg. Med. Chem. Lett., 2009, 19(3), 800-802.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.038] [PMID: 19109016]
[105]
Modh, R.P.; Patel, A.C.; Chikhalia, K.H. Design, synthesis & biological evaluation of some novel quinazolinone scaffolds. Med. Chem., 2012, 8(2), 182-192.
[http://dx.doi.org/10.2174/157340612800493610] [PMID: 22385177]
[106]
Patel, M.B.; Kumar, S.P.; Valand, N.N.; Jasrai, Y.T.; Menon, S.K. Synthesis and biological evaluation of cationic fullerene quinazolinone conjugates and their binding mode with modeled Mycobacterium tuberculosis hypoxanthine-guanine phosphoribosyltransferase enzyme. J. Mol. Model., 2013, 19(8), 3201-3217.
[http://dx.doi.org/10.1007/s00894-013-1820-1] [PMID: 23625031]
[107]
Marrakchi, H.; Lanéelle, M.A.; Daffé, M. Mycolic acids: structures, biosynthesis, and beyond. Chem. Biol., 2014, 21(1), 67-85.
[http://dx.doi.org/10.1016/j.chembiol.2013.11.011] [PMID: 24374164]
[108]
Banerjee, A.; Dubnau, E.; Quemard, A.; Balasubramanian, V.; Um, K.S.; Wilson, T.; Collins, D.; de Lisle, G.; Jacobs, W.R. Jr inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science, 1994, 263(5144), 227-230.
[http://dx.doi.org/10.1126/science.8284673] [PMID: 8284673]
[109]
Szumowski, J.D.; Adams, K.N.; Edelstein, P.H.; Ramakrishnan, L. Antimicrobial efflux pumps and Mycobacterium tuberculosis drug tolerance: evolutionary considerations. Pathogenesis of Mycobacterium tuberculosis and its Interaction with the Host Organism; Pieters, J.; McKinney, J.D., Eds.; Springer Berlin Heidelberg, 2013, pp. 81-108.
[http://dx.doi.org/10.1007/82_2012_300]
[110]
Aínsa, J.A.; Pérez, E.; Pelicic, V.; Berthet, F.X.; Gicquel, B.; Martín, C. Aminoglycoside 2′‐ N ‐acetyltransferase genes are universally present in mycobacteria: characterization of the aac(2 ′)‐Ic gene from Mycobacterium tuberculosis and the aac(2 ′)‐Id gene from Mycobacterium smegmatis. Mol. Microbiol., 1997, 24(2), 431-441.
[http://dx.doi.org/10.1046/j.1365-2958.1997.3471717.x] [PMID: 9159528]
[111]
Rossi, E.D.; Aínsa, J.A.; Riccardi, G. Role of mycobacterial efflux transporters in drug resistance: An unresolved question. FEMS Microbiol. Rev., 2006, 30(1), 36-52.
[http://dx.doi.org/10.1111/j.1574-6976.2005.00002.x] [PMID: 16438679]
[112]
Poole, K. Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother., 2005, 56(1), 20-51.
[http://dx.doi.org/10.1093/jac/dki171] [PMID: 15914491]
[113]
Shang, J.; Wang, W.M.; Li, Y.H.; Song, H.B.; Li, Z.M.; Wang, J.G. Synthesis, crystal structure, in vitro acetohydroxyacid synthase inhibition, in vivo herbicidal activity, and 3D-QSAR of new asymmetric aryl disulfides. J. Agric. Food Chem., 2012, 60(34), 8286-8293.
[http://dx.doi.org/10.1021/jf302206x] [PMID: 22905906]
[114]
Grandoni, J.A.; Marta, P.T.; Schloss, J.V. Inhibitors of branched-chain amino acid biosynthesis as potential antituberculosis agents. J. Antimicrob. Chemother., 1998, 42(4), 475-482.
[http://dx.doi.org/10.1093/jac/42.4.475] [PMID: 9818746]
[115]
Bouley, R.; Kumarasiri, M.; Peng, Z.; Otero, L.H.; Song, W.; Suckow, M.A.; Schroeder, V.A.; Wolter, W.R.; Lastochkin, E.; Antunes, N.T.; Pi, H.; Vakulenko, S.; Hermoso, J.A.; Chang, M.; Mobashery, S. Discovery of Antibiotic (E)-3-(3-Carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3 H)-one. J. Am. Chem. Soc., 2015, 137(5), 1738-1741.
[http://dx.doi.org/10.1021/jacs.5b00056] [PMID: 25629446]
[116]
Macheboeuf, P.; Contreras-Martel, C.; Job, V.; Dideberg, O.; Dessen, A. Penicillin Binding Proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol. Rev., 2006, 30(5), 673-691.
[http://dx.doi.org/10.1111/j.1574-6976.2006.00024.x] [PMID: 16911039]
[117]
Fedarovich, A.; Nicholas, R.A.; Davies, C. The role of the β5-α11 loop in the active-site dynamics of acylated penicillin-binding protein A from Mycobacterium tuberculosis. J. Mol. Biol., 2012, 418(5), 316-330.
[http://dx.doi.org/10.1016/j.jmb.2012.02.021] [PMID: 22365933]
[118]
Dartois, V.; Barry, C.E. III A medicinal chemists’ guide to the unique difficulties of lead optimization for tuberculosis. Bioorg. Med. Chem. Lett., 2013, 23(17), 4741-4750.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.006] [PMID: 23910985]
[119]
Manjunatha, U.H.; Smith, P.W. Perspective: Challenges and opportunities in TB drug discovery from phenotypic screening. Bioorg. Med. Chem., 2015, 23(16), 5087-5097.
[http://dx.doi.org/10.1016/j.bmc.2014.12.031] [PMID: 25577708]
[120]
Ioerger, T.R.; O’Malley, T.; Liao, R.; Guinn, K.M.; Hickey, M.J.; Mohaideen, N. Identification of new drug targets and resistance mechanisms in Mycobacterium tuberculosis. PLoS One, 2013, 8(9), e75245.
[http://dx.doi.org/10.1371/journal.pone.0075245]
[121]
Altenhofen, S.; Nabinger, D.D.; Wiprich, M.T.; Pereira, T.C.B.; Bogo, M.R.; Bonan, C.D. Tebuconazole alters morphological, behavioral and neurochemical parameters in larvae and adult zebrafish (Danio rerio). Chemosphere, 2017, 180, 483-490.
[http://dx.doi.org/10.1016/j.chemosphere.2017.04.029] [PMID: 28431386]
[122]
Calgin, M.K.; Sahin, F.; Turegun, B.; Gerceker, D.; Atasever, M.; Koksal, D.; Karasartova, D.; Kiyan, M. Expression analysis of efflux pump genes among drug-susceptible and multidrug-resistant Mycobacterium tuberculosis clinical isolates and reference strains. Diagn. Microbiol. Infect. Dis., 2013, 76(3), 291-297.
[http://dx.doi.org/10.1016/j.diagmicrobio.2013.02.033] [PMID: 23561272]
[123]
Brenwald, N.P.; Gill, M.J.; Wise, R. Prevalence of a putative efflux mechanism among fluoroquinolone-resistant clinical isolates of Streptococcus pneumoniae. Antimicrob. Agents Chemother., 1998, 42(8), 2032-2035.
[http://dx.doi.org/10.1128/AAC.42.8.2032] [PMID: 9687402]
[124]
Alagarsamy, V.; Raja, S.V.; Sheorey, R.V.; Jayakumar, R. 3-(3-ethylphenyl)-2-substituted hydrazino-3H-quinazolin-4-one derivatives: New class of analgesic and anti-inflammatory agents. Chem. Biol. Drug Des., 2009, 73(4), 471-479.
[125]
Alagarsamy, V.; Anjana, G.V.; Sulthana, M.T.; Parthiban, P.; Solomon, V.R. Antimicrobial activities of some synthesized 1-(3-(2-methylphenyl)-4-Oxo-3H-quinazolin-2-yl-4-(substituted)thiosemicarbazide derivatives. Russ. J. Bioorganic Chem., 2016, 42(3), 332-339.
[http://dx.doi.org/10.1134/S106816201603002X]
[126]
Saito, H.; Tomioka, H.; Sato, K.; Emori, M.; Yamane, T.; Yamashita, K.; Hosoe, K.; Hidaka, T. In vitro antimycobacterial activities of newly synthesized benzoxazinorifamycins. Antimicrob. Agents Chemother., 1991, 35(3), 542-547.
[http://dx.doi.org/10.1128/AAC.35.3.542] [PMID: 2039206]
[127]
Stanley, S.A.; Grant, S.S.; Kawate, T.; Iwase, N.; Shimizu, M.; Wivagg, C.; Silvis, M.; Kazyanskaya, E.; Aquadro, J.; Golas, A.; Fitzgerald, M.; Dai, H.; Zhang, L.; Hung, D.T. Identification of novel inhibitors of M. tuberculosis growth using whole cell based high-throughput screening. ACS Chem. Biol., 2012, 7(8), 1377-1384.
[http://dx.doi.org/10.1021/cb300151m] [PMID: 22577943]
[128]
Pethe, K.; Sequeira, P.C.; Agarwalla, S.; Rhee, K.; Kuhen, K.; Phong, W.Y.; Patel, V.; Beer, D.; Walker, J.R.; Duraiswamy, J.; Jiricek, J.; Keller, T.H.; Chatterjee, A.; Tan, M.P.; Ujjini, M.; Rao, S.P.S.; Camacho, L.; Bifani, P.; Mak, P.A.; Ma, I.; Barnes, S.W.; Chen, Z.; Plouffe, D.; Thayalan, P.; Ng, S.H.; Au, M.; Lee, B.H.; Tan, B.H.; Ravindran, S.; Nanjundappa, M.; Lin, X.; Goh, A.; Lakshminarayana, S.B.; Shoen, C.; Cynamon, M.; Kreiswirth, B.; Dartois, V.; Peters, E.C.; Glynne, R.; Brenner, S.; Dick, T. A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nat. Commun., 2010, 1(1), 57.
[http://dx.doi.org/10.1038/ncomms1060] [PMID: 20975714]
[129]
Baughn, A.D.; Rhee, K.Y. Metabolomics of central carbon metabolism in Mycobacterium tuberculosis. Microbiol. Spectr., 2014, 2(3), 2.3.02.
[http://dx.doi.org/10.1128/microbiolspec.MGM2-0026-2013] [PMID: 26103978]
[130]
Manjunatha, U.; Boshoff, H.I.M.; Barry, C.E. The mechanism of action of PA-824. Commun. Integr. Biol., 2009, 2(3), 215-218.
[http://dx.doi.org/10.4161/cib.2.3.7926] [PMID: 19641733]
[131]
Sahu, A.; Kumar, D.; Agrawal, R.K. Antileishmanial drug discovery: Synthetic methods, chemical characteristics, and biological potential of quinazolines and its derivatives. Antiinflamm. Antiallergy Agents Med. Chem., 2017, 16(1), 3-32.
[132]
Sahu, A.; Mishra, S.; Sahu, P.; Gajbhiye, A.; Agrawal, R.K. Indium (III) chloride: An efficient catalyst for one-pot multicomponent synthesis of 2, 3-dihydroquinazoline-4 (1H)-ones. Curr. Organocatal., 2018, 5(2), 137-144.
[http://dx.doi.org/10.2174/2213337205666180614112318]
[133]
Sahu, P.; Sahu, A.; Sakthivel, A. Cyclocondensation of anthranilamide with aldehydes on gallium-containing MCM-22 zeolite materials. ACS Omega, 2021, 6(43), 28828-28837.
[http://dx.doi.org/10.1021/acsomega.1c03704] [PMID: 34746575]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy