Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Design and Construction of Carboxylesterase 2c Gene Knockout Rats by CRISPR/Cas9

Author(s): Jie Liu, Xuyang Shang, Bingyi Yao, Yuanjin Zhang, Shengbo Huang, Yuanqing Guo and Xin Wang*

Volume 24, Issue 3, 2023

Published on: 31 January, 2023

Page: [190 - 199] Pages: 10

DOI: 10.2174/1389200224666230123140919

Price: $65

conference banner
Abstract

Background: Carboxylesterase 2 (CES2) is mainly distributed in the human liver and gut, and plays an active role in the metabolic activation of many prodrugs and lipid metabolism. Although CES2 is of great significance, there are still few animal models related to CES2.

Objectives: This research aims to construct Ces2c gene knockout (KO) rats and further study the function of CES2.

Methods: CRISPR/Cas9 gene editing technology was used to target and cleave the rat Ces2c gene. Compensatory effects of major CES subtypes both in the liver and small intestine of KO rats were detected at mRNA levels. Meanwhile, diltiazem and aspirin were used as substrates to test the metabolic capacity of Ces2c in KO rats.

Results: This Ces2c KO rat model showed normal growth and breeding without off-target effects. The metabolic function of Ces2c KO rats was verified by the metabolic study of CES2 substrates in vitro. The results showed that the metabolic capacity of diltiazem in KO rats was weakened, while the metabolic ability of aspirin did not change significantly. In addition, the serum physiological indexes showed that the Ces2c deletion did not affect the liver function of rats..

Conclusion: The Ces2c KO rat model was successfully constructed by CRISPR/Cas9 system. This rat model can not only be used as an important tool to study the drug metabolism mediated by CES2, but also as an important animal model to study the physiological function of CES2.

Keywords: Carboxylesterase, CRISPR associated protein 9, gene knockout techniques, metabolism, rat model, liver function.

Graphical Abstract
[1]
Di, L. The impact of carboxylesterases in drug metabolism and pharmacokinetics. Curr. Drug Metab., 2019, 20(2), 91-102.
[http://dx.doi.org/10.2174/1389200219666180821094502] [PMID: 30129408]
[2]
Ross, M.K.; Crow, J.A. Human carboxylesterases and their role in xenobiotic and endobiotic metabolism. J. Biochem. Mol. Toxicol., 2007, 21(4), 187-196.
[http://dx.doi.org/10.1002/jbt.20178] [PMID: 17936933]
[3]
Imai, T. Human carboxylesterase isozymes: Catalytic properties and rational drug design. Drug Metab. Pharmacokinet., 2006, 21(3), 173-185.
[http://dx.doi.org/10.2133/dmpk.21.173] [PMID: 16858120]
[4]
Qiu, Z.; Li, N.; Song, L.; Lu, Y.; Jing, J.; Parekha, H.S.; Gao, W.; Tian, F.; Wang, X.; Ren, S.; Chen, X. Contributions of intestine and plasma to the presystemic bioconversion of vicagrel, an acetate of clopidogrel. Pharm. Res., 2014, 31(1), 238-251.
[http://dx.doi.org/10.1007/s11095-013-1158-5] [PMID: 24037619]
[5]
Birkus, G.; Kutty, N.; He, G.X.; Mulato, A.; Lee, W.; McDermott, M.; Cihlar, T. Activation of 9-[(R)-2-[[(S)-[[(S)-1-(Isopropoxycar-bonyl)ethyl]amino] phenoxyphosphinyl]-methoxy]propyl]adenine (GS-7340) and other tenofovir phosphonoamidate prodrugs by human proteases. Mol. Pharmacol., 2008, 74(1), 92-100.
[http://dx.doi.org/10.1124/mol.108.045526] [PMID: 18430788]
[6]
Casey Laizure, S.; Herring, V.; Hu, Z.; Witbrodt, K.; Parker, R.B. The role of human carboxylesterases in drug metabolism: Have we overlooked their importance? Pharmacotherapy, 2013, 33(2), 210-222.
[http://dx.doi.org/10.1002/phar.1194] [PMID: 23386599]
[7]
Xu, G.; Zhang, W.; Ma, M.K.; McLeod, H.L. Human carboxylesterase 2 is commonly expressed in tumor tissue and is correlated with activation of irinotecan. Clin. Cancer Res., 2002, 8(8), 2605-2611.
[PMID: 12171891]
[8]
Takumi, S.; Shimono, T.; Ikema, S.; Hotta, Y.; Chigwechokha, P.K.; Shiozaki, K.; Sugiyama, Y.; Hashimoto, M.; Furukawa, T.; Komatsu, M. Overexpression of carboxylesterase contributes to the attenuation of cyanotoxin microcystin-LR toxicity. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2017, 194, 22-27.
[http://dx.doi.org/10.1016/j.cbpc.2017.01.008] [PMID: 28163251]
[9]
Kubo, T.; Kim, S.R.; Sai, K.; Saito, Y.; Nakajima, T.; Matsumoto, K.; Saito, H.; Shirao, K.; Yamamoto, N.; Minami, H.; Ohtsu, A.; Yoshida, T.; Saijo, N.; Ohno, Y.; Ozawa, S.; Sawada, J. Functional characterization of three naturally occurring single nucleotide polymorphisms in the CES2 gene encoding carboxylesterase 2 (HCE-2). Drug Metab. Dispos., 2005, 33(10), 1482-1487.
[http://dx.doi.org/10.1124/dmd.105.005587] [PMID: 16033949]
[10]
Kim, S.R.; Nakamura, T.; Saito, Y.; Sai, K.; Nakajima, T.; Saito, H.; Shirao, K.; Minami, H.; Ohtsu, A.; Yoshida, T.; Saijo, N.; Ozawa, S.; Sawada, J. Twelve novel single nucleotide polymorphisms in the CES2 gene encoding human carboxylesterase 2 (hCE-2). Drug Metab. Pharmacokinet., 2003, 18(5), 327-332.
[http://dx.doi.org/10.2133/dmpk.18.327] [PMID: 15618752]
[11]
Lam, S.W.; van der Noort, V.; van der Straaten, T.; Honkoop, A.H.; Peters, G.J.; Guchelaar, H.J.; Boven, E. Single-nucleotide polymorphisms in the genes of CES2, CDA and enzymatic activity of CDA for prediction of the efficacy of capecitabine-containing chemotherapy in patients with metastatic breast cancer. Pharmacol. Res., 2018, 128, 122-129.
[http://dx.doi.org/10.1016/j.phrs.2017.08.005] [PMID: 28827188]
[12]
Harrison, E. H. Lipases and carboxylesterases: Possible roles in the hepatic utilization of vitamin A. J. Nutr., 2000, 130((2S Suppl)), 340-344.
[http://dx.doi.org/10.1093/jn/130.2.340S]
[13]
Sanghani, S.P.; Davis, W.I.; Dumaual, N.G.; Mahrenholz, A.; Bosron, W.F. Identification of microsomal rat liver carboxylesterases and their activity with retinyl palmitate. Eur. J. Biochem., 2002, 269(18), 4387-4398.
[http://dx.doi.org/10.1046/j.1432-1033.2002.03121.x] [PMID: 12230550]
[14]
Holmes, R.S.; Wright, M.W.; Laulederkind, S.J.F.; Cox, L.A.; Hosokawa, M.; Imai, T.; Ishibashi, S.; Lehner, R.; Miyazaki, M.; Perkins, E.J.; Potter, P.M.; Redinbo, M.R.; Robert, J.; Satoh, T.; Yamashita, T.; Yan, B.; Yokoi, T.; Zechner, R.; Maltais, L.J. Recommended nomenclature for five mammalian carboxylesterase gene families: Human, mouse, and rat genes and proteins. Mamm. Genome, 2010, 21(9-10), 427-441.
[http://dx.doi.org/10.1007/s00335-010-9284-4] [PMID: 20931200]
[15]
Oda, S.; Fukami, T.; Yokoi, T.; Nakajima, M. A comprehensive review of UDP-glucuronosyltransferase and esterases for drug development. Drug Metab. Pharmacokinet., 2015, 30(1), 30-51.
[http://dx.doi.org/10.1016/j.dmpk.2014.12.001] [PMID: 25760529]
[16]
Wang, X.; Tang, Y.; Lu, J.; Shao, Y.; Qin, X.; Li, Y.; Wang, L.; Li, D.; Liu, M. Characterization of novel cytochrome P450 2E1 knockout rat model generated by CRISPR/Cas9. Biochem. Pharmacol., 2016, 105, 80-90.
[http://dx.doi.org/10.1016/j.bcp.2016.03.001] [PMID: 26947455]
[17]
Lu, J.; Chen, A.; Ma, X.; Shang, X.; Zhang, Y.; Guo, Y.; Liu, M.; Wang, X. Generation and characterization of cytochrome P450 2J3/10 CRISPR/Cas9 knockout rat model. Drug Metab. Dispos., 2020, 48(11), 1129-1136.
[http://dx.doi.org/10.1124/dmd.120.000114] [PMID: 32878767]
[18]
Lu, J.; Liu, J.; Guo, Y.; Zhang, Y.; Xu, Y.; Wang, X. CRISPR-Cas9: A method for establishing rat models of drug metabolism and pharmacokinetics. Acta Pharm. Sin. B, 2021, 11(10), 2973-2982.
[http://dx.doi.org/10.1016/j.apsb.2021.01.007] [PMID: 34745851]
[19]
Liu, J.; Shang, X.; Huang, S.; Xu, Y.; Lu, J.; Zhang, Y.; Liu, Z.; Wang, X. Construction and characterization of CRISPR/Cas9 knockout rat model of carboxylesterase 2a gene. Mol. Pharmacol., 2021, 100(5), 480-490.
[http://dx.doi.org/10.1124/molpharm.121.000357] [PMID: 34503976]
[20]
Maresch, L.K.; Benedikt, P.; Feiler, U.; Eder, S.; Zierler, K.A.; Taschler, U.; Kolleritsch, S.; Eichmann, T.O.; Schoiswohl, G.; Leopold, C.; Wieser, B.I.; Lackner, C.; Rülicke, T.; van Klinken, J.; Kratky, D.; Moustafa, T.; Hoefler, G.; Haemmerle, G. Intestine-specific overexpression of carboxylesterase 2c protects mice from diet-induced liver steatosis and obesity. Hepatol. Commun., 2019, 3(2), 227-245.
[http://dx.doi.org/10.1002/hep4.1292] [PMID: 30766961]
[21]
Sanghani, S.P.; Quinney, S.K.; Fredenburg, T.B.; Sun, Z.; Davis, W.I.; Murry, D.J.; Cummings, O.W.; Seitz, D.E.; Bosron, W.F. Carboxylesterases expressed in human colon tumor tissue and their role in CPT-11 hydrolysis. Clin. Cancer Res., 2003, 9(13), 4983-4991.
[PMID: 14581373]
[22]
Lian, J.; Nelson, R.; Lehner, R. Carboxylesterases in lipid metabolism: From mouse to human. Protein Cell, 2018, 9(2), 178-195.
[http://dx.doi.org/10.1007/s13238-017-0437-z] [PMID: 28677105]
[23]
Ozaki, H.; Sugihara, K.; Watanabe, Y.; Fujino, C.; Uramaru, N.; Sone, T.; Ohta, S.; Kitamura, S. Comparative study of the hydrolytic metabolism of methyl-, ethyl-, propyl-, butyl-, heptyl- and dodecylparaben by microsomes of various rat and human tissues. Xenobiotica, 2013, 43(12), 1064-1072.
[http://dx.doi.org/10.3109/00498254.2013.802059] [PMID: 23742084]
[24]
Lian, J.; Quiroga, A.D.; Li, L.; Lehner, R. Ces3/TGH deficiency improves dyslipidemia and reduces atherosclerosis in Ldlr(-/-) mice. Circ. Res., 2012, 111(8), 982-990.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.267468] [PMID: 22872154]
[25]
Holmes, R.S.; Cox, L.A.; VandeBerg, J.L. A new class of mammalian carboxylesterase CES6. Comp. Biochem. Physiol. Part D Genom. Proteom., 2009, 4(3), 209-217.
[http://dx.doi.org/10.1016/j.cbd.2009.03.002] [PMID: 20161041]
[26]
Li, Y.; Meng, Q.; Yang, M.; Liu, D.; Hou, X.; Tang, L.; Wang, X.; Lyu, Y.; Chen, X.; Liu, K.; Yu, A.M.; Zuo, Z.; Bi, H. Current trends in drug metabolism and pharmacokinetics. Acta Pharm. Sin. B, 2019, 9(6), 1113-1144.
[http://dx.doi.org/10.1016/j.apsb.2019.10.001] [PMID: 31867160]
[27]
Hodgson, J. ADMET-turning chemicals into drugs. Nat. Biotechnol., 2001, 19(8), 722-726.
[http://dx.doi.org/10.1038/90761] [PMID: 11479558]
[28]
Imai, T.; Ohura, K. The role of intestinal carboxylesterase in the oral absorption of prodrugs. Curr. Drug Metab., 2010, 11(9), 793-805.
[http://dx.doi.org/10.2174/138920010794328904] [PMID: 21189138]
[29]
Masaki, K.; Hashimoto, M.; Imai, T. Intestinal first-pass metabolism via carboxylesterase in rat jejunum and ileum. Drug Metab. Dispos., 2007, 35(7), 1089-1095.
[http://dx.doi.org/10.1124/dmd.106.013862] [PMID: 17392394]
[30]
Lu, J.; Shao, Y.; Qin, X.; Liu, D.; Chen, A.; Li, D.; Liu, M.; Wang, X. CRISPR knockout rat cytochrome P450 3A1/2 model for advancing drug metabolism and pharmacokinetics research. Sci. Rep., 2017, 7(1), 42922.
[http://dx.doi.org/10.1038/srep42922] [PMID: 28218310]
[31]
Quiroga, A.D.; Li, L.; Trötzmüller, M.; Nelson, R.; Proctor, S.D.; Köfeler, H.; Lehner, R. Deficiency of carboxylesterase 1/esterase-x results in obesity, hepatic steatosis, and hyperlipidemia. Hepatology, 2012, 56(6), 2188-2198.
[http://dx.doi.org/10.1002/hep.25961] [PMID: 22806626]
[32]
Sun, D.; Lu, J.; Zhang, Y.; Liu, J.; Liu, Z.; Yao, B.; Guo, Y.; Wang, X. Characterization of a novel CYP1A2 knockout rat model constructed by CRISPR/Cas9. Drug Metab. Dispos., 2021, 49(8), 638-647.
[http://dx.doi.org/10.1124/dmd.121.000403] [PMID: 34074728]
[33]
Liang, C.; Zhao, J.; Lu, J.; Zhang, Y.; Ma, X.; Shang, X.; Li, Y.; Ma, X.; Liu, M.; Wang, X. Development and characterization of MDR1 (Mdr1a/b) CRISPR/Cas9 knockout rat model. Drug Metab. Dispos., 2019, 47(2), 71-79.
[http://dx.doi.org/10.1124/dmd.118.084277] [PMID: 30478157]
[34]
Li, Y.; Zalzala, M.; Jadhav, K.; Xu, Y.; Kasumov, T.; Yin, L.; Zhang, Y. Carboxylesterase 2 prevents liver steatosis by modulating lipolysis, endoplasmic reticulum stress, and lipogenesis and is regulated by hepatocyte nuclear factor 4 alpha in mice. Hepatology, 2016, 63(6), 1860-1874.
[http://dx.doi.org/10.1002/hep.28472] [PMID: 26806650]
[35]
Yanjiao, X.; Chengliang, Z.; Xiping, L.; Tao, W.; Xiuhua, R.; Dong, L. Evaluation of the inhibitory effects of antihypertensive drugs on human carboxylesterase in vitro. Drug Metab. Pharmacokinet., 2013, 28(6), 468-474.
[http://dx.doi.org/10.2133/dmpk.DMPK-12-RG-143] [PMID: 23648675]
[36]
Ohura, K.; Tasaka, K.; Hashimoto, M.; Imai, T. Distinct patterns of aging effects on the expression and activity of carboxylesterases in rat liver and intestine. Drug Metab. Dispos., 2014, 42(2), 264-273.
[http://dx.doi.org/10.1124/dmd.113.054551] [PMID: 24271336]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy