Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Research Article

Monitoring Shrimp Spoilage Using a Paper-based Colorimetric Label Containing Roselle Flower Extract

Author(s): Arie Listyarini, Cuk Imawan, Dede Djuhana and Vivi Fauzia*

Volume 19, Issue 7, 2023

Published on: 20 February, 2023

Page: [732 - 744] Pages: 13

DOI: 10.2174/1573401319666221222151635

Price: $65

Abstract

Background: Intelligent food packaging that can monitor food quality and safety is essential in modern commercial trade. Research on the fabrication of environmentally friendly colorimetric labels that can indicate the freshness of food through color changes are needed.

Methods: In this study, paper-based colorimetric labels were prepared using filter paper dipped into a solution of Roselle flower extract, and their performance in monitoring shrimp spoilage was investigated.

Results: The labels’ response to ammonia vapor shows a distinct color variation from red to greenish-grey, corresponding to a sharp increase in the total color difference (ΔE = 32). The labels are relatively stable during storage at 4°C for up to 20 days. In shrimp freshness monitoring, the color changes from red to purple, which corresponds to increasing levels of total volatile basic nitrogen (TVB-N), and can be observed easily with the naked eye.

Conclusion: This suggests that our paper-based colorimetric labels impregnated with Roselle extract show superior performance in detecting shrimp spoilage.

Keywords: Shrimp spoilage, colorimetric label, anthocyanin, Roselle flower, ammonia vapor, detection.

Graphical Abstract
[1]
Alizadeh-Sani M, Mohammadian E, Rhim JW, Jafari SM. pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends Food Sci Technol 2020; 105: 93-144.
[http://dx.doi.org/10.1016/j.tifs.2020.08.014]
[2]
Lawal AT, Adeloju SB. Progress and recent advances in fabrication and utilization of hypoxanthine biosensors for meat and fish quality assessment: A review. Talanta 2012; 100: 217-28.
[http://dx.doi.org/10.1016/j.talanta.2012.07.085] [PMID: 23141330]
[3]
Merz B, Capello C, Leandro GC, Moritz DE, Monteiro AR, Valencia GA. A novel colorimetric indicator film based on chitosan, polyvinyl alcohol and anthocyanins from jambolan (Syzygium cumini) fruit for monitoring shrimp freshness. Int J Biol Macromol 2020; 153: 625-32.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.048] [PMID: 32165201]
[4]
Stefani R, Silva PMC. Development and evaluation of a smart packaging for the monitoring of ricotta cheese spoilage. MOJ Food Process Technol 2015; 1(1): 3-5.
[http://dx.doi.org/10.15406/mojfpt.2015.01.00004]
[5]
Pirsa S, Karimi SI, Pirouzifard MK, Erfani A. Smart film based on chitosan/Melissa officinalis essences/pomegranate peel extract to detect cream cheeses spoilage. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37(4): 634-48.
[http://dx.doi.org/10.1080/19440049.2020.1716079] [PMID: 31971478]
[6]
Yong H, Wang X, Zhang X, Liu Y, Qin Y, Liu J. Effects of anthocyanin-rich purple and black eggplant extracts on the physical, antioxidant and pH-sensitive properties of chitosan film. Food Hydrocoll 2019; 94: 93-104.
[http://dx.doi.org/10.1016/j.foodhyd.2019.03.012]
[7]
Liu J, Wang H, Guo M, et al. Extract from Lycium ruthenicum Murr. Incorporating κ-carrageenan colorimetric film with a wide pH–sensing range for food freshness monitoring. Food Hydrocoll 2019; 94: 1-10.
[http://dx.doi.org/10.1016/j.foodhyd.2019.03.008]
[8]
Chi W, Cao L, Sun G, et al. Developing a highly pH-sensitive ĸ-carrageenan-based intelligent film incorporating grape skin powder via a cleaner process. J Clean Prod 2020; 244: 118862.
[http://dx.doi.org/10.1016/j.jclepro.2019.118862]
[9]
Jiang G, Hou X, Zeng X, et al. Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. Int J Biol Macromol 2020; 143: 359-72.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.024] [PMID: 31816383]
[10]
Yun D, Cai H, Liu Y, Xiao L, Song J, Liu J. Development of active and intelligent films based on cassava starch and Chinese bayberry (Myrica rubra Sieb. et Zucc.) anthocyanins. RSC Advances 2019; 9(53): 30905-16.
[http://dx.doi.org/10.1039/C9RA06628D] [PMID: 35529351]
[11]
Moradi M, Tajik H, Almasi H, Forough M, Ezati P. A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydr Polym 2019; 222: 115030.
[http://dx.doi.org/10.1016/j.carbpol.2019.115030] [PMID: 31320095]
[12]
Mohammadalinejhad S, Almasi H, Moradi M. Immobilization of Echium amoenum anthocyanins into bacterial cellulose film: A novel colorimetric pH indicator for freshness/spoilage monitoring of shrimp. Food Control 2020; 113: 107169.
[http://dx.doi.org/10.1016/j.foodcont.2020.107169]
[13]
Huang J, Chen M, Zhou Y, Li Y, Hu Y. Functional characteristics improvement by structural modification of hydroxypropyl methylcellulose modified polyvinyl alcohol films incorporating roselle anthocyanins for shrimp freshness monitoring. Int J Biol Macromol 2020; 162: 1250-61.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.156] [PMID: 32569695]
[14]
Zhang J, Huang X, Zou X, et al. A visual indicator based on curcumin with high stability for monitoring the freshness of freshwater shrimp, Macrobrachium rosenbergii. J Food Eng 2021; 292: 110290.
[http://dx.doi.org/10.1016/j.jfoodeng.2020.110290]
[15]
Alamdari NE, Aksoy B, Aksoy M, Beck BH, Jiang Z. A novel paper-based and pH-sensitive intelligent detector in meat and seafood packaging. Talanta 2021; 224: 121913.
[http://dx.doi.org/10.1016/j.talanta.2020.121913] [PMID: 33379115]
[16]
Chen H, Zhang M, Bhandari B, Yang C. Development of a novel colorimetric food package label for monitoring lean pork freshness. Lebensm Wiss Technol 2019; 99: 43-9.
[http://dx.doi.org/10.1016/j.lwt.2018.09.048]
[17]
Mustafa P, Niazi MBK, Jahan Z, et al. PVA/starch/propolis/anthocyanins rosemary extract composite films as active and intelligent food packaging materials. J Food Saf 2020; 40(1): e12725.
[http://dx.doi.org/10.1111/jfs.12725]
[18]
Halász K, Csóka L. Black chokeberry (Aronia melanocarpa) pomace extract immobilized in chitosan for colorimetric pH indicator film application. Food Packag Shelf Life 2018; 16: 185-93.
[http://dx.doi.org/10.1016/j.fpsl.2018.03.002]
[19]
Wei Y, Cheng C, Ho Y, Tsai M. Food Hydrocolloids Active gellan gum/purple sweet potato composite fi lms capable of monitoring pH variations. Food Hydrocoll 2017; 69: 491-502.
[http://dx.doi.org/10.1016/j.foodhyd.2017.03.010]
[20]
Ngo YH, Li D, Simon GP, Garnier G. Paper surfaces functionalized by nanoparticles. Adv Colloid Interface Sci 2011; 163(1): 23-38.
[http://dx.doi.org/10.1016/j.cis.2011.01.004] [PMID: 21324427]
[21]
Pourreza N, Golmohammadi H. Application of curcumin nanoparticles in a lab-on-paper device as a simple and green pH probe. Talanta 2015; 131: 136-41.
[http://dx.doi.org/10.1016/j.talanta.2014.07.063] [PMID: 25281084]
[22]
Zhang H, Hou A, Xie K, Gao A. Smart color-changing paper packaging sensors with pH sensitive chromophores based on azo-anthraquinone reactive dyes. Sens Actuators B Chem 2019; 286: 362-9.
[http://dx.doi.org/10.1016/j.snb.2019.01.165]
[23]
Kuswandi B, Nurfawaidi A. On-package dual sensors label based on pH indicators for real-time monitoring of beef freshness. Food Control 2017; 82: 91-100.
[http://dx.doi.org/10.1016/j.foodcont.2017.06.028]
[24]
Chen Y, Zilberman Y, Mostafalu P, Sonkusale SR. Paper based platform for colorimetric sensing of dissolved NH3 and CO2. Biosens Bioelectron 2015; 67: 477-84.
[http://dx.doi.org/10.1016/j.bios.2014.09.010] [PMID: 25241151]
[25]
Sun Q, Tam NFY, Han J, Yung-Kang Peng W, Zhu Z, Chen JL. A simple paper-based colorimetric analytical device for rapid detection of Enterococcus faecalis under the stress of chlorophenols. Talanta 2021; 225: 121966.
[http://dx.doi.org/10.1016/j.talanta.2020.121966] [PMID: 33592720]
[26]
Moazami Goodarzi M, Moradi M, Tajik H, Forough M, Ezati P, Kuswandi B. Development of an easy-to-use colorimetric pH label with starch and carrot anthocyanins for milk shelf life assessment. Int J Biol Macromol 2020; 153: 240-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.014] [PMID: 32145233]
[27]
Ebrahimi Tirtashi F, Moradi M, Tajik H, Forough M, Ezati P, Kuswandi B. Cellulose/chitosan pH-responsive indicator incorporated with carrot anthocyanins for intelligent food packaging. Int J Biol Macromol 2019; 136: 920-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.148] [PMID: 31233799]
[28]
Ezati P, Bang YJ, Rhim JW. Preparation of a shikonin-based pH-sensitive color indicator for monitoring the freshness of fish and pork. Food Chem 2021; 337: 127995.
[http://dx.doi.org/10.1016/j.foodchem.2020.127995] [PMID: 32919274]
[29]
Oliveira Filho JG, Braga ARC, Oliveira BR, et al. The potential of anthocyanins in smart, active, and bioactive eco-friendly polymer-based films: A review. Food Res Int 2021; 142: 110202.
[http://dx.doi.org/10.1016/j.foodres.2021.110202] [PMID: 33773677]
[30]
Da-Costa-Rocha I, Bonnlaender B, Sievers H, Pischel I, Heinrich M. Hibiscus sabdariffa L. – A phytochemical and pharmacological review. Food Chem 2014; 165: 424-43.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.002] [PMID: 25038696]
[31]
Reyes LF, Cisneros-Zevallos L. Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.). Food Chem 2007; 100(3): 885-94.
[http://dx.doi.org/10.1016/j.foodchem.2005.11.002]
[32]
Zhang X, Lu S, Chen X. A visual pH sensing film using natural dyes from Bauhinia blakeana Dunn. Sens Actuators B Chem 2014; 198: 268-73.
[http://dx.doi.org/10.1016/j.snb.2014.02.094]
[33]
Wu C, Sun J, Zheng P, et al. Preparation of an intelligent film based on chitosan/oxidized chitin nanocrystals incorporating black rice bran anthocyanins for seafood spoilage monitoring. Carbohydr Polym 2019; 222: 115006.
[http://dx.doi.org/10.1016/j.carbpol.2019.115006] [PMID: 31320067]
[34]
Ge Y, Li Y, Bai Y, Yuan C, Wu C, Hu Y. Intelligent gelatin/oxidized chitin nanocrystals nanocomposite films containing black rice bran anthocyanins for fish freshness monitorings. Int J Biol Macromol 2020; 155: 1296-306.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.101] [PMID: 31751683]
[35]
Kurek M, Hlupić L, Ščetar M, Bosiljkov T, Galić K. Comparison of two ph responsive color changing bio‐based films containing wasted fruit pomace as a source of colorants. J Food Sci 2019; 84(9): 2490-8.
[http://dx.doi.org/10.1111/1750-3841.14716] [PMID: 31408211]
[36]
Shi C, Zhang J, Jia Z, Yang X, Zhou Z. Intelligent pH indicator films containing anthocyanins extracted from blueberry peel for monitoring tilapia fillet freshness. J Sci Food Agric 2020; 101(5): 1800-11.
[http://dx.doi.org/10.1002/jsfa.10794] [PMID: 32893889]
[37]
Ma Q, Wang L. Preparation of a visual pH-sensing film based on tara gum incorporating cellulose and extracts from grape skins. Sens Actuators B Chem 2016; 235: 401-7.
[http://dx.doi.org/10.1016/j.snb.2016.05.107]
[38]
Talukder S, Mendiratta SK, Kumar RR, et al. Jamun fruit (Syzgium cumini) skin extract based indicator for monitoring chicken patties quality during storage. J Food Sci Technol 2020; 57(2): 537-48.
[http://dx.doi.org/10.1007/s13197-019-04084-y] [PMID: 32116363]
[39]
Zhang C, Sun G, Cao L, Wang L. Accurately intelligent film made from sodium carboxymethyl starch/κ-carrageenan reinforced by mulberry anthocyanins as an indicator. Food Hydrocoll 2020; 108: 106012.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106012]
[40]
Kang S, Wang H, Xia L, et al. Colorimetric film based on polyvinyl alcohol/okra mucilage polysaccharide incorporated with rose anthocyanins for shrimp freshness monitoring. Carbohydr Polym 2020; 229: 115402.
[http://dx.doi.org/10.1016/j.carbpol.2019.115402] [PMID: 31826465]
[41]
Vo TV, Dang TH, Chen BH. Synthesis of intelligent pH indicative films from chitosan/poly(vinyl alcohol)/anthocyanin extracted from red cabbage. Polymers 2019; 11(7): 1088.
[http://dx.doi.org/10.3390/polym11071088] [PMID: 31248018]
[42]
Musso YS, Salgado PR, Mauri AN. Smart gelatin films prepared using red cabbage (Brassica oleracea L.) extracts as solvent. Food Hydrocoll 2019; 89: 674-81.
[http://dx.doi.org/10.1016/j.foodhyd.2018.11.036]
[43]
Listyarini A, Handayani W, Fauzia V, Imawan C. Active starch/PVA composite films containing Syzygium oleana for ammonia vapor colorimetric indicators. Mater Sci Forum 2020; 990: 318-24.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.990.318]
[44]
Listyarini A, Sholihah W, Imawan C, Fitriana R. Colorimetrie method by using natural dye for monitoring fish spoilage. 2017 International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM). Aug 26-27, 2017, Surabaya, Indonesia, pp. 141-5, 2017.
[http://dx.doi.org/10.1109/ISSIMM.2017.8124279]
[45]
Zhai X, Shi J, Zou X, et al. Novel colorimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocoll 2017; 69: 308-17.
[http://dx.doi.org/10.1016/j.foodhyd.2017.02.014]
[46]
Zhang J, Zou X, Zhai X, Huang X, Jiang C, Holmes M. Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food Chem 2019; 272: 306-12.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.041] [PMID: 30309548]
[47]
Liu J, Huang J, Ying Y, Hu L, Hu Y. pH-sensitive and antibacterial films developed by incorporating anthocyanins extracted from purple potato or roselle into chitosan/polyvinyl alcohol/nano-ZnO matrix: Comparative study. Int J Biol Macromol 2021; 178: 104-12.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.115] [PMID: 33609585]
[48]
Lee J, Durst RW, Wrolstad RE. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J AOAC Int 2005; 88(5): 1269-78.
[http://dx.doi.org/10.1093/jaoac/88.5.1269] [PMID: 16385975]
[49]
Harborne JB. Phytochemical methods a guide to modern techniques of plant analysis. springer link. 1973.
[http://dx.doi.org/10.1007/978-94-009-5921-7]
[50]
Richardson PM, Harborne JB. Phytochemical Methods. 1985; p. 309.
[http://dx.doi.org/10.2307/2806080]
[51]
Du CT, Francis FJ. Anthocyanins of roselle (Hibiscus sabdariffa, L.). J Food Sci 1973; 38(5): 810-2.
[http://dx.doi.org/10.1111/j.1365-2621.1973.tb02081.x]
[52]
Kopecká I, Svobodová E. Methodology for infrared spectroscopy analysis of sandwich multilayer samples of historical materials. Herit Sci 2014; 2(1): 22.
[http://dx.doi.org/10.1186/s40494-014-0022-1]
[53]
Vu CHT, Won K, Won K. Novel water-resistant UV-activated oxygen indicator for intelligent food packaging. Food Chem 2013; 140(1-2): 52-6.
[http://dx.doi.org/10.1016/j.foodchem.2013.02.056] [PMID: 23578614]
[54]
Liu J, Wang H, Wang P, et al. Films based on κ-carrageenan incorporated with curcumin for freshness monitoring. Food Hydrocoll 2018; 83: 134-42.
[http://dx.doi.org/10.1016/j.foodhyd.2018.05.012]
[55]
Listyarini A, Sholihah W, Imawan C. A paper-based colorimetric indicator label using natural dye for monitoring shrimp spoilage. IOP Conf Ser Mater Sci Eng 2018; 367: 012045.
[http://dx.doi.org/10.1088/1757-899X/367/1/012045]
[56]
Union T, Journal O, Union E. Union, (recast) (Text with EEA relevance), EC 2074/2005. 2017; 10: 1-21.
[57]
Sipos L, Nyitrai Á, Hitka G, Friedrich LF, Kókai Z. Sensory panel performance evaluation—comprehensive review of practical approaches. Appl Sci 2021; 11(24): 11977.
[http://dx.doi.org/10.3390/app112411977]
[58]
Grajeda-Iglesias C, Figueroa-Espinoza MC, Barouh N, et al. Isolation and characterization of anthocyanins from Hibiscus sabdariffa Flowers. J Nat Prod 2016; 79(7): 1709-18.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00958] [PMID: 27312226]
[59]
Hong V, Wrolstad RE, Hong V, Wrolstad RE, Hongx V, Wrolstad RE. Use of HPLC separation/photodiode array detection for characterization of anthocyanins. J Agric Food Chem 1990; 38(3): 708-15.
[http://dx.doi.org/10.1021/jf00093a026]
[60]
Wong PK, Yusof S, Ghazali HM, Che Man YB. Physico-chemical characteristics of roselle (Hibiscus sabdariffa L.). Nutr Food Sci 2002; 32(2): 68-73.
[http://dx.doi.org/10.1108/00346650210416994]
[61]
Sinela A, Rawat N, Mertz C, Achir N, Fulcrand H, Dornier M. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products. Food Chem 2017; 214: 234-41.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.071] [PMID: 27507471]
[62]
Fernandes A, Brás NF, Mateus N, de Freitas V. Understanding the molecular mechanism of anthocyanin binding to pectin. Langmuir 2014; 30(28): 8516-27.
[http://dx.doi.org/10.1021/la501879w] [PMID: 24991843]
[63]
Brouillard R, Dubois J. Mechanism of the structural transformations of anthocyanins in acidic media. J Am Chem Soc 1973; 1359: 1359-64.
[64]
Abderrahim B, Abderrahman E, Mohamed A, Fatima T, Abdesselam T, Krim O. Kinetic thermal degradation of cellulose, polybutylene succinate and a green composite: Comparative study. World J Environ Eng 2015; 3: 95-110.
[65]
Silva SD, Feliciano RP, Boas LV, Bronze MR. Application of FTIR-ATR to Moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chem 2014; 150: 489-93.
[http://dx.doi.org/10.1016/j.foodchem.2013.11.028] [PMID: 24360480]
[66]
Pappas CS, Takidelli C, Tsantili E, Tarantilis PA, Polissiou MG. Quantitative determination of anthocyanins in three sweet cherry varieties using diffuse reflectance infrared Fourier transform spectroscopy. J Food Compos Anal 2011; 24(1): 17-21.
[http://dx.doi.org/10.1016/j.jfca.2010.07.001]
[67]
Rachmelia D, Imawan C. Time temperature indicator label using black corn extract and chitosan matrix. J Phys Conf Ser 2018; 1120: 0-8.
[http://dx.doi.org/10.1088/1742-6596/1120/1/012041]
[68]
Decision C. Commission THE, The OF, Communities E Fixing the total volatile basic nitrogen (TVB-N) limit values for certain categories 1 The reference method to be used for checking the for human consumption from being placed on the market may comprise certain chemical checks including not to be exce 1995; 95-8. Available from: https://op.europa.eu/en/publication-detail/-/publication/91dc1ed4-6450-4a3c-8cab-45009644715c
[69]
Zhang K, Huang TS, Yan H, Hu X, Ren T. Novel pH-sensitive films based on starch/polyvinyl alcohol and food anthocyanins as a visual indicator of shrimp deterioration. Int J Biol Macromol 2020; 145: 768-76.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.159] [PMID: 31866540]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy