Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Mini-Review Article

Triplication of Synaptojanin 1 in Alzheimer’s Disease Pathology in Down Syndrome

Author(s): Robert Hwang Jr., Lam-Ha Dang, Jacinda Chen, Joseph H. Lee and Catherine Marquer*

Volume 19, Issue 12, 2022

Published on: 27 December, 2022

Page: [795 - 807] Pages: 13

DOI: 10.2174/1567205020666221202102832

Price: $65

Abstract

Down Syndrome (DS), caused by triplication of human chromosome 21 (Hsa21) is the most common form of intellectual disability worldwide. Recent progress in healthcare has resulted in a dramatic increase in the lifespan of individuals with DS. Unfortunately, most will develop Alzheimer’s disease like dementia (DS-AD) as they age. Understanding similarities and differences between DSAD and the other forms of the disease - i.e., late-onset AD (LOAD) and autosomal dominant AD (ADAD) - will provide important clues for the treatment of DS-AD. In addition to the APP gene that codes the precursor of the main component of amyloid plaques found in the brain of AD patients, other genes on Hsa21 are likely to contribute to disease initiation and progression. This review focuses on SYNJ1, coding the phosphoinositide phosphatase synaptojanin 1 (SYNJ1). First, we highlight the function of SYNJ1 in the brain. We then summarize the involvement of SYNJ1 in the different forms of AD at the genetic, transcriptomic, proteomic and neuropathology levels in humans. We further examine whether results in humans correlate with what has been described in murine and cellular models of the disease and report possible mechanistic links between SYNJ1 and the progression of the disease. Finally, we propose a set of questions that would further strengthen and clarify the role of SYNJ1 in the different forms of AD.

Keywords: Synaptojanin 1, Down syndrome, Alzheimer’s disease, late-onset, autosomal dominant, genetic association, neuropathology, disease models, APP, growth factor receptor-bound protein 2 (Grb2).

Next »
[1]
Lott IT, Head E. Dementia in Down syndrome: Unique insights for Alzheimer disease research. Nat Rev Neurol 2019; 15(3): 135-47.
[http://dx.doi.org/10.1038/s41582-018-0132-6] [PMID: 30733618]
[2]
Knopman DS, Amieva H, Petersen RC. Alzheimer disease. Nat Rev Dis Primers 2021; 7(1): 33.
[http://dx.doi.org/10.1038/s41572-021-00269-y] [PMID: 33986301]
[3]
Rovelet-Lecrux A, Hannequin D, Raux G. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 2006; 38(1): 24-6.
[http://dx.doi.org/10.1038/ng1718] [PMID: 16369530]
[4]
Prasher VP, Roberts E, Norman A, Butler AC, Krishnan VH, McMullan DJ. Partial trisomy 22 (q11.2-q13.1) as a result of duplication and pericentric inversion. J Med Genet 1995; 32(4): 306-8.
[http://dx.doi.org/10.1136/jmg.32.4.306] [PMID: 7643363]
[5]
Doran E, Keator D, Head E. Down syndrome, partial trisomy 21, and absence of Alzheimer’s disease: The role of APP. J Alzheimers Dis 2017; 56(2): 459-70.
[http://dx.doi.org/10.3233/JAD-160836] [PMID: 27983553]
[6]
Wiseman FK, Pulford LJ, Barkus C. Trisomy of human chromosome 21 enhances amyloid-β deposition independently of an extra copy of APP. Brain 2018; 141(8): 2457-74.
[http://dx.doi.org/10.1093/brain/awy159] [PMID: 29945247]
[7]
McPherson PS, Garcia EP, Slepnev VI. A presynaptic inositol-5-phosphatase. Nature 1996; 379(6563): 353-7.
[http://dx.doi.org/10.1038/379353a0] [PMID: 8552192]
[8]
Cremona O, Nimmakayalu M, Haffner C, Bray-Ward P, Ward DC, De Camilli P. Assignment of SYNJ1 to human chromosome 21q22.2 and SYNJ12 to the murine homologous region on chromosome 16C3-4 by in situ hybridization. Cytogenet Cell Genet 2000; 88(1-2): 89-90.
[http://dx.doi.org/10.1159/000015493] [PMID: 10773674]
[9]
McPherson PS, Czernik AJ, Chilcote TJ. Interaction of Grb2 its Src homology 3 domains with synaptic proteins including synapsin I. Proc Natl Acad Sci USA 1994; 91(14): 6486-90.
[http://dx.doi.org/10.1073/pnas.91.14.6486] [PMID: 8022809]
[10]
McPherson PS, Takei K, Schmid SL, De Camilli P. p145, a major Grb2-binding protein in brain, is co-localized with dynamin in nerve terminals where it undergoes activity-dependent dephosphorylation. J Biol Chem 1994; 269(48): 30132-9.
[http://dx.doi.org/10.1016/S0021-9258(18)43787-8] [PMID: 7982917]
[11]
Ramjaun AR, McPherson PS. Tissue-specific alternative splicing generates two synaptojanin isoforms with differential membrane binding properties. J Biol Chem 1996; 271(40): 24856-61.
[http://dx.doi.org/10.1074/jbc.271.40.24856] [PMID: 8798761]
[12]
Haffner C, Takei K, Chen H. Synaptojanin 1: localization on coated endocytic intermediates in nerve terminals and interaction of its 170 kDa isoform with Eps15. FEBS Lett 1997; 419(2-3): 175-80.
[http://dx.doi.org/10.1016/S0014-5793(97)01451-8] [PMID: 9428629]
[13]
David C, McPherson PS, Mundigl O, de Camilli P. A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. Proc Natl Acad Sci USA 1996; 93(1): 331-5.
[http://dx.doi.org/10.1073/pnas.93.1.331] [PMID: 8552632]
[14]
Ringstad N, Nemoto Y, De Camilli P. The SH3p4/Sh3p8/SH3p13 protein family: Binding partners for synaptojanin and dynamin a Grb2-like Src homology 3 domain. Proc Natl Acad Sci USA 1997; 94(16): 8569-74.
[http://dx.doi.org/10.1073/pnas.94.16.8569] [PMID: 9238017]
[15]
de Heuvel E, Bell AW, Ramjaun AR, Wong K, Sossin WS, McPherson PS. Identification of the major synaptojanin-binding proteins in brain. J Biol Chem 1997; 272(13): 8710-6.
[http://dx.doi.org/10.1074/jbc.272.13.8710] [PMID: 9079704]
[16]
Qualmann B, Roos J, DiGregorio PJ, Kelly RB. Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol Biol Cell 1999; 10(2): 501-13.
[http://dx.doi.org/10.1091/mbc.10.2.501] [PMID: 9950691]
[17]
Perera RM, Zoncu R, Lucast L, De Camilli P, Toomre D. Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages. Proc Natl Acad Sci USA 2006; 103(51): 19332-7.
[http://dx.doi.org/10.1073/pnas.0609795104] [PMID: 17158794]
[18]
Pao PC, Tsai LH. Three decades of Cdk5. J Biomed Sci 2021; 28(1): 79.
[http://dx.doi.org/10.1186/s12929-021-00774-y] [PMID: 34814918]
[19]
Liu SL, Wang C, Jiang T, Tan L, Xing A, Yu JT. The role of Cdk5 in Alzheimer’s disease. Mol Neurobiol 2016; 53(7): 4328-42.
[http://dx.doi.org/10.1007/s12035-015-9369-x] [PMID: 26227906]
[20]
Lee SY, Wenk MR, Kim Y, Nairn AC, De Camilli P. Regulation of synaptojanin 1 by cyclin-dependent kinase 5 at synapses. Proc Natl Acad Sci USA 2004; 101(2): 546-51.
[http://dx.doi.org/10.1073/pnas.0307813100] [PMID: 14704270]
[21]
Sakisaka T, Itoh T, Miura K, Takenawa T. Phosphatidylinositol 4,5-bisphosphate phosphatase regulates the rearrangement of actin filaments. Mol Cell Biol 1997; 17(7): 3841-9.
[http://dx.doi.org/10.1128/MCB.17.7.3841] [PMID: 9199318]
[22]
Cremona O, Di Paolo G, Wenk MR. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 1999; 99(2): 179-88.
[http://dx.doi.org/10.1016/S0092-8674(00)81649-9] [PMID: 10535736]
[23]
Harris TW, Hartwieg E, Horvitz HR, Jorgensen EM. Mutations in synaptojanin disrupt synaptic vesicle recycling. J Cell Biol 2000; 150(3): 589-600.
[http://dx.doi.org/10.1083/jcb.150.3.589] [PMID: 10931870]
[24]
Singer-Krüger B, Nemoto Y, Daniell L, Ferro-Novick S, De Camilli P. Synaptojanin family members are implicated in endocytic membrane traffic in yeast. J Cell Sci 1998; 111(22): 3347-56.
[http://dx.doi.org/10.1242/jcs.111.22.3347] [PMID: 9788876]
[25]
Stefan CJ, Audhya A, Emr SD. The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol Biol Cell 2002; 13(2): 542-57.
[http://dx.doi.org/10.1091/mbc.01-10-0476] [PMID: 11854411]
[26]
Milosevic I, Giovedi S, Lou X. Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron 2011; 72(4): 587-601.
[http://dx.doi.org/10.1016/j.neuron.2011.08.029] [PMID: 22099461]
[27]
Verstreken P, Koh TW, Schulze KL. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 2003; 40(4): 733-48.
[http://dx.doi.org/10.1016/S0896-6273(03)00644-5] [PMID: 14622578]
[28]
Micheva KD, Kay BK, McPherson PS. Synaptojanin forms two separate complexes in the nerve terminal. Interactions with endophilin and amphiphysin. J Biol Chem 1997; 272(43): 27239-45.
[http://dx.doi.org/10.1074/jbc.272.43.27239] [PMID: 9341169]
[29]
Kim WT, Chang S, Daniell L, Cremona O, Di Paolo G, De Camilli P. Delayed reentry of recycling vesicles into the fusion-competent synaptic vesicle pool in synaptojanin 1 knockout mice. Proc Natl Acad Sci USA 2002; 99(26): 17143-8.
[http://dx.doi.org/10.1073/pnas.222657399] [PMID: 12481038]
[30]
Mani M, Lee SY, Lucast L. The dual phosphatase activity of synaptojanin 1 is required for both efficient synaptic vesicle endocytosis and reavailability at nerve terminals. Neuron 2007; 56(6): 1004-18.
[http://dx.doi.org/10.1016/j.neuron.2007.10.032] [PMID: 18093523]
[31]
Guo S, Stolz LE, Lemrow SM, York JD. SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J Biol Chem 1999; 274(19): 12990-5.
[http://dx.doi.org/10.1074/jbc.274.19.12990] [PMID: 10224048]
[32]
Cao M, Wu Y, Ashrafi G. Parkinson sac domain mutation in synaptojanin 1 impairs clathrin uncoating at synapses and triggers dystrophic changes in dopaminergic axons. Neuron 2017; 93(4): 882-896.e5.
[http://dx.doi.org/10.1016/j.neuron.2017.01.019] [PMID: 28231468]
[33]
Watanabe S, Mamer LE, Raychaudhuri S. Synaptojanin and endophilin mediate neck formation during ultrafast endocytosis. Neuron 2018; 98(6): 1184-1197.e6.
[http://dx.doi.org/10.1016/j.neuron.2018.06.005] [PMID: 29953872]
[34]
Gong LW, De Camilli P. Regulation of postsynaptic AMPA responses by synaptojanin 1. Proc Natl Acad Sci USA 2008; 105(45): 17561-6.
[http://dx.doi.org/10.1073/pnas.0809221105] [PMID: 18987319]
[35]
Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature 2006; 443(7112): 651-7.
[http://dx.doi.org/10.1038/nature05185] [PMID: 17035995]
[36]
Vanhauwaert R, Kuenen S, Masius R. The SAC 1 domain in synaptojanin is required for autophagosome maturation at presynaptic terminals. EMBO J 2017; 36(10): 1392-411.
[http://dx.doi.org/10.15252/embj.201695773] [PMID: 28331029]
[37]
Yang S, Park D, Manning L. Presynaptic autophagy is coupled to the synaptic vesicle cycle ATG-9. Neuron 2022; 110(5): 824-840.e10.
[http://dx.doi.org/10.1016/j.neuron.2021.12.031] [PMID: 35065714]
[38]
Pan PY, Sheehan P, Wang Q. SYNJ1 haploinsufficiency causes dopamine neuron vulnerability and alpha-synuclein accumulation in mice. Hum Mol Genet 2020; 29(14): 2300-12.
[http://dx.doi.org/10.1093/hmg/ddaa080] [PMID: 32356558]
[39]
Pan PY, Zhu J, Rizvi A, Zhu X, Tanaka H, Dreyfus CF. Synaptojanin 1 deficiency upregulates basal autophagosome formation in astrocytes. J Biol Chem 2021; 297(1): 100873.
[http://dx.doi.org/10.1016/j.jbc.2021.100873] [PMID: 34126070]
[40]
George AA, Hayden S, Holzhausen LC, Ma EY, Suzuki SC, Brockerhoff SE. Synaptojanin 1 is required for endolysosomal trafficking of synaptic proteins in cone photoreceptor inner segments. PLoS One 2014; 9(1): e84394.
[http://dx.doi.org/10.1371/journal.pone.0084394] [PMID: 24392132]
[41]
George AA, Hayden S, Stanton GR, Brockerhoff SE. Arf6 and the 5'phosphatase of synaptojanin 1 regulate autophagy in cone photoreceptors. BioEssays 2016; 38 (Suppl. 1): S119-35.
[http://dx.doi.org/10.1002/bies.201670913] [PMID: 27417116]
[42]
Bellenguez C, Küçükali F, Jansen IE. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet 2022; 54(4): 412-36.
[http://dx.doi.org/10.1038/s41588-022-01024-z] [PMID: 35379992]
[43]
Kunkle BW, Grenier-Boley B, Sims R. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 2019; 51(3): 414-30.
[http://dx.doi.org/10.1038/s41588-019-0358-2] [PMID: 30820047]
[44]
Jansen IE, Savage JE, Watanabe K. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet 2019; 51(3): 404-13.
[http://dx.doi.org/10.1038/s41588-018-0311-9] [PMID: 30617256]
[45]
Jansen IE, Savage JE, Watanabe K. Author Correction: Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet 2020; 52(3): 354.
[http://dx.doi.org/10.1038/s41588-019-0573-x] [PMID: 32029921]
[46]
Lee JH. Importance of complex traits. In: Jorde LB, Little PFR, Dunn MJ, Subramaniam S, Eds. Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics. John Wiley and Sons: NY, USA 2006.
[http://dx.doi.org/10.1002/047001153X.g105102]
[47]
Lander ES, Schork NJ. Genetic dissection of complex traits. Science 1994; 265(5181): 2037-48.
[http://dx.doi.org/10.1126/science.8091226] [PMID: 8091226]
[48]
Gieger C, Geistlinger L, Altmaier E. Genetics meets metabolomics: A genome-wide association study of metabolite profiles in human serum. PLoS Genet 2008; 4(11): e1000282.
[http://dx.doi.org/10.1371/journal.pgen.1000282] [PMID: 19043545]
[49]
Handen BL, Lott IT, Christian BT. The Alzheimer’s biomarker consortium‐down syndrome: Rationale and methodology. Alzheimers Dement (Amst) 2020; 12(1): e12065.
[http://dx.doi.org/10.1002/dad2.12065] [PMID: 32775597]
[50]
Jack CR Jr, Bennett DA, Blennow K. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 2016; 87(5): 539-47.
[http://dx.doi.org/10.1212/WNL.0000000000002923] [PMID: 27371494]
[51]
Miranda AM, Herman M, Cheng R. Excess synaptojanin 1 contributes to place cell dysfunction and memory deficits in the aging hippocampus in three types of Alzheimer’s disease. Cell Rep 2018; 23(10): 2967-75.
[http://dx.doi.org/10.1016/j.celrep.2018.05.011] [PMID: 29874583]
[52]
Aguet F, Anand S, Ardlie KG. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 2020; 369(6509): 1318-30.
[http://dx.doi.org/10.1126/science.aaz1776] [PMID: 32913098]
[53]
Sieberts SK, Perumal TM, Carrasquillo MM. Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions. Sci Data 2020; 7(1): 340.
[http://dx.doi.org/10.1038/s41597-020-00642-8] [PMID: 33046718]
[54]
Allen M, Carrasquillo MM, Funk C. Human whole genome genotype and transcriptome data for Alzheimer’s and other neurodegenerative diseases. Sci Data 2016; 3(1): 160089.
[http://dx.doi.org/10.1038/sdata.2016.89] [PMID: 27727239]
[55]
De Jager PL, Ma Y, McCabe C. A multi-omic atlas of the human frontal cortex for aging and Alzheimer’s disease research. Sci Data 2018; 5(1): 180142.
[http://dx.doi.org/10.1038/sdata.2018.142] [PMID: 30084846]
[56]
Wang M, Beckmann ND, Roussos P. The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer’s disease. Sci Data 2018; 5(1): 180185.
[http://dx.doi.org/10.1038/sdata.2018.185] [PMID: 30204156]
[57]
Higginbotham L, Ping L, Dammer EB. Integrated proteomics reveals brain-based cerebrospinal fluid biomarkers in asymptomatic and symptomatic Alzheimer’s disease. Sci Adv 2020; 6(43): eaaz9360.
[http://dx.doi.org/10.1126/sciadv.aaz9360] [PMID: 33087358]
[58]
AD Knowledge Portal. Agora. Version. 3.1.0 (2019) Available from: https://agora.adknowledgeportal.org/
[59]
Ando K, Ndjim M, Turbant S. The lipid phosphatase Synaptojanin 1 undergoes a significant alteration in expression and solubility and is associated with brain lesions in Alzheimer’s disease. Acta Neuropathol Commun 2020; 8(1): 79.
[http://dx.doi.org/10.1186/s40478-020-00954-1] [PMID: 32493451]
[60]
Hirano A. Hirano bodies and related neuronal inclusions. Neuropathol Appl Neurobiol 1994; 20(1): 3-11.
[http://dx.doi.org/10.1111/j.1365-2990.1994.tb00951.x] [PMID: 8208338]
[61]
Martin SB, Dowling ALS, Lianekhammy J. Synaptophysin and synaptojanin-1 in Down syndrome are differentially affected by Alzheimer’s disease. J Alzheimers Dis 2014; 42(3): 767-75.
[http://dx.doi.org/10.3233/JAD-140795] [PMID: 24927707]
[62]
Strittmatter WJ, Weisgraber KH, Huang DY. Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci USA 1993; 90(17): 8098-102.
[http://dx.doi.org/10.1073/pnas.90.17.8098] [PMID: 8367470]
[63]
Zhu L, Zhong M, Elder GA. Phospholipid dysregulation contributes to ApoE4-associated cognitive deficits in Alzheimer’s disease pathogenesis. Proc Natl Acad Sci USA 2015; 112(38): 11965-70.
[http://dx.doi.org/10.1073/pnas.1510011112] [PMID: 26372964]
[64]
Sharma A, Chunduri A, Gopu A, Shatrowsky C, Crusio WE, Delprato A. Common genetic signatures of Alzheimer’s disease in Down syndrome. F1000 Res 2020; 9: 1299.
[http://dx.doi.org/10.12688/f1000research.27096.1] [PMID: 33633844]
[65]
Arai Y, Ijuin T, Takenawa T, Becker LE, Takashima S. Excessive expression of synaptojanin in brains with Down syndrome. Brain Dev 2002; 24(2): 67-72.
[http://dx.doi.org/10.1016/S0387-7604(01)00405-3] [PMID: 11891094]
[66]
Cheon MS, Shim KS, Kim SH, Hara A, Lubec G. Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: Challenging the gene dosage effect hypothesis (Part IV). Amino Acids 2003; 25(1): 41-7.
[http://dx.doi.org/10.1007/s00726-003-0009-9] [PMID: 12836057]
[67]
Palmer CR, Liu CS, Romanow WJ, Lee MH, Chun J. Altered cell and RNA isoform diversity in aging Down syndrome brains. Proc Natl Acad Sci USA 2021; 118(47): e2114326118.
[http://dx.doi.org/10.1073/pnas.2114326118] [PMID: 34795060]
[68]
Cao J, Huang M, Guo L. MicroRNA-195 rescues ApoE4-induced cognitive deficits and lysosomal defects in Alzheimer’s disease pathogenesis. Mol Psychiatry 2021; 26(9): 4687-701.
[http://dx.doi.org/10.1038/s41380-020-0824-3] [PMID: 32632205]
[69]
Voronov SV, Frere SG, Giovedi S. Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down’s syndrome. Proc Natl Acad Sci USA 2008; 105(27): 9415-20.
[http://dx.doi.org/10.1073/pnas.0803756105] [PMID: 18591654]
[70]
Cossec JC, Lavaur J, Berman DE. Trisomy for synaptojanin 1 in Down syndrome is functionally linked to the enlargement of early endosomes. Hum Mol Genet 2012; 21(14): 3156-72.
[http://dx.doi.org/10.1093/hmg/dds142] [PMID: 22511594]
[71]
Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA. Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol 2000; 157(1): 277-86.
[http://dx.doi.org/10.1016/S0002-9440(10)64538-5] [PMID: 10880397]
[72]
Wu CI, Vinton EA, Pearse RV II. APP and DYRK1A regulate axonal and synaptic vesicle protein networks and mediate Alzheimer’s pathology in trisomy 21 neurons. Mol Psychiatry 2022; 27(4): 1970-89.
[http://dx.doi.org/10.1038/s41380-022-01454-5] [PMID: 35194165]
[73]
Landman N, Jeong SY, Shin SY. Presenilin mutations linked to familial Alzheimer’s disease cause an imbalance in phosphatidylinositol 4,5-bisphosphate metabolism. Proc Natl Acad Sci USA 2006; 103(51): 19524-9.
[http://dx.doi.org/10.1073/pnas.0604954103] [PMID: 17158800]
[74]
McIntire LBJ, Berman DE, Myaeng J. Reduction of synaptojanin 1 ameliorates synaptic and behavioral impairments in a mouse model of Alzheimer’s disease. J Neurosci 2012; 32(44): 15271-6.
[http://dx.doi.org/10.1523/JNEUROSCI.2034-12.2012] [PMID: 23115165]
[75]
Zhu L, Zhong M, Zhao J. Reduction of synaptojanin 1 accelerates Aβ clearance and attenuates cognitive deterioration in an Alzheimer mouse model. J Biol Chem 2013; 288(44): 32050-63.
[http://dx.doi.org/10.1074/jbc.M113.504365] [PMID: 24052255]
[76]
Berman DE, Dall’Armi C, Voronov SV. Oligomeric amyloid-β peptide disrupts phosphatidylinositol-4,5-bisphosphate metabolism. Nat Neurosci 2008; 11(5): 547-54.
[http://dx.doi.org/10.1038/nn.2100] [PMID: 18391946]
[77]
Botté A, Potier MC. Focusing on cellular biomarkers: The endolysosomal pathway in Down syndrome. Prog Brain Res 2020; 251: 209-43.
[http://dx.doi.org/10.1016/bs.pbr.2019.10.002] [PMID: 32057308]
[78]
Colacurcio DJ, Pensalfini A, Jiang Y, Nixon RA. Dysfunction of autophagy and endosomal-lysosomal pathways: Roles in pathogenesis of Down syndrome and Alzheimer’s disease. Free Radic Biol Med 2018; 114: 40-51.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.10.001] [PMID: 28988799]
[79]
Ando K, Erneux C, Homa M. Dysregulation of phosphoinositide 5-phosphatases and phosphoinositides in Alzheimer’s disease. Front Neurosci 2021; 15: 614855.
[http://dx.doi.org/10.3389/fnins.2021.614855] [PMID: 33716646]
[80]
Jenkins K, Mateeva T, Szabó I. Combining data integration and molecular dynamics for target identification in α-Synuclein-aggregating neurodegenerative diseases: Structural insights on Synaptojanin-1 (SYNJ1). Comput Struct Biotechnol J 2020; 18: 1032-42.
[http://dx.doi.org/10.1016/j.csbj.2020.04.010] [PMID: 32419904]
[81]
Saito T, Guan F, Papolos DF. Mutation analysis of SYNJ1: A possible candidate gene for chromosome 21q22-linked bipolar disorder. Mol Psychiatry 2001; 6(4): 387-95.
[http://dx.doi.org/10.1038/sj.mp.4000871] [PMID: 11443522]
[82]
Dyment DA, Smith AC, Humphreys P, Schwartzentruber J, Beaulieu CL, Consortium FC. Homozygous nonsense mutation in SYNJ1 associated with intractable epilepsy and tau pathology. Neurobiol Aging 2015; 36(2): e1-5.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.09.005]
[83]
Quadri M, Fang M, Picillo M. Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset Parkinsonism. Hum Mutat 2013; 34(9): 1208-15.
[http://dx.doi.org/10.1002/humu.22373] [PMID: 23804577]
[84]
Krebs CE, Karkheiran S, Powell JC. The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures. Hum Mutat 2013; 34(9): 1200-7.
[http://dx.doi.org/10.1002/humu.22372] [PMID: 23804563]
[85]
Chen KH, Wu RM, Lin HI, Tai CH, Lin CH. Mutational analysis of SYNJ1 gene (PARK20) in Parkinson’s disease in a Taiwanese population. Neurobiol Aging 2015; 36(10): 2905.e7-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.06.009] [PMID: 26149920]
[86]
Kirola L, Behari M, Shishir C, Thelma BK. Identification of a novel homozygous mutation Arg459Pro in SYNJ1 gene of an Indian family with autosomal recessive juvenile Parkinsonism. Parkinsonism Relat Disord 2016; 31: 124-8.
[http://dx.doi.org/10.1016/j.parkreldis.2016.07.014] [PMID: 27496670]
[87]
Ben Romdhan S, Sakka S, Farhat N, Triki S, Dammak M, Mhiri C. A novel SYNJ1 mutation in a tunisian family with juvenile Parkinson’s disease associated with epilepsy. J Mol Neurosci 2018; 66(2): 273-8.
[http://dx.doi.org/10.1007/s12031-018-1167-2] [PMID: 30187305]
[88]
Choudhry H, Aggarwal M, Pan PY. Mini-review: Synaptojanin 1 and its implications in membrane trafficking. Neurosci Lett 2021; 765: 136288.
[http://dx.doi.org/10.1016/j.neulet.2021.136288] [PMID: 34637856]
[89]
Yamabhai M, Hoffman NG, Hardison NL. Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. J Biol Chem 1998; 273(47): 31401-7.
[http://dx.doi.org/10.1074/jbc.273.47.31401] [PMID: 9813051]
[90]
Chang KT, Min KT. Upregulation of three Drosophila homologs of human chromosome 21 genes alters synaptic function: Implications for Down syndrome. Proc Natl Acad Sci USA 2009; 106(40): 17117-22.
[http://dx.doi.org/10.1073/pnas.0904397106] [PMID: 19805187]
[91]
Adayev T, Chen-Hwang MC, Murakami N, Wang R, Hwang YW. MNB/DYRK1A phosphorylation regulates the interactions of synaptojanin 1 with endocytic accessory proteins. Biochem Biophys Res Commun 2006; 351(4): 1060-5.
[http://dx.doi.org/10.1016/j.bbrc.2006.10.169] [PMID: 17097615]
[92]
Chen CK, Bregere C, Paluch J, Lu JF, Dickman DK, Chang KT. Activity-dependent facilitation of Synaptojanin and synaptic vesicle recycling by the Minibrain kinase. Nat Commun 2014; 5(1): 4246.
[http://dx.doi.org/10.1038/ncomms5246] [PMID: 24977345]
[93]
Peng YJ, Geng J, Wu Y. Minibrain kinase and calcineurin coordinate activity-dependent bulk endocytosis through synaptojanin. J Cell Biol 2021; 220(12): e202011028.
[http://dx.doi.org/10.1083/jcb.202011028] [PMID: 34596663]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy