Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

BAAE-AgNPs Improve Symptoms of Diabetes in STZ-induced Diabetic Rats

Author(s): Yasser Omar Mosaad, Mohammed Abdalla Hussein*, Hayam Ateyya, Soha Ahmed Hassan, Michael Wink, Naglaa Abd El Khalik Gobba and Zahraa Nassar Mohamed

Volume 24, Issue 14, 2023

Published on: 28 April, 2023

Page: [1812 - 1826] Pages: 15

DOI: 10.2174/1389201024666230313105049

Price: $65

conference banner
Abstract

Objectives: Nanoparticles can be employed to improve the therapeutic activity of natural products. Type 2 diabetes mellitus is a serious health condition that has spread like a "modern pandemic" worldwide. In the present study, we developed silver nanoparticles, Ag-NPs, with an aqueous extract from Balanites aegyptiaca to investigate their antioxidant and anti-inflammatory activity in STZ-induced diabetic rats.

Methods: Aqueous extracts of Balanites aegyptiaca seeds (BAAE) were used in the synthesis of BAAE-AgNPs, which were characterized using FTIR and TEM. Different doses of BAAE-AgNP (1/50 LD50; 29.4 mg/kg b.w. and 1/20 LD50: 73.5 mg/kg b.w.) were administered to STZ-induced diabetic rats to evaluate their potential antidiabetic activity.

Results: FTIR spectral data indicated the presence of flavonoids and polyphenols in BAAEAgNPs. The size of the BAAE-AgNPs, determined by TEM examination, was 49.33 ± 7.59 nm, with a zeta potential of +25.37. BAAE-AgNPs were characterized by an LD50 value of 1470 mg/kg b.w. In diabetic rats, the daily oral administration of both doses of BAAE-AgNPs (29.4 and 73.5 mg/kg b.w.) for 12 weeks resulted in a significant improvement in body weight, insulin homeostasis, HbA1c, HDL-C, MDA, and pancreatic SOD, CAT, and GSH. They reduced plasma glucose, cholesterol, and triglycerides. This treatment also resulted in a significant decrease in pancreatic IL-6, p53, and TNF-α in diabetic rats. Furthermore, BAAE-AgNPs down-regulated pancreatic TGF-β1 and Akt gene expression in diabetic rats and resulted in a significant decrease in the regulation of hepatic GLUT-2, as well as an increase in the regulation of hepatic GK and pancreatic B-cl2 gene expression. The histopathological results obtained indicated that BAAEAgNPs improved pancreatic tissue metabolism by enhancing antioxidant enzymes, suppressing inflammatory cytokines, and scavenging free radicals.

Conclusion: The findings implied that similar to the glibenclamide-treated groups, in the BAAEAgNPs treated group, the compromised antioxidant status normalized in STZ-induced diabetes. By scavenging free radicals, BAAE-Ag-NPs protected against lipid peroxidation while reducing the risk of complications from diabetes. Compared to the daily dose of 29.4 mg, the impact was more prominent at 73.5 mg.

Keywords: BAAE-AgNPs, silver nanoparticles, Balanites aegyptiaca, diabetic rats, STZ, inflammatory mediators, GLUT2, glucokinase.

Graphical Abstract
[1]
Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract., 2011, 94(3), 311-321.
[http://dx.doi.org/10.1016/j.diabres.2011.10.029] [PMID: 22079683]
[2]
Shoback, D.G.; Gardner, D. Greenspan’s basic & clinical endocrinology, 9th ed; McGraw-Hill Medical: New York, 2011.
[3]
IDF Diabetes Atlas. Ninth Edition 2019. Available on: https://www.diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf (Accessed on: 18 May 2020).
[4]
WHO Diabetes mellitus. WHO. 2004. Available on: https://web.archive.org/web/20040611164055/http://www.who.int/mediacentre/factsheets/fs138/en/ (Accessed on 2019-03-23).
[5]
Verrotti, A.; Scaparrotta, A.; Olivieri, C.; Chiarelli, F. Mechanisms in endocrinology: Seizures and type 1 diabetes mellitus: Current state of knowledge. Eur. J. Endocrinol., 2012, 167(6), 749-758.
[http://dx.doi.org/10.1530/EJE-12-0699] [PMID: 22956556]
[6]
Sarwar, N.; Gao, P.; Seshasai, S.R.; Gobin, R.; Kaptoge, S.; Di Angelantonio, E.; Ingelsson, E.; Lawlor, D.A.; Selvin, E.; Stampfer, M.; Stehouwer, C.D.; Lewington, S.; Pennells, L.; Thompson, A.; Sattar, N.; White, I.R.; Ray, K.K.; Danesh, J. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet, 2010, 375(9733), 2215-2222.
[http://dx.doi.org/10.1016/S0140-6736(10)60484-9] [PMID: 20609967]
[7]
Papatheodorou, K.; Banach, M.; Bekiari, E.; Rizzo, M.; Edmonds, M. Complications of diabetes 2017. J. Diabetes Res., 2018, 2018, 1-4.
[http://dx.doi.org/10.1155/2018/3086167] [PMID: 29713648]
[8]
Lin, X.; Xu, Y.; Pan, X.; Xu, J.; Ding, Y.; Sun, X.; Song, X.; Ren, Y.; Shan, P.F. Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025. Sci. Rep., 2020, 10(1), 14790.
[http://dx.doi.org/10.1038/s41598-020-71908-9] [PMID: 32901098]
[9]
Agrawal, N.; Maiti, R.; Dash, D.; Pandey, B. Cilostazol reduces inflammatory burden and oxidative stress in hypertensive type 2 diabetes mellitus patients. Pharmacol. Res., 2007, 56(2), 118-123.
[http://dx.doi.org/10.1016/j.phrs.2007.04.007] [PMID: 17548203]
[10]
Saravanan, G.; Pari, L. Hypoglycaemic and antihyperglycaemic effect of Syzygium cumini bark in streptozotocin-induced diabetic rats. J Pharmacol Toxicol, 2008, 3, 1-10.
[http://dx.doi.org/10.3923/jpt.2008.1.10]
[11]
Abdel Maksoud, H.A.; Elharrif, M.G.; Mahfouz, M.K.; Omnia, M.A.; Abdullah, M.H.; Eltabey, M. Biochemical study on occupational inhalation of benzene vapours in petrol station. Respir. Med. Case Rep., 2019, 27, 100836.
[http://dx.doi.org/10.1016/j.rmcr.2019.100836]
[12]
Kumar, R.; Pate, D.K.; Prasad, S.K.; Sairam, K.; Hemalatha, S. Antidiabetic activity of alcoholic leaves extract of Alangium lamarckii Thwaites on streptozotocin–nicotinamide induced type 2 diabetic rats. Asian Pac. J. Trop. Med., 2011, 4(11), 904-909.
[http://dx.doi.org/10.1016/S1995-7645(11)60216-2] [PMID: 22078954]
[13]
Farid, H.; Haslinger, E.; Kunert, O.; Wegner, C.; Hamburger, M. New steroidal glycosides from Balanites aegyptiaca. Helv. Chim. Acta, 2002, 85(4), 1019-1026.
[http://dx.doi.org/10.1002/1522-2675(200204)85:4<1019:AID-HLCA1019>3.0.CO;2-S]
[14]
Gad, M.Z.; El-Sawalhi, M.M.; Ismail, M.F.; El-Tanbouly, N.D. Biochemical study of the anti-diabetic action of the Egyptian plants Fenugreek and Balanites. Mol. Cell. Biochem., 2006, 281(1-2), 173-183.
[http://dx.doi.org/10.1007/s11010-006-0996-4] [PMID: 16328970]
[15]
Abdel Motaal, A.; El-Askary, H.; Crockett, S.; Kunert, O.; Sakr, B.; Shaker, S.; Grigore, A.; Albulescu, R.; Bauer, R. Aldose reductase inhibition of a saponin-rich fraction and new furostanol saponin derivatives from Balanites aegyptiaca. Phytomedicine, 2015, 22(9), 829-836.
[http://dx.doi.org/10.1016/j.phymed.2015.05.059] [PMID: 26220630]
[16]
Meda, R.N.T.; Vlase, L.; Lamien-Meda, A.; Lamien, C.E.; Muntean, D.; Tiperciuc, B.; Oniga, I.; Nacoulma, O.G. Identification and quantification of phenolic compounds from Balanites aegyptiaca (L) Del (Balanitaceae) galls and leaves by HPLC–MS. Nat. Prod. Res., 2011, 25(2), 93-99.
[http://dx.doi.org/10.1080/14786419.2010.482933] [PMID: 21246435]
[17]
Yoshinari, O.; Takenake, A.; Igarashi, K. Trigonelline ameliorates oxidative stress in type 2 diabetic Goto-Kakizaki rats. J. Med. Food, 2013, 16(1), 34-41.
[http://dx.doi.org/10.1089/jmf.2012.2311] [PMID: 23256445]
[18]
Sengottaiyan, A.; Aravinthan, A.; Sudhakar, C.; Selvam, K.; Srinivasan, P.; Govarthanan, M.; Manoharan, K.; Selvankumar, T. Synthesis and characterization of Solanum nigrum-mediated silver nanoparticles and its protective effect on alloxan-induced diabetic rats. J. Nanostructure Chem., 2016, 6(1), 41-48.
[http://dx.doi.org/10.1007/s40097-015-0178-6]
[19]
Hussein, M.A. Synthesis of some novel triazoloquinazolines and triazinoquinazolines and their evaluation for anti-inflammatory activity. Med. Chem. Res., 2012, 21(8), 1876-1886.
[http://dx.doi.org/10.1007/s00044-011-9707-0]
[20]
Martínez-Esquivias, F.; Guzmán-Flores, J.M.; Pérez-Larios, A.; Rico, J.L.; Becerra-Ruiz, J.S. A review of the efects of gold, silver, selenium, and zinc nanoparticles on diabetes mellitus in murine models. Mini Rev. Med. Chem., 2021, 21(14), 1798-1812.
[http://dx.doi.org/10.2174/18755607MTEziOTEv4] [PMID: 33535949]
[21]
Soliman, S.M.; Mosallam, S.; Mamdouh, M.A.; Hussein, M.A.; Abd El-Halim, S.M. Design and optimization of cranberry extract loaded bile salt augmented liposomes for targeting of MCP-1/STAT3/VEGF signaling pathway in DMN-intoxicated liver in rats. Drug Deliv., 2022, 29(1), 427-439.
[http://dx.doi.org/10.1080/10717544.2022.2032875]
[22]
Tang, K.S. The current and future perspectives of zinc oxide nanoparticles in the treatment of diabetes mellitus. Life Sci., 2019, 239, 117011.
[http://dx.doi.org/10.1016/j.lfs.2019.117011] [PMID: 31669241]
[23]
Liu, Y.C.; Lin, L.H. New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochem. Commun., 2004, 6(11), 1163-1168.
[http://dx.doi.org/10.1016/j.elecom.2004.09.010]
[24]
Bae, C.H.; Nam, S.H.; Park, S.M. Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution. Appl. Surf. Sci., 2002, 197-198, 628-634.
[http://dx.doi.org/10.1016/S0169-4332(02)00430-0]
[25]
Basavaraja, S.; Balaji, S.D.; Lagashetty, A.; Rajasab, A.H.; Venkataraman, A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater. Res. Bull., 2008, 43(5), 1164-1170.
[http://dx.doi.org/10.1016/j.materresbull.2007.06.020]
[26]
Jha, A.K.; Prasad, K. Green synthesis of silver nanoparticles using Cycas leaf. Int. J. Green Nanotechnol., 2010, 1(2), 110-P117.
[27]
Virgen-Ortiz, A.; Limon-Miranda, S.; Soto-Covarrubias, M.; Apolinar-Iribe, A.; Rodriguez-Leon, E.; Iniguez-Palomares, R. Biocompatible silver nanoparticles synthesized using Rumex hymenosepalus extract decreases fasting glucose levels in diabetic rats. Dig. J. Nanomater. Biostruct., 2015, 10(3), 927-933.
[28]
Ge, L.; Li, Q.; Wang, M.; Ouyang, J.; Li, X.; Xing, M.M. Nanosilver particles in medical applications: Synthesis, performance, and toxicity. Int. J. Nanomedicine, 2014, 9, 2399-2407.
[PMID: 24876773]
[29]
Mirza, A.Z.; Siddiqui, F.A. Nanomedicine and drug delivery: A mini review. Int. Nano Lett., 2014, 4(1), 94.
[http://dx.doi.org/10.1007/s40089-014-0094-7]
[30]
Hussein, M.A.; Ismail, N.E.M.; Mohamed, A.H.; Borik, R.M.; Ali, A.A.; Mosaad, Y.O. Plasma phospholipids: A promising simple biochemical parameter to evaluate COVID-19 infection severity. Bioinform. Biol. Insights, 2021, 15, 11779322211055891.
[http://dx.doi.org/10.1177/11779322211055891]
[31]
Ghorab, M.; Ismail, Z.; Abdala, M. Synthesis and biological activities of some novel triazoloquinazolines and triazinoquinazolines containing benzenesulfonamide moieties. Arzneimittelforschung, 2011, 60(2), 87-95.
[http://dx.doi.org/10.1055/s-0031-1296254] [PMID: 20329657]
[32]
Boshra, S.A.; Hussein, M.A. Cranberry extract as a supplemented food in treatment of oxidative stress and breast cancer induced by N-Methyl-N-Nitrosourea in female virgin rats. Int. J. Phytomed., 2016, 8, 217-227.
[33]
Abal, P.; Louzao, M.; Antelo, A.; Alvarez, M.; Cagide, E.; Vilariño, N.; Vieytes, M.; Botana, L. Acute oral toxicity of tetrodotoxin in mice: Determination of lethal dose 50 (LD50) and no observed adverse effect level (NOAEL). Toxins, 2017, 9(3), 75.
[http://dx.doi.org/10.3390/toxins9030075] [PMID: 28245573]
[34]
Hussein, M.A. Antidiabetic and antioxidant activity of Jasonia Montana extract in streptozotocin-induced diabetic rats. Saudi Pharm. J., 2008, 16(3), 214-221.
[35]
Abdelaziz, S.M.; Lemine, F.M.M.; Tfeil, H.O.; Filali-Maltouf, A.; Boukhary, A.O.M.S. Phytochemicals, antioxidant activity and ethnobotanical uses of Balanites aegyptiaca (L.) Del. Fruits from the Arid Zone of Mauritania, Northwest Africa. Plants, 2020, 9(3), 401.
[http://dx.doi.org/10.3390/plants9030401] [PMID: 32213817]
[36]
Feng, D.; Ling, W.H.; Duan, R.D. Lycopene suppresses LPS-induced NO and IL-6 production by inhibiting the activation of ERK, p38MAPK, and NF-κB in macrophages. Inflamm. Res., 2010, 59(2), 115-121.
[http://dx.doi.org/10.1007/s00011-009-0077-8] [PMID: 19693648]
[37]
Bancroft, G.D.; Steven, A. Theory and Practice of Histological Technique, 4th ed; Churchill Livingstone: New York, 1983, pp. 99-112.
[38]
Abubakar, M.S.; Usman, B. Investigation of corrosion inhibition potential of ethanol extract of Balanites aegyptiaca leaves on mild steel in 1 M hydrochloric acid solution. Mor. J. Chem, 2019, 7, 082-097.
[39]
Hassan, D.M.; Anigo, K.M.; Umar, I.A.; Alegbejo, J.O. Evaluation of phytoconstituent of Balanites aegyptiaca (L) Del leaves and fruit-mesocarp extracts. MOJ Bioorg Org Chem, 2017, 1(6), 228-232.
[http://dx.doi.org/10.15406/mojboc.2017.01.00039]
[40]
Chothani, D.; Vaghasiya, H.U. A review on Balanites aegyptiaca Del (desert date): Phytochemical constituents, traditional uses, and pharmacological activity. Pharmacogn. Rev., 2011, 5(9), 55-62.
[http://dx.doi.org/10.4103/0973-7847.79100] [PMID: 22096319]
[41]
Motaal, A.A.; Shaker, S.; Haddad, P.S. Antidiabetic activity of standardized extracts of Balanites aegyptiaca fruits using cell-based bioassays. Pharmacogn. J., 2012, 4(30), 20-24.
[http://dx.doi.org/10.5530/pj.2012.30.4]
[42]
Ajitha, B.; Ashok Kumar Reddy, Y.; Sreedhara Reddy, P. Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Mater. Sci. Eng. C, 2015, 49, 373-381.
[http://dx.doi.org/10.1016/j.msec.2015.01.035] [PMID: 25686962]
[43]
Atale, N.; Saxena, S.; Nirmala, J.G.; Narendhirakannan, R.T.; Mohanty, S.; Rani, V. Synthesis and characterization of Sygyzium cumini nanoparticles for its protective potential in high glucose-induced cardiac stress: A green approach. Appl. Biochem. Biotechnol., 2017, 181(3), 1140-1154.
[http://dx.doi.org/10.1007/s12010-016-2274-6] [PMID: 27734287]
[44]
Gasmalla, H.B.; Idris, A.M.; Shinger, M.I.; Qin, D.; Shan, D.; Lu, X. Balanites aegyptiaca oil synthesized iron oxide nanoparticles: Characterization and antibacterial activity. J. Biomater. Nanobiotechnol., 2016, 7(3), 154-165.
[http://dx.doi.org/10.4236/jbnb.2016.73016]
[45]
Zhang, W.; Shi, X.; Huang, J.; Zhang, Y.; Wu, Z.; Xian, Y. Bacitracin-conjugated superparamagnetic iron oxide nanoparticles: Synthesis, characterization and antibacterial activity. ChemPhysChem, 2012, 13(14), 3388-3396.
[http://dx.doi.org/10.1002/cphc.201200161] [PMID: 22753190]
[46]
Strath, L.J.; Sorge, R.E. Racial differences in pain, nutrition, and oxidative stress. Pain Ther., 2022, 11(1), 37-56.
[http://dx.doi.org/10.1007/s40122-022-00359-z] [PMID: 35106711]
[47]
Bahr, P.R. Race and nutrition: An investigation of Black-White differences in health-related nutritional behaviours. Sociol. Health Illn., 2007, 29(6), 831-856.
[http://dx.doi.org/10.1111/j.1467-9566.2007.01049.x] [PMID: 17986018]
[48]
Kaneto, H.; Xu, G.; Song, K.H.; Suzuma, K.; Bonner-Weir, S.; Sharma, A.; Weir, G.C. Activation of the hexosamine pathway leads to deterioration of pancreatic beta-cell function through the induction of oxidative stress. J. Biol. Chem., 2001, 276(33), 31099-31104.
[http://dx.doi.org/10.1074/jbc.M104115200] [PMID: 11390407]
[49]
Haidara, M.; Yassin, H.; Rateb, M.; Ammar, H.; Zorkani, M. Role of oxidative stress in development of cardiovascular complications in diabetes mellitus. Curr. Vasc. Pharmacol., 2006, 4(3), 215-227.
[http://dx.doi.org/10.2174/157016106777698469] [PMID: 16842139]
[50]
Saratale, R.G.; Shin, H.S.; Kumar, G.; Benelli, G.; Kim, D.S.; Saratale, G.D. Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2). Artif. Cells Nanomed. Biotechnol., 2018, 46(1), 211-222.
[http://dx.doi.org/10.1080/21691401.2017.1337031] [PMID: 28612655]
[51]
Al-Ghannam, S.M.; Ahmed, H.H.; Zein, N.; Zahran, F. Antitumor activity of balanitoside extracted from Balanites aegyptiaca fruit. J. Appl. Pharm. Sci., 2013, 3, 179-191.
[52]
Elgizawy, H.A.; Ali, A.A.; Hussein, M.A. Resveratrol: Isolation, and its nanostructured lipid carriers, inhibits cell proliferation, induces cell apoptosis in certain human cell lines carcinoma and exerts protective effect against paraquat-induced hepatotoxicity. J. Med. Food, 2021, 24(1), 89-100.
[http://dx.doi.org/10.1089/jmf.2019.0286]
[53]
Booth, D.A.; Gibson, E.L. Physics and physiology of obesity: Higher rate of energy input than output. Comment on “The carbohydrate–insulin model: A physiological perspective on the obesity pandemic”. Am. J. Clin. Nutr., 2022, 115(2), 590-591.
[http://dx.doi.org/10.1093/ajcn/nqab382] [PMID: 35139169]
[54]
El Gizawy, H.A.; Abo-Salem, H.M.; Ali, A.A.; Hussein, M.A. Phenolic profiling and therapeutic potential of certain isolated compounds from Parkia roxburghii against AChE Activity as well as GABA A α5, GSK-3β, and p38α MAP-Kinase Genes. ACS Omega, 2021, 6(31), 20492-20511.
[http://dx.doi.org/10.1021/acsomega.1c02340] [PMID: 34395996]
[55]
Oloyede, O.B.; Ajiboye, T.O.; Abdussalam, A.F.; Adeleye, A.O. Blighia sapida leaves halt elevated blood glucose, dyslipidemia and oxidative stress in alloxan-induced diabetic rats. J. Ethnopharmacol., 2014, 157, 309-319.
[http://dx.doi.org/10.1016/j.jep.2014.08.022] [PMID: 25172468]
[56]
Pugalendi, K.V.; Kalaivanan, K. Antihyperglycemic effect of the alcoholic seed extract of Swietenia macrophylla on streptozotocin-diabetic rats. Pharmacognosy Res., 2011, 3(1), 67-71.
[http://dx.doi.org/10.4103/0974-8490.79119] [PMID: 21731399]
[57]
Balzarro, M.; Rubilotta, E.; Trabacchin, N.; Soldano, A.; Cerrato, C.; Migliorini, F.; Mancini, V.; Pastore, A.L.; Carbone, A.; Cormio, L.; Carrieri, G.; Antonelli, A. Early and late efficacy on wound healing of silver nanoparticle gel in males after circumcision. J. Clin. Med., 2020, 9(6), 1822.
[http://dx.doi.org/10.3390/jcm9061822] [PMID: 32545258]
[58]
Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharm. J., 2016, 24(4), 473-484.
[http://dx.doi.org/10.1016/j.jsps.2014.11.013] [PMID: 27330378]
[59]
Nickavar, B.; Abolhasani, L. Bioactivity-guided separation of an a-amylase inhibitor flavonoid from Salvia virgata. Iran. J. Pharm. Res., 2013, 12(1), 57-61.
[PMID: 24250572]
[60]
Dipankar, C.; Murugan, S. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf. B Biointerfaces, 2012, 98, 112-119.
[http://dx.doi.org/10.1016/j.colsurfb.2012.04.006] [PMID: 22705935]
[61]
Mata, R.; Nakkala, J.R.; Sadras, S.R. Biogenic silver nanoparticles from Abutilon indicum: Their antioxidant, antibacterial and cytotoxic effects in vitro. Colloids Surf. B Biointerfaces, 2015, 128, 276-286.
[http://dx.doi.org/10.1016/j.colsurfb.2015.01.052] [PMID: 25701118]
[62]
Sarker, S.D.; Bartholomew, B.; Nash, R.J. Alkaloids from Balanites aegyptiaca. Fitoterapia, 2000, 71(3), 328-330.
[http://dx.doi.org/10.1016/S0367-326X(99)00149-5] [PMID: 10844174]
[63]
Murthy, H.N.; Yadav, G.G.; Dewir, Y.H.; Ibrahim, A. Phytochemicals and biological activity of desert date (Balanites aegyptiaca (L.) Delile). Plants, 2020, 10(1), 32.
[http://dx.doi.org/10.3390/plants10010032] [PMID: 33375570]
[64]
Khamis, G.; Saleh, A.M.; Habeeb, T.H.; Hozzein, W.N.; Wadaan, M.A.M.; Papenbrock, J. AbdElgawad, H. Provenance effect on bioactive phytochemicals and nutritional and health benefits of the desert date Balanites aegyptiaca. J. Food Biochem., 2020, 44(6), e13229.
[http://dx.doi.org/10.1111/jfbc.13229] [PMID: 32250478]
[65]
El-Gizawy, H.A.; Hussein, M.A. Fatty acids profile, nutritional values, anti-diabetic and antioxidant activity of the fixed oil of Malva parviflora growing in Egypt. Int. J. Phytomed., 2015, 7, 219-230.
[66]
Jaiswal, S.; Mishra, P. Antimicrobial and antibiofilm activity of curcumin-silver nanoparticles with improved stability and selective toxicity to bacteria over mammalian cells. Med. Microbiol. Immunol., 2018, 207(1), 39-53.
[http://dx.doi.org/10.1007/s00430-017-0525-y] [PMID: 29081001]
[67]
Amina, M.; Al Musayeib, N.M.; Alarfaj, N.A.; El-Tohamy, M.F.; Al-Hamoud, G.A. Antibacterial and immunomodulatory potentials of biosynthesized Ag, Au, Ag-Au bimetallic alloy nanoparticles using the Asparagus racemosus root extract. Nanomaterials, 2020, 10(12), 2453.
[http://dx.doi.org/10.3390/nano10122453] [PMID: 33302432]
[68]
Nandipati, K.C.; Subramanian, S.; Agrawal, D.K. Protein kinases: Mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol. Cell. Biochem., 2017, 426(1-2), 27-45.
[http://dx.doi.org/10.1007/s11010-016-2878-8] [PMID: 27868170]
[69]
Yu, N.; Fang, X.; Zhao, D.; Mu, Q.; Zuo, J.; Ma, Y.; Zhang, Y.; Mo, F.; Zhang, D.; Jiang, G.; Wu, R.; Gao, S. Anti-diabetic effects of Jiang Tang Xiao Ke granule via PI3K/Akt signalling pathway in type 2 diabetes KKAy mice. PLoS One, 2017, 12(1), e0168980.
[http://dx.doi.org/10.1371/journal.pone.0168980] [PMID: 28045971]
[70]
Chen, L.; Xiang, Y.; Kong, L.; Zhang, X.; Sun, B.; Wei, X.; Liu, H. Hydroxysafflor yellow A protects against cerebral ischemia-reperfusion injury by anti-apoptotic effect through PI3K/Akt/GSK3β pathway in rat. Neurochem. Res., 2013, 38(11), 2268-2275.
[http://dx.doi.org/10.1007/s11064-013-1135-8] [PMID: 23990223]
[71]
Spitzer, N.; Patterson, K.C.K.; Kipps, D.W. Akt and MAPK/ERK signaling regulate neurite extension in adult neural progenitor cells but do not directly mediate disruption of cytoskeletal structure and neurite dynamics by low-level silver nanoparticles. Toxicol. In Vitro, 2021, 74, 105151.
[http://dx.doi.org/10.1016/j.tiv.2021.105151] [PMID: 33753175]
[72]
Song, S.; Andrikopoulos, S.; Filippis, C.; Thorburn, A.W.; Khan, D.; Proietto, J. Mechanism of fat-induced hepatic gluconeogenesis: Effect of metformin. Am. J. Physiol. Endocrinol. Metab., 2001, 281(2), E275-E282.
[http://dx.doi.org/10.1152/ajpendo.2001.281.2.E275] [PMID: 11440903]
[73]
Eisenberg, M.; Maker, A.; Slezak, L.; Nathan, J.; Sritharan, K.; Jena, B.; Geibel, J.; Andersen, D. Insulin receptor (IR) and glucose transporter 2 (GLUT-2) proteins form a complex on the rat hepatocyte membrane. Cell. Physiol. Biochem., 2005, 15(1-4), 051-058.
[http://dx.doi.org/10.1159/000083638] [PMID: 15665515]
[74]
Borik, R.M.; Hussein, M.A. A novel Qquinazoline-4-one derivatives as a promising cytokine inhibitors: synthesis, molecular docking, and structure-activity relationship. Curr. Pharm. Biotechnol., 2022, 23(9), 1179-1203.
[http://dx.doi.org/10.2174/1389201022666210601170650]
[75]
Gholami, M.; Hemmati, M.; Taheri-Ghahfarokhi, A.; Hoshyar, R.; Moossavi, M. Expression of glucokinase, glucose 6-phosphatase, and stress protein in streptozotocin-induced diabetic rats treated with natural honey. Int. J. Diabetes Dev. Ctries., 2016, 36(1), 125-131.
[http://dx.doi.org/10.1007/s13410-015-0456-3]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy