Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Skimmianine: Natural Occurrence, Biosynthesis, Synthesis, Pharmacology and Pharmacokinetics

Author(s): Ninh The Son*

Volume 19, Issue 6, 2023

Published on: 06 January, 2023

Page: [556 - 569] Pages: 14

DOI: 10.2174/1573406419666221213124847

Price: $65

conference banner
Abstract

Background: For years, plant materials collected from members of the family Rutaceae have been the subject of various phytochemical and pharmacological studies. In such works, skimmianine (SM) is a secondary metabolite type furoquinoline alkaloid, which can be seen as a major component available in medicinal plants of the family Rutaceae. Although there have been numerous phytochemical and biological experiments, a brief review of this compound is insufficient.

Objective: The current review with the most aim is to provide information on its natural occurrence, structural features, biosynthesis, synthesis, pharmacological values, and pharmacokinetic action.

Methods: The list of references was gathered from the following databases: Google Scholar, Pub- Med, Scopus, Web of Science, Science Direct, and Medline. In the meantime, “skimmianine” either alone, or combined “phytochemistry”, “biosynthesis”, “synthesis”, “pharmacology”, and “pharmacokinetics” was taken into consideration, to search for references.

Results: Accumulative evidence indicated that many Rutaceae plants, such as genus Zanthoxylum, were associated with the presence of alkaloid SM. Biosynthesis of organic hetero-tricyclic compound SM started from anthranilic acid, whereas its short synthetic steps were initially derived from 2,4,7,8- tetramethoxyquinoline. SM established a great role in pharmaceutical aspect since it possessed antimicrobial, antiparasitic, antiinsect, antiplatelet, antidiabetic, antiviral, cholinesterase inhibitory, analgesic, cardiovascular, and estrogenic activities, especially cytotoxicity and anti-inflammatory activity. Pharmacokinetic progress of SM in rats mostly involved the changes of double bond C2-C3 and methoxy groups.

Conclusion: Pharmacological properties justify its usage in drug development. However, some aspects, such as the extensive mechanism of action, structure-activity relationship, toxicological, and clinical studies, demand more research.

Keywords: Skimmianine, natural occurrence, biosynthesis, synthesis, pharmacology, pharmacokinetics.

Graphical Abstract
[1]
Hashimoto, T.; Yamada, Y. Alkaloid biogenesis: Molecular aspects. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1994, 45(1), 257-285.
[http://dx.doi.org/10.1146/annurev.pp.45.060194.001353]
[2]
Roy, A. A review on the alkaloids an important therapeutic compound from plants. Int. J. Plant Biotechnol, 2017, 3, 1-9.
[3]
The Son, N. Secondary metabolites of genus Pandanus: An aspect of phytochemistry. Mini Rev. Org. Chem., 2019, 16(7), 689-710.
[http://dx.doi.org/10.2174/1570193X16666181206102740]
[4]
Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem., 2018, 9, 56-72.
[http://dx.doi.org/10.1016/j.mtchem.2018.05.001]
[5]
Adamska-Szewczyk, A.; Glowniak, K.; Baj, T. Furochinoline alkaloids in plants from Rutaceae family – a review. Curr. Issues Pharm. Med. Sci., 2016, 29(1), 33-38.
[http://dx.doi.org/10.1515/cipms-2016-0008]
[6]
Matsuo, M.; Yamazaki, M.; Kasida, Y. Biosynthesis of skimmianine. Biochem. Biophys. Res. Commun., 1966, 23(5), 679-682.
[http://dx.doi.org/10.1016/0006-291X(66)90453-0] [PMID: 5964254]
[7]
Chen, I.S.; Tsai, I.W.; Teng, C.M.; Chen, J.J.; Chang, Y.L.; Ko, F.N.; Lu, M.C.; Pezzuto, J.M. Pyranoquinoline alkaloids from Zanthoxylum simulans. Phytochemistry, 1997, 46(3), 525-529.
[http://dx.doi.org/10.1016/S0031-9422(97)00280-X]
[8]
Liu, M.; Liu, Q.; Chen, M.; Huang, X.; Chen, X. Large-scale separation of acetylcholinesterase inhibitors from Zanthoxylum nitidum by pH-zone-refining counter-current chromatography target-guided by ultrafiltration high-performance liquid chromatography with ultraviolet and mass spectrometry screening. J. Sep. Sci., 2019, 42(6), 1194-1201.
[http://dx.doi.org/10.1002/jssc.201801238] [PMID: 30638299]
[9]
Murugan, N.; Srinivasan, R.; Murugan, A.; Kim, M.; Natarajan, D. Glycosmis pentaphylla (Rutaceae): A natural candidate for the isolation of potential bioactive arborine and skimmianine compounds for controlling multidrug-resistant Staphylococcus aureus. Front. Public Health, 2020, 8, 176.
[http://dx.doi.org/10.3389/fpubh.2020.00176] [PMID: 32587843]
[10]
Setzer, W.N.; Setzer, M.C.; Schmidt, J.M.; Moriarity, D.M.; Vogler, B.; Reeb, S.; Holmes, A.M.; Haber, W.A. Cytotoxic components from the bark of Stauranthus perforatus from Monteverde, Costa Rica. Planta Med., 2000, 66(5), 493-494.
[http://dx.doi.org/10.1055/s-2000-8595] [PMID: 10909280]
[11]
Yoon, J.S.; Jeong, E.J.; Yang, H.; Kim, S.H.; Sung, S.H.; Kim, Y.C. Inhibitory alkaloids from Dictamnus dasycarpus root barks on lipopolysaccharide-induced nitric oxide production in BV2 cells. J. Enzyme Inhib. Med. Chem., 2012, 27(4), 490-494.
[http://dx.doi.org/10.3109/14756366.2011.598151] [PMID: 21827366]
[12]
Sabu, V.; Peter, J.; Sasidharan Nair, A.I.B.; Krishnan, S.; Sathyaseelan Suja, L.P.; Helen, A.; Radhakrishna Pillai, G. Combinatorial action of triterpenoid, flavonoid, and alkaloid on inflammation. Nat. Prod. Commun.,, 2019, 14(8), 1934578X1986887.
[http://dx.doi.org/10.1177/1934578X19868877]
[13]
Sabu, V.; Krishnan, S.; Peter, J.; Aswathy, I.S.; Lal Preethi, S.S.; Simon, M.; Radhakrishna, G.P.; Helen, A. Synergistic effect of Betulinic acid, Apigenin and Skimmianine (BASk) in high cholesterol diet rabbit: Involvement of CD36-TLR2 signaling pathway. Cytokine, 2021, 142, 155475.
[http://dx.doi.org/10.1016/j.cyto.2021.155475] [PMID: 33667961]
[14]
Zhang, M.; Long, Y.; Sun, Y.; Wang, Y.; Li, Q.; Wu, H.; Guo, Z.; Li, Y.; Niu, Y.; Li, C.; Liu, L.; Mei, Q. Evidence for the complementary and synergistic effects of the three-alkaloid combination regimen containing berberine, hypaconitine and skimmianine on the ulcerative colitis rats induced by trinitrobenzene-sulfonic acid. Eur. J. Pharmacol., 2011, 651(1-3), 187-196.
[http://dx.doi.org/10.1016/j.ejphar.2010.10.030] [PMID: 20969848]
[15]
Lamberton, J.A.; Price, J.R. Alkaloids of the Australian Rutaceae: Acronychia baueri Schott. IV. Alkaloids present in the leaves. Aust. J. Chem., 1953, 6(1), 66-77.
[http://dx.doi.org/10.1071/CH9530066]
[16]
Cui, B.; Chai, H.; Dong, Y.; Horgen, F.D.; Hansen, B.; Madulid, D.A.; Soejarto, D.D.; Farnsworth, N.R.; Cordell, G.A.; Pezzuto, J.M.; Kinghorn, A.D. Quinoline alkaloids from Acronychia laurifolia. Phytochemistry, 1999, 52(1), 95-98.
[http://dx.doi.org/10.1016/S0031-9422(99)00039-4] [PMID: 10466225]
[17]
Wen-Hao, X.; Zhi, X. Chemical studies on alkaloids in the root of Acronychia oligophlebia Merr. Huaxue Xuebao, 1984, 2, 66-73.
[18]
Bowen, I.H.; Dennis, R.; Osborne, S.J. The alkaloids of Acronychia pedunculata (L.) Miq. (Rutaceae). J. Pharm. Pharmacol., 2011, 37(S12), 138.
[http://dx.doi.org/10.1111/j.2042-7158.1985.tb14208.x]
[19]
Kumar, V.; Karunaratne, V.; Sanath, M.R.; Meeegalle, K. 1-[2′,4′-dihydroxy-3′,5′-di-(3″-methylbut-2″-enyl)-6′-methoxy] phenylethanone from Acronychia pedunculata root bark.Phytochemistry, 1989, 28(4), 1278-1279.
[http://dx.doi.org/10.1016/0031-9422(89)80234-1]
[20]
Chatterjee, A.; Bhattacharya, A. 385. The isolation and constitution of marmin, a new coumarin from Aegle marmelos. Correa. J. Chem. Soc., 1959, 385, 1922-1924.
[http://dx.doi.org/10.1039/jr9590001922]
[21]
Gajbhiye, N.; Makasana, J.; Thorat, T. Simultaneous determination of marmin, skimmianine, umbelliferone, psoralene, and imperatorin in the root bark of Aegle marmelos by high-performance thin-layer chromatography. J. Planar Chromatogr. Mod. TLC, 2012, 25(4), 306-313.
[http://dx.doi.org/10.1556/JPC.25.2012.4.5]
[22]
Riyanto, S.; Sukari, M.A.; Rahmani, M.; Ee, G.C.L.; Taufiq-Yap, Y.H.; Aimi, N.; Kitajima, M. Alkaloids from Aegle marmelos (Rutaceae). Malays. J. Anal. Sci., 2001, 7, 463-465.
[23]
Wahab, I.; Wong, N.; Boylan, F. Choisyaternatine, a new alkaloid isolated from Choisya ternata. Planta Med., 2012, 78(14), 1597-1600.
[http://dx.doi.org/10.1055/s-0032-1315044] [PMID: 22815205]
[24]
Wahab, I.R.A.; Wong, N.S.H.; Santoz-Martinez, M.J.; Boylan, F. Inhibition of human platelet aggregation by Choisyaternatine isolated from Choisya ternata (Rutaceae). J. Trop. Resour. Sustain, 2021, 9, 80-87.
[25]
García-Argáez, A.; Ramírez Apan, T.; Delgado, H.; Velázquez, G.; Martínez-Vázquez, M. Anti-inflammatory activity of coumarins from Decatropis bicolor on TPA ear mice model. Planta Med., 2000, 66(3), 279-281.
[http://dx.doi.org/10.1055/s-2000-14894] [PMID: 10821059]
[26]
Kanamori, H.; Sakamoto, I.; Mizuta, M. Further study on mutagenic furoquinoline alkaloids of Dictamni Radicis Cortex: Isolation of skimmianine and high-performance liquid chromatographic analysis. Chem. Pharm. Bull., 1986, 34(4), 1826-1829.
[http://dx.doi.org/10.1248/cpb.34.1826] [PMID: 3719881]
[27]
Akhmedzhanova, V.I.; Bessonova, I.A.; Yunusov, S.Y. The roots of Dictamnus angustifolius. Chem. Nat. Compd., 1978, 14(4), 404-406.
[http://dx.doi.org/10.1007/BF00565245]
[28]
Dolabela, M.F.; Oliveira, S.G.; Nascimento, J.M.; Peres, J.M.; Wagner, H.; Póvoa, M.M.; de Oliveira, A.B. In vitro antiplasmodial activity of extract and constituents from Esenbeckia febrifuga, a plant traditionally used to treat malaria in the Brazilian Amazon. Phytomedicine, 2008, 15(5), 367-372.
[http://dx.doi.org/10.1016/j.phymed.2008.02.001] [PMID: 18337075]
[29]
Cardoso-Lopes, E.M.; Maier, J.A.; Silva, M.R.; Regasini, L.O.; Simote, S.Y.; Lopes, N.P.; Pirani, J.R.; Bolzani, V.S.; Young, M.C.M. Alkaloids from stems of Esenbeckia leiocarpa Engl. (Rutaceae) as potential treatment for Alzheimer disease. Molecules, 2010, 15(12), 9205-9213.
[http://dx.doi.org/10.3390/molecules15129205] [PMID: 21160449]
[30]
Cheng, J.T.; Chang, T.K.; Chent, I-S. Skimmianine and related furoquinolines function as antagonists of 5-hydroxytryptamine receptors in animals. J. Auton. Pharmacol., 1994, 14(5), 365-374.
[http://dx.doi.org/10.1111/j.1474-8673.1994.tb00617.x] [PMID: 7829541]
[31]
Assem, E.; Benages, I.; Albonico, S. Further alkaloids from bark of Fagara mayu. Planta Med., 1983, 48(6), 77-80.
[http://dx.doi.org/10.1055/s-2007-969890] [PMID: 17404954]
[32]
Varamini, P.; Javidnia, K.; Soltani, M.; Mehdipour, A.; Ghaderi, A. Cytotoxic activity and cell cycle analysis of quinoline alkaloids isolated from Haplophyllum canaliculatum Boiss. Planta Med., 2009, 75(14), 1509-1516.
[http://dx.doi.org/10.1055/s-0029-1185807] [PMID: 19551611]
[33]
Puricelli, L.; Innocenti, G.; Monache, G.D.; Caniato, R.; Filippini, R.; Cappelletti, E.M. In vivo and in vitro production of alkaloids by Haplophyllum patavinum. Nat. Prod. Lett., 2002, 16(2), 95-100.
[http://dx.doi.org/10.1080/10575630290019985] [PMID: 11990434]
[34]
Khalid, S.; Waterman, P. Alkaloid, lignan and flavonoid constituents of Haplophyllum tuberculatum from Sudan. Planta Med., 1981, 43(10), 148-152.
[http://dx.doi.org/10.1055/s-2007-971491] [PMID: 17402027]
[35]
Jacobs, H.; Ramadayal, F.; McLean, S.; Perpick-Dumont, M.; Puzzuoli, F.; Reynolds, W.F. Constituents of Hortia regia: 6,7-Dimethoxycoumarin, Rutaecarpine, skimmianine, and (+)-methyl (E,E)-10,11-dihydroxy-3,7,11-trimethyl-2,6,-dodecadienoate. J. Nat. Prod., 1987, 50(3), 507-509.
[http://dx.doi.org/10.1021/np50051a030]
[36]
Rahmani, M.; Serang, R.M.; Hashim, N.M.; Mohd Aspollah Sukari Gwendoline, C.L.E.E.; Ali, A.M.; Ismail, H.B.M. Alkaloids and Sulphur-containing amides from Glycosmis citrifolia and Glycosmis elongata. Sains Malays., 2010, 39, 445-451.
[37]
Bowen, I.H.; Perera, K.P.W.C.; Lewis, J.R. Alkaloids of the leaves of Glycosmis bilocularis. Phytochemistry, 1978, 17(12), 2125-2127.
[http://dx.doi.org/10.1016/S0031-9422(00)89294-8]
[38]
Govindachari, T.R.; Pai, B.R.; Subramaniam, P.S. Alkaloids of glycosmis pentaphylla (Retz.) correa. Tetrahedron, 1966, 22(10), 3245-3252.
[http://dx.doi.org/10.1016/S0040-4020(01)92510-4]
[39]
Kozioł, E.; Luca, S.V.; Marcourt, L.; Nour, M.; Hnawia, E.; Jakubowicz-Gil, J.; Paduch, R.; Mroczek, T.; Wolfender, J.L.; Skalicka-Woźniak, K. Efficient extraction and isolation of skimmianine from New Caledonian plant Medicosma leratii and evaluation of its effects on apoptosis, necrosis, and autophagy. Phytochem. Lett., 2019, 30, 224-230.
[http://dx.doi.org/10.1016/j.phytol.2018.12.002]
[40]
Bhattacharyya, J.; Serur, L.M.; Cheriyan, U.O. Isolation of the alkaloids of Monnieria trifolia. J. Nat. Prod., 1984, 47(2), 379-381.
[http://dx.doi.org/10.1021/np50032a026]
[41]
Ikuta, A.; Nakamura, T.; Urabe, H. Indolopyridoquinazoline, furoquinoline and canthinone type alkaloids from Phellodendron amurense callus tissues. Phytochemistry, 1998, 48(2), 285-291.
[http://dx.doi.org/10.1016/S0031-9422(97)01130-8]
[42]
Biavatti, M.W.; Vieira, P.C.; Silva, M.F.G.F.; Fernandes, J.B.; Victor, S.R.; Pagnocca, F.C.; Albuquerque, S.; Caracelli, I.; Zukerman-Schpector, J. Biological activity of quinolone alkaloids from Raulinoa echinata and X-ray structure of flindersiamine. J. Braz. Chem. Soc., 2002, 13(1), 66-70.
[http://dx.doi.org/10.1590/S0103-50532002000100010]
[43]
Ratheesh, M.; Sindhu, G.; Helen, A. Anti-inflammatory effect of quinoline alkaloid skimmianine isolated from Ruta graveolens L. Inflamm. Res., 2013, 62(4), 367-376.
[http://dx.doi.org/10.1007/s00011-013-0588-1] [PMID: 23344232]
[44]
Mafezoli, J.; de Souza, E.D.R.; Silva-Junior, J.N.; Oliveira, M.C.F.; Barbosa, F.G.; Andrade-Neto, M. Chemical constituents of Sigmatanthus trifoliatus Huber ex Emmerich (Rutaceae). Biochem. Syst. Ecol., 2020, 93, 104139.
[http://dx.doi.org/10.1016/j.bse.2020.104139]
[45]
Wondimu, A.; Dagne, E.; Waterman, P.G. Quinoline alkaloids from the leaves of Teclea simplicifolia. Phytochemistry, 1988, 27(3), 959-960.
[http://dx.doi.org/10.1016/0031-9422(88)84136-0]
[46]
Muriithi, M.W.; Abraham, W.R.; Addae-Kyereme, J.; Scowen, I.; Croft, S.L.; Gitu, P.M.; Kendrick, H.; Njagi, E.N.M.; Wright, C.W. Isolation and in vitro antiplasmodial activities of alkaloids from Teclea trichocarpa: in vivo antimalarial activity and X-ray crystal structure of normelicopicine. J. Nat. Prod., 2002, 65(7), 956-959.
[http://dx.doi.org/10.1021/np0106182] [PMID: 12141852]
[47]
Toro, M.J.U.; Müller, A.H.; Arruda, M.S.P.; Arruda, A.C. Alkaloids and coumarins from Ticorea longiflora. Phytochemistry, 1997, 45(4), 851-853.
[http://dx.doi.org/10.1016/S0031-9422(96)00877-1]
[48]
Hu, J.; Shi, X.; Chen, J.; Mao, X.; Zhu, L.; Yu, L.; Shi, J. Alkaloids from Toddalia asiatica and their cytotoxic, antimicrobial and antifungal activities. Food Chem., 2014, 148, 437-444.
[http://dx.doi.org/10.1016/j.foodchem.2012.12.058] [PMID: 24262580]
[49]
Kiplimo, J.J.; Koorbanally, N.A. Antibacterial activity of an epoxidised prenylated cinnamaldehdye derivative from Vepris glomerata. Phytochem. Lett., 2012, 5(3), 438-442.
[http://dx.doi.org/10.1016/j.phytol.2012.03.017]
[50]
Prakash Chaturvedula, V.S.; Schilling, J.K.; Miller, J.S.; Andriantsiferana, R.; Rasamison, V.E.; Kingston, D.G.I. New cytotoxic alkaloids from the wood of Vepris punctata from the Madagascar rainforest. J. Nat. Prod., 2003, 66(4), 532-534.
[http://dx.doi.org/10.1021/np020578h] [PMID: 12713408]
[51]
Mansoor, T.A.; Borralho, P.M.; Luo, X.; Mulhovo, S.; Rodrigues, C.M.P.; Ferreira, M.J.U. Apoptosis inducing activity of benzophenanthridine-type alkaloids and 2-arylbenzofuran neolignans in HCT116 colon carcinoma cells. Phytomedicine, 2013, 20(10), 923-929.
[http://dx.doi.org/10.1016/j.phymed.2013.03.026] [PMID: 23643093]
[52]
Dreyer, D.L.; Brenner, R.C. Alkaloids of some Mexican Zanthoxylum species. Phytochemistry, 1980, 19(5), 935-939.
[http://dx.doi.org/10.1016/0031-9422(80)85141-7]
[53]
Cuca, S. L.E.; Martinez V, J.C.; Monache, F.D. 7,9′-Epoxylignan and other constituents of Zanthoxylum culantrillo. Phytochemistry, 1998, 47(7), 1437-1439.
[http://dx.doi.org/10.1016/S0031-9422(97)00747-4]
[54]
Huang, A.; Chi, Y.; Liu, J.; Wang, M.; Qin, J.; Ou, L.; Chen, W.; Zhao, Z.; Zhan, R.; Xu, H. Profiling and pharmacokinetic studies of alkaloids in rats after oral administration of Zanthoxylum nitidum decoction by UPLC-Q-TOF-MS/MS and HPLC-MS/MS. Molecules, 2019, 24(3), 585.
[http://dx.doi.org/10.3390/molecules24030585] [PMID: 30736390]
[55]
Yang, G.; Chen, D. Alkaloids from the roots of Zanthoxylum nitidum and their antiviral and antifungal effects. Chem. Biodivers., 2008, 5(9), 1718-1722.
[http://dx.doi.org/10.1002/cbdv.200890160] [PMID: 18816524]
[56]
Diaz, Y.H.; Arranz, J.C.E.; Fernandez, R.G.; Pacheco, A.O. Trypanocidal potentialities of skimmianine an alkaloid isolated from Zanthoxylum pistaciifolium Griseb leaves. Pharmacognosy Res., 2020, 12, 322-327.
[57]
de Moura, N.F.; Ribeiro, H.B.; Machado, E.C.S.; Ethur, E.M.; Zanatta, N.; Morel, A.F. Benzophenanthridine alkaloids from Zanthoxylum rhoifolium. Phytochemistry, 1997, 46(8), 1443-1446.
[http://dx.doi.org/10.1016/S0031-9422(97)00498-6]
[58]
Liu, Z.L.; Chu, S.S.; Jiang, G.H. Feeding deterrents from Zanthoxylum schinifolium against two stored-product insects. J. Agric. Food Chem., 2009, 57(21), 10130-10133.
[http://dx.doi.org/10.1021/jf9012983] [PMID: 19886679]
[59]
Shwu-Jen, W.; Ih-Sheng, C. Alkaloids from Zanthoxylum simulans. Phytochemistry, 1993, 34(6), 1659-1661.
[http://dx.doi.org/10.1016/S0031-9422(00)90870-7]
[60]
Sultana, N. Medicinal properties and biosynthetic studies on indigenous medicinal plant Skimmia laureola. Crit. Rev. Pharm. Sci, 2013, 2, 13-42.
[61]
Matsuo, M.; Yamazaki, M.; Kasida, Y. Biosynthesis of skimmianine. Biochem. Biophys. Res. Commun., 1966, 23(5), 679-682.
[http://dx.doi.org/10.1016/0006-291X(66)90453-0] [PMID: 5964254]
[62]
Colonna, A.O.; Gros, E.G. Biosynthesis of skimmianine in Fagara coco. Phytochemistry, 1971, 10(7), 1515-1521.
[http://dx.doi.org/10.1016/0031-9422(71)85016-1]
[63]
Collins, J.F.; Gray, G.A.; Grundon, M.F.; Harrison, D.M.; Spyropoulos, C.G. Quinoline alkaloids. Part XIII. A convenient synthesis of furoquinoline alkaloids of the dictamnine type. J. Chem. Soc., Perkin Trans. 1, 1973, 1, 94-97.
[http://dx.doi.org/10.1039/p19730000094]
[64]
Sainbury, M. The quinolone alkaloids, Rodd’s chemistry of carbon compounds. A Modern Comprehensive Treatise; Elsevier, 1964, Vol. 14, pp. 171-255.
[65]
Zuo, Y.; Pu, J.; Chen, G.; Shen, W.; Wang, B. Study on the activity and mechanism of skimmianine against human non-small cell lung cancer. Nat. Prod. Res., 2019, 33(5), 759-762.
[http://dx.doi.org/10.1080/14786419.2017.1408096] [PMID: 29187005]
[66]
Molnar, J.; Ocsovszki, I.; Puskas, L.; Ghane, T.; Hohmann, J.; Zupko, I. Investigation of the antiproliferative action of the quinolone alkaloids kokusaginine and skimmianine on human cell lines. Curr. Signal Transduct. Ther., 2013, 8(2), 148-155.
[http://dx.doi.org/10.2174/15743624113086660006]
[67]
Eze, F.I.; Siwe-Noundou, X.; Isaacs, M.; Patnala, S.; Osadebe, P.O.; Krause, R.W.M. Anti-cancer and anti-trypanosomal properties of alkaloids from the root bark of Zanthoxylum leprieurii Guill and Perr. Trop. J. Pharm. Res., 2020, 19, 2377-2383.
[68]
Fiot, J.; Jansen, O.; Akhmedjanova, V.; Angenot, L.; Balansard, G.; Ollivier, E. HPLC quantification of alkaloids fromHaplophyllum extracts and comparison with their cytotoxic properties. Phytochem. Anal., 2006, 17(5), 365-369.
[http://dx.doi.org/10.1002/pca.927] [PMID: 17019939]
[69]
Guetchueng, S.T.; Nahar, L.; Ritchie, K.J.; Ismail, F.M.D.; Evans, A.R.; Sarker, S.D. Zanthoamides G-I: Three new alkamides from Zanthoxylum zanthoxyloides. Phytochem. Lett., 2018, 26, 125-129.
[http://dx.doi.org/10.1016/j.phytol.2018.05.031]
[70]
Liu, Y.; Kang, L.; Shi, S.M.; Li, B.J.; Zhang, Y.; Zhang, X.Z.; Guo, X.W.; Fu, G.; Zheng, G.N.; Hao, H.; Zhao, H.F. Skimmianine as a novel therapeutic agent suppresses proliferation and migration of human esophageal squamous cell carcinoma via blocking the activation of ERK1/2. Neoplasma, 2022, 69(3), 571-582.
[http://dx.doi.org/10.4149/neo_2022_211118N1640] [PMID: 35144474]
[71]
Chen, J.J.; Wang, T.Y.; Hwang, T.L. Neolignans, a coumarinolignan, lignan derivatives, and a chromene: anti-inflammatory constituents from Zanthoxylum avicennae. J. Nat. Prod., 2008, 71(2), 212-217.
[http://dx.doi.org/10.1021/np070594k] [PMID: 18211005]
[72]
Abdelgaleil, S.A.M.; Saad, M.M.G.; Ariefta, N.R.; Shiono, Y. Antimicrobial and phytotoxic activities of secondary metabolites from Haplophyllum tuberculatum and Chrysanthemum coronarium. S. Afr. J. Bot., 2020, 128, 35-41.
[http://dx.doi.org/10.1016/j.sajb.2019.10.005]
[73]
Dofuor, A.K.; Ayertey, F.; Bolah, P.; Djameh, G.I.; Kyeremeh, K.; Ohashi, M.; Okine, L.K.; Gwira, T.M. Isolation and antitrypanosomal characterization of furoquinoline and oxylipin from Zanthoxylum zanthoxyloides. Biomolecules, 2020, 10(12), 1670.
[http://dx.doi.org/10.3390/biom10121670] [PMID: 33322191]
[74]
Dos Santos, R.A.N.; Batista, J., Jr; Rosa, S.I.G.; Torquato, H.F.; Bassi, C.L.; Ribeiro, T.A.N.; De Sousa, P.T., Jr; Bessera, Â.M.S.S.; Fontes, C.J.F.; Da Silva, L.E.; Piuvezam, M.R. Leishmanicidal effect of Spiranthera odoratíssima (Rutaceae) and its isolated alkaloid skimmianine occurs by a nitric oxide dependent mechanism. Parasitology, 2011, 138(10), 1224-1233.
[http://dx.doi.org/10.1017/S0031182011001168] [PMID: 21810308]
[75]
Fournet, A.; Barrios, A.A.; Muñoz, V.; Hocquemiller, R.; Cavé, A.; Bruneton, J. 2-substituted quinoline alkaloids as potential antileishmanial drugs. Antimicrob. Agents Chemother., 1993, 37(4), 859-863.
[http://dx.doi.org/10.1128/AAC.37.4.859] [PMID: 8494383]
[76]
Fournet, A.; Barrios, A.A.; Muñoz, V.; Hocquemiller, R.; Roblot, F.; Cavé, A.; Richomme, P.; Bruneton, J. Antiprotozoal activity of quinoline alkaloids isolated from Galipea longiflora, a Bolivian plant used as a treatment for cutaneous leishmaniasis. Phytother. Res., 1994, 8(3), 174-178.
[http://dx.doi.org/10.1002/ptr.2650080312]
[77]
Mwangi, E.S.K.; Keriko, J.M.; Machocho, A.K.; Wanyonyi, A.W.; Malebo, H.M.; Chhabra, S.C.; Tarus, P.K. Antiprotozoal activity and cytotoxicity of metabolites from leaves of Teclea trichocarpa. J. Med. Plants Res., 2010, 4, 726-731.
[78]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[79]
Yang, Z.; Zhang, D.; Ren, J.; Yang, M. Skimmianine, a furoquinoline alkaloid from Zanthoxylum nitidum as a potential acetylcholinesterase inhibitor. Med. Chem. Res., 2012, 21(6), 722-725.
[http://dx.doi.org/10.1007/s00044-011-9581-9]
[80]
Sichaem, J.; Jirasirichote, A.; Sapasuntikul, K.; Khumkratok, S.; Sawasdee, P.; Do, T.M.L.; Tip-pyang, S. New furoquinoline alkaloids from the leaves of Evodia lepta. Fitoterapia, 2014, 92, 270-273.
[http://dx.doi.org/10.1016/j.fitote.2013.12.002] [PMID: 24333260]
[81]
Cheng, J.T.; Chang, S.S.; Chen, I.S. Cardiovascular effect of skimmianine in rats. Arch. Int. Pharmacodyn. Ther., 1990, 306, 65-74.
[PMID: 2076049]
[82]
Nam, K.; Je, K.H.; Shin, Y.J.; Kang, S.S.; Mar, W. Inhibitory effects of furoquinoline alkaloids from Melicope confusa and Dictamnus albus against human phosphodiesterase 5 (hPDE5A) in vitro. Arch. Pharm. Res., 2005, 28(6), 675-679.
[http://dx.doi.org/10.1007/BF02969357] [PMID: 16042076]
[83]
The, S.N. A review on the medicinal plant Dalbegia odorifera species: Phytochemistry and biological activity. Evid. Based Complementary Altern. Med.,, 2017, 2017
[84]
Chen, K.S.; Chang, Y.L.; Teng, C.M.; Chen, C.F.; Wu, Y.C. Furoquinolines with antiplatelet aggregation activity from leaves of Melicope confusa. Planta Med., 2009, 66(1), 80-81.
[http://dx.doi.org/10.1055/s-0029-1243116] [PMID: 10705744]
[85]
Chang, Z.Q.; Wang, S.L.; Liu, F.; Zhu, M.Y.; Tang, X.C. No physical dependence of skimmianine in mice, rats and monkeys. Chung Kuo Yao Li Hsueh Pao, 1982, 3(4), 223-226.
[PMID: 6219535]
[86]
Nugroho, A.E.; Riyanto, S.; Sukari, M.A.; Maeyama, K. Effects of skimmianine, a quinoline alkaloid of Aegle marmelos Correa roots, on the histamine release from rat mast cells. J. Basic Appl. Sci., 2010, 6, 141-148.
[87]
Ochieng, C.O. Nyongesa, D.W.; Yamo, K.O.; Onyango, J.O.; Langat, M.K.; Manguro, L.A.O. α-Amylase and α-glucosidase inhibitors from Zanthoxylum chalybeum Engl. root bark. Fitoterapia, 2020, 146, 104719.
[http://dx.doi.org/10.1016/j.fitote.2020.104719] [PMID: 32889048]
[88]
Cheng, M.J.; Lee, K.H.; Tsai, I.L.; Chen, I.S. Two new sesquiterpenoids and anti-HIV principles from the root bark of Zanthoxylum ailanthoides. Bioorg. Med. Chem., 2005, 13(21), 5915-5920.
[http://dx.doi.org/10.1016/j.bmc.2005.07.050] [PMID: 16140017]
[89]
Akhmedkhodzhaeva, K.S.; Bessonova, I.A.; Rasulova, K.A. Furano-quinoline alkaloid skimmianine and some of its biological characteristics. Doklady Akademii Nauk Respubliki Uzbekistan, 2000, 8, 42-44.
[90]
Huang, A.; Xu, H.; Zhan, R.; Chen, W.; Liu, J.; Chi, Y.; Chen, D.; Ji, X.; Luo, C. Metabolic profile of skimmianine in rats determined by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Molecules, 2017, 22(4), 489.
[http://dx.doi.org/10.3390/molecules22040489] [PMID: 28333075]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy