Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Thymosin β4 and Actin: Binding Modes, Biological Functions and Clinical Applications

Author(s): Yuyuan Ying, Chen Lin, Nana Tao, Robert D. Hoffman, Dongling Shi, Zhijin Chen and Jianli Gao*

Volume 24, Issue 1, 2023

Published on: 27 December, 2022

Page: [78 - 88] Pages: 11

DOI: 10.2174/1389203724666221201093500

Price: $65

Open Access Journals Promotions 2
Abstract

Thymosin β4 (Tβ4) is the β-thymosin (Tβs) with the highest expression level in human cells; it makes up roughly 70-80% of all Tβs in the human body. Combining the mechanism and activity studies of Tβ4 in recent years, we provide an overview of the subtle molecular mechanism, pharmacological action, and clinical applications of Tβ4. As a G-actin isolator, Tβ4 inhibits the polymerization of G-actin by binding to the matching site of G-actin in a 1:1 ratio through conformational and spatial effects. Tβ4 can control the threshold concentration of G-actin in the cytoplasm, influence the balance of depolymerization and polymerization of F-actin (also called Tread Milling of F-actin), and subsequently affect cell's various physiological activities, especially motility, development and differentiation. Based on this, Tβ4 is known to have a wide range of effects, including regulation of inflammation and tumor metastasis, promotion of angiogenesis, wound healing, regeneration of hair follicles, promotion of the development of the nervous system, and improving bone formation and tooth growth. Tβ4 therefore has extensive medicinal applications in many fields, and serves to preserve the kidney, liver, heart, brain, intestine, and other organs, as well as hair loss, skin trauma, cornea repairing, and other conditions. In this review, we focus on the mechanism of action and clinical application of Tβ4 for its main biological functions.

Keywords: Tβ4, actin, mechanism, biological functions, clinical applications, microfilaments.

[1]
Zisblatt, M.; Goldstein, A.L.; Lilly, F.; White, A. Acceleration by thymosin of the development of resistance to murine sarcoma virus-induced tumor in mice. Proc. Natl. Acad. Sci. USA, 1970, 66(4), 1170-1174.
[http://dx.doi.org/10.1073/pnas.66.4.1170] [PMID: 5273447]
[2]
Xing, Y.; Ye, Y.; Zuo, H.; Li, Y. Progress on the function and application of thymosin β4. Front. Endocrinol. (Lausanne), 2021, 12767785.
[http://dx.doi.org/10.3389/fendo.2021.767785] [PMID: 34992578]
[3]
Saunders, M.G.; Tempkin, J.; Weare, J.; Dinner, A.R.; Roux, B.; Voth, G.A. Nucleotide regulation of the structure and dynamics of G-actin. Biophys. J., 2014, 106(8), 1710-1720.
[http://dx.doi.org/10.1016/j.bpj.2014.03.012] [PMID: 24739170]
[4]
Otterbein, L.R.; Graceffa, P.; Dominguez, R. The crystal structure of uncomplexed actin in the ADP state. Science, 2001, 293(5530), 708-711.
[http://dx.doi.org/10.1126/science.1059700] [PMID: 11474115]
[5]
Akisaka, T.; Yoshida, H.; Inoue, S.; Shimizu, K. Organization of cytoskeletal F-actin, G-actin, and gelsolin in the adhesion structures in cultured osteoclast. J. Bone Miner. Res., 2001, 16(7), 1248-1255.
[http://dx.doi.org/10.1359/jbmr.2001.16.7.1248] [PMID: 11450700]
[6]
Kühn, S.; Mannherz, H.G. Actin: Structure, function, dynamics, and interactions with bacterial toxins. Curr. Top. Microbiol. Immunol., 2017, 399, 1-34.
[http://dx.doi.org/ 10.1007/82_2016_45] [PMID: 27848038]
[7]
Varland, S.; Vandekerckhove, J.; Drazic, A. Actin post-translational modifications: the cinderella of cytoskeletal control. Trends Biochem. Sci., 2019, 44(6), 502-516.
[http://dx.doi.org/10.1016/j.tibs.2018.11.010] [PMID: 30611609]
[8]
Seetharaman, S.; Etienne-Manneville, S. Cytoskeletal crosstalk in cell migration. Trends Cell Biol., 2020, 30(9), 720-735.
[http://dx.doi.org/10.1016/j.tcb.2020.06.004] [PMID: 32674938]
[9]
Dominguez, R.; Holmes, K.C. Actin structure and function. Annu. Rev. Biophys., 2011, 40(1), 169-186.
[http://dx.doi.org/10.1146/annurev-biophys-042910-155359] [PMID: 21314430]
[10]
Gao, X.; Liang, H.; Hou, F.; Zhang, Z.; Nuo, M.; Guo, X.; Liu, D. Thymosin Beta-4 induces mouse hair growth. PLoS One, 2015, 10(6), e0130040.
[http://dx.doi.org/10.1371/journal.pone.0130040] [PMID: 26083021]
[11]
Philp, D.; Nguyen, M.; Scheremeta, B.; St-Surin, S.; Villa, A.M.; Orgel, A.; Kleinman, H.K.; Elkin, M. Thymosin beta4 increases hair growth by activation of hair follicle stem cells. FASEB J., 2004, 18(2), 385-387.
[http://dx.doi.org/10.1096/fj.03-0244fje] [PMID: 14657002]
[12]
Mannherz, H.G.; Mazur, A.J.; Jockusch, B. Repolymerization of actin from actin:thymosin β4 complex induced by diaphanous related formins and gelsolin. Ann. N. Y. Acad. Sci., 2010, 1194(1), 36-43.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05467.x] [PMID: 20536448]
[13]
Safer, D.; Elzinga, M.; Nachmias, V.T. Thymosin β4 and Fx, an actin-sequestering peptide, are indistinguishable. J. Biol. Chem., 1991, 266(7), 4029-4032.
[http://dx.doi.org/10.1016/S0021-9258(20)64278-8] [PMID: 1999398]
[14]
Hannappel, E.; Xu, G.J.; Morgan, J.; Hempstead, J.; Horecker, B.L. Thymosin beta 4: a ubiquitous peptide in rat and mouse tissues. Proc. Natl. Acad. Sci. USA, 1982, 79(7), 2172-2175.
[http://dx.doi.org/10.1073/pnas.79.7.2172] [PMID: 6954532]
[15]
Goldstein, A.; Hannappel, E.; Kleinman, H. Thymosin β: actin-sequestering protein moonlights to repair injured tissues. Trends Mol. Med., 2005, 11(9), 421-429.
[http://dx.doi.org/10.1016/j.molmed.2005.07.004] [PMID: 16099219]
[16]
Scipion, C.P.M.; Ghoshdastider, U.; Ferrer, F.J.; Yuen, T.Y.; Wongsantichon, J.; Robinson, R.C. Structural evidence for the roles of diva-lent cations in actin polymerization and activation of ATP hydrolysis. Proc. Natl. Acad. Sci. USA, 2018, 115(41), 10345-10350.
[http://dx.doi.org/10.1073/pnas.1806394115] [PMID: 30254171]
[17]
Pardon, M. C. Anti-inflammatory potential of thymosin β4 in the central nervous system: implications for progressive neurodegenerative diseases. Expert Opin. Biol. Ther., 2018, 18(sup1), 165-169.
[http://dx.doi.org/10.1080/14712598.2018.1486817] [PMID: 30063850]
[18]
Carlier, M.F.; Didry, D.; Erk, I.; Lepault, J.; Van Troys, M.L.; Vandekerckhove, J.; Perelroizen, I.; Yin, H.; Doi, Y.; Pantaloni, D. Tbeta 4 is not a simple G-actin sequestering protein and interacts with F-actin at high concentration. J. Biol. Chem., 1996, 271(16), 9231-9239.
[http://dx.doi.org/10.1074/jbc.271.16.9231] [PMID: 8621582]
[19]
Ballweber, E.; Hannappel, E.; Huff, T.; Mannherz, H.G. Mapping the binding site of thymosin β4 on actin by competition with G-actin binding proteins indicates negative co-operativity between binding sites located on opposite subdomains of actin. Biochem. J., 1997, 327(3), 787-793.
[http://dx.doi.org/10.1042/bj3270787] [PMID: 9581557]
[20]
Ballweber, E.; Giehl, K.; Hannappel, E.; Huff, T.; Jockusch, B.M.; Mannherz, H.G. Plant profilin induces actin polymerization from ac-tin:β-thymosin complexes and competes directly with β-thymosins and with negative co-operativity with DNase I for binding to actin. FEBS Lett., 1998, 425(2), 251-255.
[http://dx.doi.org/10.1016/S0014-5793(98)00240-3] [PMID: 9559659]
[21]
De La Cruz, E.M.; Ostap, E.M. Relating biochemistry and function in the myosin superfamily. Curr. Opin. Cell Biol., 2004, 16(1), 61-67.
[http://dx.doi.org/10.1016/j.ceb.2003.11.011] [PMID: 15037306]
[22]
Xue, B.; Leyrat, C.; Grimes, J.M.; Robinson, R.C. Structural basis of thymosin-β4/profilin exchange leading to actin filament polymeriza-tion. Proc. Natl. Acad. Sci. USA, 2014, 111(43), E4596-E4605.
[http://dx.doi.org/10.1073/pnas.1412271111] [PMID: 25313062]
[23]
Yuan, J.; Shen, Y.; Yang, X.; Xie, Y.; Lin, X.; Zeng, W.; Zhao, Y.; Tian, M.; Zha, Y. Thymosin β4 alleviates renal fibrosis and tubular cell apoptosis through TGF-β pathway inhibition in UUO rat models. BMC Nephrol., 2017, 18(1), 314.
[http://dx.doi.org/10.1186/s12882-017-0708-1] [PMID: 29047363]
[24]
Park, B.; Shin, M.H.; Kim, J.; Park, G.; Ryu, Y.K.; Lee, J.W.; Kim, T.J.; Moon, E.Y.; Lee, K.M. Ectopic expression of human thymosin β4 confers resistance to legionella pneumophila during pulmonary and systemic infection in mice. Infect. Immun., 2021, 89(4), e00735-e20.
[http://dx.doi.org/10.1128/IAI.00735-20] [PMID: 33468581]
[25]
Santra, M.; Zhang, Z.G.; Yang, J.; Santra, S.; Santra, S.; Chopp, M.; Morris, D.C. Thymosin β4 up-regulation of microRNA-146a promotes oligodendrocyte differentiation and suppression of the Toll-like proinflammatory pathway. J. Biol. Chem., 2014, 289(28), 19508-19518.
[http://dx.doi.org/10.1074/jbc.M113.529966] [PMID: 24828499]
[26]
Qiu, P.; Wheater, M.K.; Qiu, Y.; Sosne, G. Thymosin β 4 inhibits TNF‐α‐induced NF‐κB activation, IL‐8 expression, and the sensitiz-ing effects by its partners PINCH‐1 and ILK. FASEB J., 2011, 25(6), 1815-1826.
[http://dx.doi.org/10.1096/fj.10-167940] [PMID: 21343177]
[27]
Hinkel, R.; Trenkwalder, T.; Kupatt, C. Molecular and cellular mechanisms of thymosin β4-mediated cardioprotection. Ann. N. Y. Acad. Sci., 2012, 1269(1), 102-109.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06693.x] [PMID: 23045977]
[28]
Shi, Y.; Zhou, M.; Yan, J.; Gong, Z.; Wu, J.; Chen, Y.; Chen, Y. N-acetyl-seryl-aspartyl-lysyl-proline mitigates experimental colitis through inhibition of intestinal mucosal inflammatory responses via MEK-ERK signaling. Front. Pharmacol., 2020, 11, 593.
[http://dx.doi.org/10.3389/fphar.2020.00593] [PMID: 32435194]
[29]
Jin, R.; Li, Y.; Li, L.; Kim, D.H.; Yang, C.D.; Son, H.S.; Choi, J.H.; Yoon, H.J.; Yoon, K.C. Anti inflammatory effects of glycine thymosin β4 eye drops in experimental dry eye. Biomed. Rep., 2020, 12(6), 319-325.
[http://dx.doi.org/10.3892/br.2020.1296] [PMID: 32382416]
[30]
Peng, H.; Xu, J.; Yang, X.P.; Dai, X.; Peterson, E.L.; Carretero, O.A.; Rhaleb, N.E. Thymosin-β 4 prevents cardiac rupture and improves cardiac function in mice with myocardial infarction. Am. J. Physiol. Heart Circ. Physiol., 2014, 307(5), H741-H751.
[http://dx.doi.org/10.1152/ajpheart.00129.2014] [PMID: 25015963]
[31]
Dubé, K. N.; Smart, N. Thymosin β4 and the vasculature: multiple roles in development, repair and protection against disease. Expert. Opin. Biol. Ther., 2018, 18(sup1), 131-139.
[http://dx.doi.org/10.1080/14712598.2018.1459558] [PMID: 30063849]
[32]
Smart, N.; Dubé, K.N.; Riley, P.R. Epicardial progenitor cells in cardiac regeneration and neovascularisation. Vascul. Pharmacol., 2013, 58(3), 164-173.
[http://dx.doi.org/10.1016/j.vph.2012.08.001] [PMID: 22902355]
[33]
Hinkel, R.; Klett, K.; Bähr, A.; Kupatt, C. Thymosin β4-mediated protective effects in the heart. Expert Opin. Biol. Ther., 2018, 18(supl), 121-129.
[http://dx.doi.org/10.1080/14712598.2018.1490409] [PMID: 30063857]
[34]
Kim, S.; Kwon, J. Thymosin beta 4 improves dermal burn wound healing via downregulation of receptor of advanced glycation end prod-ucts in db/db mice. Biochim. Biophys. Acta, Gen. Subj., 2014, 1840(12), 3452-3459.
[http://dx.doi.org/10.1016/j.bbagen.2014.09.013] [PMID: 25230158]
[35]
Shi, B.; Ding, Q.; He, X.; Zhu, H.; Niu, Y.; Cai, B.; Cai, J.; Lei, A.; Kang, D.; Yan, H.; Ma, B.; Wang, X.; Qu, L.; Chen, Y. Tβ4-overexpression based on the piggyBac transposon system in cashmere goats alters hair fiber characteristics. Transgenic Res., 2017, 26(1), 77-85.
[http://dx.doi.org/10.1007/s11248-016-9988-7] [PMID: 27900536]
[36]
Xiao, Y.; Qu, C.; Ge, W.; Wang, B.; Wu, J.; Xu, L.; Chen, Y. Depletion of thymosin β4 promotes the proliferation, migration, and activa-tion of human hepatic stellate cells. Cell. Physiol. Biochem., 2014, 34(2), 356-367.
[http://dx.doi.org/10.1159/000363005] [PMID: 25060912]
[37]
Gao, X.; Hou, F.; Zhang, Z.; Nuo, M.; Liang, H.; Cang, M.; Wang, Z.; Wang, X.; Xu, T.; Yan, L.; Guo, X.; Liu, D. Role of thymosin beta 4 in hair growth. Mol. Genet. Genomics, 2016, 291(4), 1639-1646.
[http://dx.doi.org/10.1007/s00438-016-1207-y] [PMID: 27130465]
[38]
Choi, B.D.; Lim, H.J.; Lee, S.Y.; Lee, M.H.; Kil, K.S.; Lim, D.S.; Jeong, S.J.; Jeong, M.J. Thymosin β4 is associated with bone sialoprotein expression via ERK and Smad3 signaling pathways in MDPC-23 odontoblastic cells. Int. J. Mol. Med., 2018, 42(5), 2881-2890.
[http://dx.doi.org/10.3892/ijmm.2018.3865] [PMID: 30226623]
[39]
Lee, S.I.; Yi, J.K.; Bae, W.J.; Lee, S.; Cha, H.J.; Kim, E.C. Thymosin Beta-4 suppresses osteoclastic differentiation and inflammatory re-sponses in human periodontal ligament cells. PLoS One, 2016, 11(1), e0146708.
[http://dx.doi.org/10.1371/journal.pone.0146708] [PMID: 26789270]
[40]
Zhao, Y.; Qiu, F.; Xu, S.; Yu, L.; Fu, G. Thymosin β4 activates integrin-linked kinase and decreases endothelial progenitor cells apoptosis under serum deprivation. J. Cell. Physiol., 2011, 226(11), 2798-2806.
[http://dx.doi.org/10.1002/jcp.22624] [PMID: 21935929]
[41]
Ji, Y.I.; Lee, B.Y.; Kang, Y.J.; Jo, J.O.; Lee, S.H.; Kim, H.Y.; Kim, Y.O.; Lee, C.; Koh, S.B.; Kim, A.; Lee, J.Y.; Jung, M.H.; Ock, M.S.; Cha, H.J. Expression patterns of Thymosin β4 and cancer stem cell marker CD133 in ovarian cancers. Pathol. Oncol. Res., 2013, 19(2), 237-245.
[http://dx.doi.org/10.1007/s12253-012-9574-0] [PMID: 23055022]
[42]
Hong, K.O.; Lee, J.I.; Hong, S.P.; Hong, S.D. Thymosin β4 induces proliferation, invasion, and epithelial-to-mesenchymal transition of oral squamous cell carcinoma. Amino Acids, 2016, 48(1), 117-127.
[http://dx.doi.org/10.1007/s00726-015-2070-6] [PMID: 26276576]
[43]
Lee, J.W.; Ryu, Y.K.; Ji, Y.H.; Kang, J.H.; Moon, E.Y. Correction: Hypoxia/reoxygenation-experienced cancer cell migration and metasta-sis are regulated by Rap1- and Rac1-GTPase activation via the expression of thymosin beta-4. Oncotarget, 2018, 9(101), 37608-37609.
[http://dx.doi.org/10.18632/oncotarget.26543] [PMID: 30680073]
[44]
Xu, T.J.; Wang, Q.; Ma, X.W.; Zhang, Z.; Zhang, W.; Xue, X.C.; Zhang, C.; Hao, Q.; Li, W.N.; Zhang, Y.Q.; Li, M. A novel dimeric thy-mosin beta 4 with enhanced activities accelerates the rate of wound healing. Drug Des. Devel. Ther., 2013, 7, 1075-1088.
[http://dx.doi.org/ 10.2147/DDDT.S50183] [PMID: 24109178]
[45]
Shah, R.; Reyes-Gordillo, K.; Cheng, Y.; Varatharajalu, R.; Ibrahim, J.; Lakshman, M.R. Thymosin β 4 prevents oxidative stress, inflam-mation, and fibrosis in ethanol- and LPS-induced liver injury in mice. Oxid. Med. Cell. Longev., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/9630175] [PMID: 30116499]
[46]
Reyes-Gordillo, K.; Shah, R.; Popratiloff, A.; Fu, S.; Hindle, A.; Brody, F.; Rojkind, M. Thymosin-β4 (Tβ4) blunts PDGF-dependent phosphorylation and binding of AKT to actin in hepatic stellate cells. Am. J. Pathol., 2011, 178(5), 2100-2108.
[http://dx.doi.org/10.1016/j.ajpath.2011.01.025] [PMID: 21514425]
[47]
Reyes-Gordillo, K.; Shah, R.; Arellanes-Robledo, J.; Rojkind, M.; Lakshman, M.R. Protective effects of thymosin β4 on carbon tetrachlo-ride-induced acute hepatotoxicity in rats. Ann. N. Y. Acad. Sci., 2012, 1269(1), 61-68.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06728.x] [PMID: 23045971]
[48]
Wang, L.; Li, X.; Chen, C. Inhibition of acetaminophen-induced hepatotoxicity in mice by exogenous thymosinβ4 treatment. Int. Immunopharmacol., 2018, 61, 20-28.
[http://dx.doi.org/10.1016/j.intimp.2018.05.011] [PMID: 29793165]
[49]
Jiang, Y.; Zhang, Y.; Ma, C.H.; Zhang, Z.G.; Li, M.; Ji, Y.L.; Qi, F.X. Association between thymosin beta4 and non-alcoholic fatty liver disease. Rev. Esp. Enferm. Dig., 2019, 111(4), 308-313.
[http://dx.doi.org/10.17235/reed.2019.5927/2018] [PMID: 30896961]
[50]
Zhu, Z.; Zhang, Y.; Huang, X.; Can, L.; Zhao, X.; Wang, Y.; Xue, J.; Cheng, M.; Zhu, L. Thymosin beta 4 alleviates non-alcoholic fatty liver by inhibiting ferroptosis via up-regulation of GPX4. Eur. J. Pharmacol., 2021, 908, 174351.
[http://dx.doi.org/10.1016/j.ejphar.2021.174351] [PMID: 34280397]
[51]
Bollini, S.; Riley, P.R.; Smart, N. Thymosin β4: multiple functions in protection, repair and regeneration of the mammalian heart. Expert Opin. Biol. Ther., 2015, 15(sup1)(Suppl. 1), 163-174.
[http://dx.doi.org/10.1517/14712598.2015.1022526] [PMID: 26094634]
[52]
Fu, X.; Shi, Y.; Wang, H.; Zhao, X.; Sun, Q.; Huang, Y.; Qi, T.; Lin, G. Ethosomal gel for improving transdermal delivery of thymosin β-4. Int. J. Nanomedicine, 2019, 14, 9275-9284.
[http://dx.doi.org/10.2147/IJN.S228863] [PMID: 31819429]
[53]
Treadwell, T.; Kleinman, H.K.; Crockford, D.; Hardy, M.A.; Guarnera, G.T.; Goldstein, A.L. The regenerative peptide thymosin β4 accel-erates the rate of dermal healing in preclinical animal models and in patients. Ann. N. Y. Acad. Sci., 2012, 1270(1), 37-44.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06717.x] [PMID: 23050815]
[54]
Kumar, A.; Patel, A.; Duvalsaint, L.; Desai, M.; Marks, E.D. Thymosin β4 coated nanofiber scaffolds for the repair of damaged cardiac tissue. J. Nanobiotechnology, 2014, 12(1), 10.
[http://dx.doi.org/10.1186/1477-3155-12-10] [PMID: 24661328]
[55]
Marks, E.D.; Kumar, A. Thymosin β4. Roles in development, repair, and engineering of the cardiovascular system. Vitam. Horm., 2016, 102, 227-249.
[http://dx.doi.org/10.1016/bs.vh.2016.04.010] [PMID: 27450737]
[56]
Wang, Y.; Yu, S.; Shen, H.; Wang, H.; Wu, X.; Wang, Q.; Zhou, B.; Tan, Y. Thymosin β4 released from functionalized self-assembling peptide activates epicardium and enhances repair of infarcted myocardium. Theranostics, 2021, 11(9), 4262-4280.
[http://dx.doi.org/10.7150/thno.52309] [PMID: 33754060]
[57]
Sosne, G.; Qiu, P. Ousler rd, G.W.; Dunn, S.P.; Crockford, D. Thymosin β4: a potential novel dry eye therapy. Ann. N. Y. Acad. Sci., 2012, 1270(1), 45-50.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06682.x] [PMID: 23050816]
[58]
Mantelli, F.; Nardella, C.; Tiberi, E.; Sacchetti, M.; Bruscolini, A.; Lambiase, A. Congenital corneal anesthesia and neurotrophic keratitis: diagnosis and management. BioMed Res. Int., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/805876] [PMID: 26451380]
[59]
Sosne, G. Thymosin beta 4 and the eye: the journey from bench to bedside. Expert Opin. Biol. Ther., 2018, 18(sup1), 99-104.
[http://dx.doi.org/10.1080/14712598.2018.1486818] [PMID: 30063853]
[60]
Sosne, G.; Rimmer, D.; Kleinman, H.K.; Ousler, G. Thymosin Beta 4: A potential novel therapy for neurotrophic keratopathy, dry eye, and ocular surface diseases. Vitam. Horm., 2016, 102, 277-306.
[http://dx.doi.org/10.1016/bs.vh.2016.04.012] [PMID: 27450739]
[61]
Sosne, G.; Ousler, G.W. Thymosin beta 4 ophthalmic solution for dry eye: a randomized, placebo-controlled, Phase II clinical trial con-ducted using the controlled adverse environment (CAE™) model. Clin. Ophthalmol., 2015, 9, 877-884.
[http://dx.doi.org/10.2147/OPTH.S80954] [PMID: 26056426]
[62]
Zhu, T.; Park, H.C.; Son, K.M.; Kwon, J.H.; Park, J.C.; Yang, H.C. Effects of thymosin β4 on wound healing of rat palatal mucosa. Int. J. Mol. Med., 2014, 34(3), 816-821.
[http://dx.doi.org/10.3892/ijmm.2014.1832] [PMID: 24993983]
[63]
Kim, S.; Kwon, J. Thymosin β 4 has a major role in dermal burn wound healing that involves actin cytoskeletal remodelling via heat-shock protein 70. J. Tissue Eng. Regen. Med., 2017, 11(4), 1262-1273.
[http://dx.doi.org/10.1002/term.2028] [PMID: 25921810]
[64]
Morris, D.C.; Zhang, Z.G.; Zhang, J.; Xiong, Y.; Zhang, L.; Chopp, M. Treatment of neurological injury with thymosin β4. Ann. N. Y. Acad. Sci., 2012, 1269(1), 110-116.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06651.x] [PMID: 23045978]
[65]
Zhang, J.; Zhang, Z.G.; Morris, D.; Li, Y.; Roberts, C.; Elias, S.B.; Chopp, M. Neurological functional recovery after thymosin beta4 treatment in mice with experimental auto encephalomyelitis. Neuroscience, 2009, 164(4), 1887-1893.
[http://dx.doi.org/10.1016/j.neuroscience.2009.09.054] [PMID: 19782721]
[66]
Xu, B.; Yang, M.; Li, Z.; Zhang, Y.; Jiang, Z.; Guan, S.; Jiang, D. Thymosin β4 enhances the healing of medial collateral ligament injury in rat. Regul. Pept., 2013, 184, 1-5.
[http://dx.doi.org/10.1016/j.regpep.2013.03.026] [PMID: 23523891]
[67]
Kim, C.E.; Kleinman, H.K.; Sosne, G.; Ousler, G.W.; Kim, K.; Kang, S.; Yang, J. RGN-259 (thymosin β4) improves clinically important dry eye efficacies in comparison with prescription drugs in a dry eye model. Sci. Rep., 2018, 8(1), 10500.
[http://dx.doi.org/10.1038/s41598-018-28861-5] [PMID: 30002412]
[68]
Conte, E.; Genovese, T.; Gili, E.; Esposito, E.; Iemmolo, M.; Fruciano, M.; Fagone, E.; Pistorio, M.P.; Crimi, N.; Cuzzocrea, S.; Vancheri, C. Protective effects of thymosin β4 in a mouse model of lung fibrosis. Ann. N. Y. Acad. Sci., 2012, 1269(1), 69-73.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06694.x] [PMID: 23045972]
[69]
Yu, R.; Mao, Y.; Li, K.; Zhai, Y.; Zhang, Y.; Liu, S.; Gao, Y.; Chen, Z.; Liu, Y.; Fang, T.; Zhao, M.; Li, R.; Xu, J.; Chen, W. Recombinant human thymosin beta-4 protects against mouse coronavirus infection. Mediators Inflamm., 2021, 2021, 1-9.
[http://dx.doi.org/10.1155/2021/9979032] [PMID: 33967626]
[70]
Bongiovanni, D.; Ziegler, T.; D’Almeida, S.; Zhang, T.; Ng, J.K.M.; Dietzel, S.; Hinkel, R.; Kupatt, C. Thymosin β4 attenuates microcircu-latory and hemodynamic destabilization in sepsis. Expert Opin. Biol. Ther., 2015, 15sup1)(Suppl. 1, , 203-210.
[http://dx.doi.org/10.1517/14712598.2015.1006193] [PMID: 25604254]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy