Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Laccase-assisted Bioremediation of Pesticides: Scope and Challenges

Author(s): Chandana Paul, Nilasish Pal*, Madhumita Maitra and Nirmalendu Das*

Volume 21, Issue 6, 2024

Published on: 27 December, 2022

Page: [633 - 654] Pages: 22

DOI: 10.2174/1570193X20666221117161033

Price: $65

Abstract

Laccase (Benzenediol: oxygen oxidoreductase; E.C.1.10.3.2), a multicopper oxidase that is a known lignin-degrading enzyme, can catalyse an ample array of substrates, from phenolic, nonphenolic compounds, aromatic amines, diamines, heterocyclic compounds to organic/inorganic metal compounds, etc., bestowed they have not too high redox potentials. Despite many laccase-producing organisms like bacteria, insects, plants, and animals, white rot filamentous fungi are the best producers of this enzyme. In the presence of laccase, pesticides (fungicides, herbicides, insecticides, etc.) of various chemical compositions (organophosphates, organochlorines, carbamates, pyrethrin & pyrethroids, etc.) are oxidized into the water with collateral reduction of four electrons of molecular oxygen with various efficiencies. Bioremediation efficiency can be increased in the presence of various natural or synthetic mediators, viz. ABTS, violuric acid, 1- hydroxy benzotriazole, vanillin, syringaldehyde, PEG, etc. Immobilized laccase on various supporting materials increased the enzyme's stability, reliability, and reusability for continuous application, particularly for industrial processes. The present review discusses the structure, catalytic cycle, general mechanism of oxidation, and various scopes and challenges of pesticide degradation by this multifaceted biocatalyst which could lead to a green sustainable environment.

Keywords: Laccase, pesticide, bioremediation, mediators, immobilization, oxidation, redox potentials, green chemistry.

Graphical Abstract
[1]
Vaithyanathan, V.K.; Vaidyanathan, V.K.; Cabana, H. Laccase-driven transformation of high priority pesticides without redox mediators: Towards bioremediation of contaminated wastewaters. Front. Bioeng. Biotechnol., 2022, 9, 770435.
[http://dx.doi.org/10.3389/fbioe.2021.770435] [PMID: 35223809]
[2]
Miller, G.T. R Sustaining the Earth: An Integrated Approach; Brooks/Cole: Canada, 2004.
[3]
Sørensen, P.B.; Brüggemann, R.; Carlsen, L.; Mogensen, B.B.; Kreuger, J.; Pudenz, S. Analysis of monitoring data of pesticide residues in surface waters using partial order ranking theory. Environ. Toxicol. Chem., 2003, 22(3), 661-670.
[http://dx.doi.org/10.1002/etc.5620220327] [PMID: 12627656]
[4]
Roy, T.; Das, N. Isolation, characterization, and identification of two methomyl-degrading bacteria from a pesticide-treated crop field in West Bengal, India. Microbiology, 2017, 86(6), 753-764.
[http://dx.doi.org/10.1134/S0026261717060145]
[5]
Satish, G.P.; Ashokrao, D.M.; Arun, S.K. Microbial degradation of pesticide: A review. Afr. J. Microbiol. Res., 2017, 11(24), 992-1012.
[http://dx.doi.org/10.5897/AJMR2016.8402]
[6]
Mustafa, S.; Bhatti, H.N.; Maqbool, M.; Iqbal, M. Microalgae biosorption, bioaccumulation and biodegradation efficiency for the remediation of wastewater and carbon dioxide mitigation: Prospects, challenges and opportunities. J. Water Process Eng., 2021, 41(41), 102009.
[http://dx.doi.org/10.1016/j.jwpe.2021.102009]
[7]
Jin, X.; Yu, X.; Zhu, G.; Zheng, Z.; Feng, F.; Zhang, Z. Conditions optimizing and application of Laccase-mediator System (LMS) for the laccase-catalyzed pesticide degradation. Sci. Rep., 2016, 6(1), 35787.
[http://dx.doi.org/10.1038/srep35787] [PMID: 27775052]
[8]
Kachuri, L.; Harris, M.A.; MacLeod, J.S.; Tjepkema, M.; Peters, P.A.; Demers, P.A. Cancer risks in a population-based study of 70,570 agricultural workers: results from the Canadian census health and Environment cohort (CanCHEC). BMC Cancer, 2017, 17(1), 343.
[http://dx.doi.org/10.1186/s12885-017-3346-x] [PMID: 28525996]
[9]
Ntantu Nkinsa, P.; Muckle, G.; Ayotte, P.; Lanphear, B.P.; Arbuckle, T.E.; Fraser, W.D.; Bouchard, M.F. Organophosphate pesticides exposure during fetal development and IQ scores in 3 and 4-year old Canadian children. Environ. Res., 2020, 190(July), 110023.
[http://dx.doi.org/10.1016/j.envres.2020.110023] [PMID: 32777276]
[10]
Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; Dar, O.I.; Singh, K.; Jasrotia, S.; Bakshi, P.; Ramakrishnan, M.; Kumar, S.; Bhardwaj, R.; Thukral, A.K. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci., 2019, 1(11), 1446.
[http://dx.doi.org/10.1007/s42452-019-1485-1]
[11]
Tay, K.S.; Rahman, N.A.; Abas, M.R.B. Degradation of DEET by ozonation in aqueous solution. Chemosphere, 2009, 76(9), 1296-1302.
[http://dx.doi.org/10.1016/j.chemosphere.2009.06.007] [PMID: 19570564]
[12]
Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol., 2001, 77(3), 247-255.
[http://dx.doi.org/10.1016/S0960-8524(00)00080-8] [PMID: 11272011]
[13]
Pande, V.; Pandey, S.C.; Sati, D.; Pande, V.; Samant, M. Bioremediation: an emerging effective approach towards environment restoration. Environm. Sustainab., 2020, 3(1), 91-103.
[http://dx.doi.org/10.1007/s42398-020-00099-w]
[14]
Fan, B.; Zhao, Y.; Mo, G.; Ma, W.; Wu, J. Co-remediation of DDT-contaminated soil using white rot fungi and laccase extract from white rot fungi. J. Soils Sediments, 2013, 13(7), 1232-1245.
[http://dx.doi.org/10.1007/s11368-013-0705-3]
[15]
Das, S.; Dash, H.R.; Chakraborty, J. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Appl. Microbiol. Biotechnol., 2016, 100(7), 2967-2984.
[http://dx.doi.org/10.1007/s00253-016-7364-4] [PMID: 26860944]
[16]
Bharadwaj, A. Bioremediation of Xenobiotics: An eco-friendly cleanup approach. In: Green Chemistry in Environmental Sustainability and Chemical Education; Springer: Singapore, 2018; pp. 1-13.
[http://dx.doi.org/10.1007/978-981-10-8390-7_1]
[17]
Yoshida, H. LXIII.—Chemistry of lacquer (Urushi). Part I. J. Chem. Soc. Trans., 1883, 43(0), 472-486.
[http://dx.doi.org/10.1039/CT8834300472]
[18]
Mukherjee, M.; Das, N. Fungal laccase-A biotechnologically potential enzyme. Biotechnol. Appl., 2009, 70, 108.
[19]
Takano, M.; Nakamura, M.; Tabata, M. Comprehensive analysis of the isozyme composition of laccase derived from Japanese lacquer tree, Toxicodendron vernicifluum. J. Wood Sci., 2021, 67(1), 9.
[http://dx.doi.org/10.1186/s10086-021-01943-1]
[20]
Sadhasivam, S.; Savitha, S.; Swaminathan, K. Deployment of Trichoderma harzianum WL1 laccase in pulp bleaching and paper industry effluent treatment. J. Clean. Prod., 2010, 18(8), 799-806.
[http://dx.doi.org/10.1016/j.jclepro.2009.11.014]
[21]
Minussi, R.C.; Pastore, G.M.; Durán, N. Potential applications of laccase in the food industry. Trends Food Sci. Technol., 2002, 13(6-7), 205-216.
[http://dx.doi.org/10.1016/S0924-2244(02)00155-3]
[22]
Imran, M.; Crowley, D.E.; Khalid, A.; Hussain, S.; Mumtaz, M.W.; Arshad, M. Microbial biotechnology for decolorization of textile wastewaters. Rev. Environ. Sci. Biotechnol., 2015, 14(1), 73-92.
[http://dx.doi.org/10.1007/s11157-014-9344-4]
[23]
Spina, G.; Caniato, F.; Luzzini, D.; Ronchi, S. Assessing the use of external grand theories in purchasing and supply management research. J. Purchasing Supply Manage., 2016, 22(1), 18-30.
[http://dx.doi.org/10.1016/j.pursup.2015.07.001]
[24]
Bilal, M.; Jing, Z.; Zhao, Y.; Iqbal, H.M.N. Immobilization of fungal laccase on glutaraldehyde cross-linked chitosan beads and its bio-catalytic potential to degrade bisphenol A. Biocatal. Agric. Biotechnol., 2019, 19, 101174.
[http://dx.doi.org/10.1016/j.bcab.2019.101174]
[25]
Bastos, A.C.; Magan, N. Trametes versicolor: Potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. Int. Biodeterior. Biodegradation, 2009, 63(4), 389-394.
[http://dx.doi.org/10.1016/j.ibiod.2008.09.010]
[26]
Vera, M.; Nyanhongo, G.S.; Pellis, A.; Rivas, B.L.; Guebitz, G.M. Immobilization of Myceliophthora thermophila laccase on poly(glycidyl methacrylate) microspheres enhances the degradation of azinphos-methyl. J. Appl. Polym. Sci., 2019, 136(16), 47417.
[http://dx.doi.org/10.1002/app.47417]
[27]
Zeng, S.; Zhao, J.; Xia, L. Simultaneous production of laccase and degradation of bisphenol A with Trametes versicolor cultivated on agricultural wastes. Bioprocess Biosyst. Eng., 2017, 40(8), 1237-1245.
[http://dx.doi.org/10.1007/s00449-017-1783-1] [PMID: 28536853]
[28]
Zapata-Castillo, P. Purification and characterization of laccase from Trametes hirsuta Bm-2 and its contribution to dye and effluent decolorization. Afr. J. Biotechnol., 2012, 11(15), 3603-3611.
[http://dx.doi.org/10.5897/AJB11.2050]
[29]
Kunamneni, A.; Camarero, S.; García-Burgos, C.; Plou, F.J.; Ballesteros, A.; Alcalde, M. Engineering and applications of fungal laccases for organic synthesis. Microb. Cell Fact., 2008, 7(1), 32.
[http://dx.doi.org/10.1186/1475-2859-7-32] [PMID: 19019256]
[30]
Paul, C.; Maitra, M.; Das, N. Research Advances in the Fungal World; Nova Science Publishers, Inc.: New York, 2020, pp. 321-371.
[31]
Faure, D.; Bouillant, M.L.; Bally, R. Isolation of Azospirillum lipoferum 4T Tn 5 mutants affected in melanization and laccase activity. Appl. Environ. Microbiol., 1994, 60(9), 3413-3415.
[http://dx.doi.org/10.1128/aem.60.9.3413-3415.1994] [PMID: 16349390]
[32]
Alexandre, G.; Bally, R.; Taylor, B.L.; Zhulin, I.B. Loss of cytochrome c oxidase activity and acquisition of resistance to quinone analogs in a laccase-positive variant of Azospirillum lipoferum. J. Bacteriol., 1999, 181(21), 6730-6738.
[http://dx.doi.org/10.1128/JB.181.21.6730-6738.1999] [PMID: 10542175]
[33]
Hullo, M.F.; Moszer, I.; Danchin, A.; Martin-Verstraete, I. CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol., 2001, 183(18), 5426-5430.
[http://dx.doi.org/10.1128/JB.183.18.5426-5430.2001] [PMID: 11514528]
[34]
Claus, H.; Filip, Z. The evidence of a laccase-like enzyme activity in a Bacillus sphaericus strain. Microbiol. Res., 1997, 152(2), 209-216.
[http://dx.doi.org/10.1016/S0944-5013(97)80014-6]
[35]
Kuznetsov, V.D.; Filippova, S.N.; Rybakova, A.M. Nature of the brown pigment and the composition of the phenol oxidases of Streptomyces galbus. Mikrobiologiia, 1984, 53(2), 251-256.
[PMID: 6204187]
[36]
Suzuki, T.; Endo, K.; Ito, M.; Tsujibo, H.; Miyamoto, K.; Inamori, Y. A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence, and expression. Biosci. Biotechnol. Biochem., 2003, 67(10), 2167-2175.
[http://dx.doi.org/10.1271/bbb.67.2167] [PMID: 14586105]
[37]
Endo, K.; Hosono, K.; Beppu, T.; Ueda, K. A novel extracytoplasmic phenol oxidase of Streptomyces: its possible involvement in the onset of morphogenesis The DDBJ accession number for the sequence reported in this paper is AB056583. Microbiology (Reading), 2002, 148(6), 1767-1776.
[http://dx.doi.org/10.1099/00221287-148-6-1767] [PMID: 12055296]
[38]
Sanchez-Amat, A.; Solano, F. A pluripotent polyphenol oxidase from the melanogenic marine Alteromonas sp shares catalytic capabilities of tyrosinases and laccases. Biochem. Biophys. Res. Commun., 1997, 240(3), 787-792.
[http://dx.doi.org/10.1006/bbrc.1997.7748] [PMID: 9398646]
[39]
Rosconi, F.; Fraguas, L.F.; Martínez-Drets, G.; Castro-Sowinski, S. Purification and characterization of a periplasmic laccase produced by Sinorhizobium meliloti. Enzyme Microb. Technol., 2005, 36(5-6), 800-807.
[http://dx.doi.org/10.1016/j.enzmictec.2005.01.003]
[40]
Malliga, P.; Uma, L.; Subramanian, G. Lignolytic activity of the Cyanobacterium anabaena azollae ml2 and the value of coir waste as a carrier for BGA biofertilizer. Microbios, 1996, 86(348), 175-183.
[41]
Sharma, P.; Goel, R.; Capalash, N. Bacterial laccases. World J. Microbiol. Biotechnol., 2007, 23(6), 823-832.
[http://dx.doi.org/10.1007/s11274-006-9305-3]
[42]
Amoozegar, M.A.; Safarpour, A.; Noghabi, K.A.; Bakhtiary, T.; Ventosa, A. Halophiles and their vast potential in biofuel production. Front. Microbiol., 2019, 10(AUG), 1895.
[http://dx.doi.org/10.3389/fmicb.2019.01895] [PMID: 31507545]
[43]
Sharma, K.K.; Kuhad, R.C. An evidence of laccases in archaea. Indian J. Microbiol., 2009, 49(2), 142-150.
[http://dx.doi.org/10.1007/s12088-009-0039-4] [PMID: 23100763]
[44]
Otto, B.; Schlosser, D. First laccase in green algae: purification and characterization of an extracellular phenol oxidase from Tetracystis aeria. Planta, 2014, 240(6), 1225-1236.
[http://dx.doi.org/10.1007/s00425-014-2144-9] [PMID: 25115562]
[45]
Otto, B.; Beuchel, C.; Liers, C.; Reisser, W.; Harms, H.; Schlosser, D. Laccase-like enzyme activities from chlorophycean green algae with potential for bioconversion of phenolic pollutants. FEMS Microbiol. Lett., 2015, 362(11), 1-8.
[http://dx.doi.org/10.1093/femsle/fnv072] [PMID: 25926529]
[46]
Afreen, S.; Shamsi, T.N.; Baig, M.A.; Ahmad, N.; Fatima, S.; Qureshi, M.I.; Hassan, M.I.; Fatma, T. A novel multicopper oxidase (laccase) from cyanobacteria: Purification, characterization with potential in the decolorization of anthraquinonic dye. PLoS One, 2017, 12(4), e0175144.
[http://dx.doi.org/10.1371/journal.pone.0175144] [PMID: 28384218]
[47]
Sadhasivam, S.; Savitha, S.; Swaminathan, K.; Lin, F.H. Production, purification and characterization of mid-redox potential laccase from a newly isolated Trichoderma harzianum WL1. Process Biochem., 2008, 43(7), 736-742.
[http://dx.doi.org/10.1016/j.procbio.2008.02.017]
[48]
Morozova, O.V.; Shumakovich, G.P.; Shleev, S.V.; Yaropolov, Y.I. Laccase-mediator systems and their applications: A review. Appl. Biochem. Microbiol., 2007, 43(5), 523-535.
[http://dx.doi.org/10.1134/S0003683807050055] [PMID: 18038679]
[49]
Hao, J.; Song, F.; Huang, F.; Yang, C.; Zhang, Z.; Zheng, Y.; Tian, X. Production of laccase by a newly isolated deuteromycete fungus Pestalotiopsis sp. and its decolorization of azo dye. J. Ind. Microbiol. Biotechnol., 2007, 34(3), 233-240.
[http://dx.doi.org/10.1007/s10295-006-0191-3] [PMID: 17171552]
[50]
Sato, Y.; Wuli, B.; Sederoff, R.; Whetten, R. Molecular cloning and expression of eight laccase cDNAs in loblolly pine (Pinus taeda. J. Plant Res., 2001, 114(2), 147-155.
[http://dx.doi.org/10.1007/PL00013978]
[51]
Sterjiades, R.; Dean, J.F.D.; Eriksson, K.E.L. Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols. Plant Physiol., 1992, 99(3), 1162-1168.
[http://dx.doi.org/10.1104/pp.99.3.1162] [PMID: 16668984]
[52]
Tezuka, K.; Hayashi, M.; Ishihara, H.; Onozaki, K.; Nishimura, M.; Takahashi, N. Occurrence of heterogeneity of N-linked oligosaccharides attached to sycamore (Acer pseudoplatanus L.) laccase after excretion. Biochem. Mol. Biol. Int., 1993, 29(3), 395-402.
[PMID: 8485457]
[53]
Wosilait, W.D.; Nason, A.; Terrell, A.J. Pyridine nucleotide-quinone reductase. II. Rôle in electron transport. J. Biol. Chem., 1954, 206(1), 271-282.
[http://dx.doi.org/10.1016/S0021-9258(18)71317-3] [PMID: 13130548]
[54]
Richardson, A.; McDougall, G.J. A laccase-type polyphenol oxidase from lignifying xylem of tobacco. Phytochemistry, 1997, 44(2), 229-235.
[http://dx.doi.org/10.1016/S0031-9422(96)00489-X]
[55]
Ranocha, P.; McDougall, G.; Hawkins, S.; Sterjiades, R.; Borderies, G.; Stewart, D.; Cabanes-Macheteau, M.; Boudet, A.M.; Goffner, D. Biochemical characterization, molecular cloning and expression of laccases - A divergent gene family - in poplar. Eur. J. Biochem., 1999, 259(1-2), 485-495.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00061.x] [PMID: 9914531]
[56]
Cai, W.M.; Martin, R.; Lemaure, B.; Courtois, D.; Pétiard, V. Polyphenol oxidases produced by in vitro cultures of rosemery. Plant Physiol. Biochem., 1993, 31(2), 233-240.
[57]
Liu, L.; Dean, J.F.D.; Friedman, W.E.; Eriksson, K.E.L. A laccase-like phenoloxidase is correlated with lignin biosynthesis in Zinnia elegans stem tissues. Plant J., 1994, 6(2), 213-224.
[http://dx.doi.org/10.1046/j.1365-313X.1994.6020213.x]
[58]
Gregory, R.P.F.; Bendall, D.S. The purification and some properties of the polyphenol oxidase from tea (Camellia sinensis L.). Biochem. J., 1966, 101(3), 569-581.
[http://dx.doi.org/10.1042/bj1010569] [PMID: 16742427]
[59]
Park, Y.K.; Sato, H.H.; Almeida, T.D.; Moretti, R.H. Polyphenol oxidase of mango (Mangifera indica var. Haden). J. Food Sci., 1980, 45(6), 1619-1621.
[http://dx.doi.org/10.1111/j.1365-2621.1980.tb07575.x]
[60]
Levine, W. The Biochemistry of Copper; Academic Press Inc.: New York, 1965.
[61]
Binnington, K.C.; Barrett, F.M. Ultrastructural localization of phenoloxidases in cuticle and haemopoietic tissue of the blowfly Lucilia cuprina. Tissue Cell, 1988, 20(3), 405-419.
[http://dx.doi.org/10.1016/0040-8166(88)90073-0] [PMID: 3148210]
[62]
Barrett, F.M. Characterization of phenoloxidases from larval cuticle of Sarcophaga bullata and a comparison with cuticular enzymes from other species. Can. J. Zool., 1987, 65(5), 1158-1166.
[http://dx.doi.org/10.1139/z87-181]
[63]
Thomas, B.R.; Yonekura, M.; Morgan, T.D.; Czapla, T.H.; Hopkins, T.L.; Kramer, K.J. A trypsin-solubilized laccase from pharate pupal integument of the tobacco hornworm, Manduca sexta. Insect Biochem., 1989, 19(7), 611-622.
[http://dx.doi.org/10.1016/0020-1790(89)90095-4]
[64]
Sugumaran, M.; Giglio, L.B.; Kundzicz, H.; Saul, S.; Semensi, V. Studies on the enzymes involved in puparial cuticle sclerotization in Drosophila melanogaster. Arch. Insect Biochem. Physiol., 1992, 19(4), 271-283.
[http://dx.doi.org/10.1002/arch.940190406] [PMID: 1600191]
[65]
Sykes, D.; Band, R.N. Polyphenol oxidase produced during encystation of Acanthamoeba castellanii. J. Protozool., 1985, 32(3), 512-517.
[http://dx.doi.org/10.1111/j.1550-7408.1985.tb04052.x] [PMID: 3930706]
[66]
Sharma, K.K.; Kuhad, R.C. Laccase: Enzyme revisited and function redefined. Indian J. Microbiol., 2008, 48(3), 309-316.
[http://dx.doi.org/10.1007/s12088-008-0028-z] [PMID: 23100727]
[67]
Arakane, Y.; Muthukrishnan, S.; Beeman, R.W.; Kanost, M.R.; Kramer, K.J. Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proc. Natl. Acad. Sci. USA, 2005, 102(32), 11337-11342.
[http://dx.doi.org/10.1073/pnas.0504982102] [PMID: 16076951]
[68]
Wang, X.; Lu, L.; Yao, M.; Zhang, H.; Bao, J. Degradation of carbofuran in contaminated soil by immobilized laccase. Pol. J. Environ. Stud., 2017, 26(3), 1305-1312.
[http://dx.doi.org/10.15244/pjoes/68428]
[69]
Barragán-Huerta, B. E.; Costa-Pérez, C.; Peralta-Cruz, J.; Barrera-Cortés, J.; Esparza-García, F.; Rodríguez-Vázquez, R. Biodegradation of organochlorine pesticides by bacteria grown in microniches of the porous structure of green bean coffee. Int. Biodeterior. Biodegrad., 2007, 59((3 SPEC. ISS.)), 239-244.
[http://dx.doi.org/10.1016/j.ibiod.2006.11.001]
[70]
Rani, M.; Shanker, U.; Jassal, V. Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: A review. J. Environ. Manage., 2017, 190, 208-222.
[http://dx.doi.org/10.1016/j.jenvman.2016.12.068] [PMID: 28056354]
[71]
Jokanović, M. Neurotoxic effects of organophosphorus pesticides and possible association with neurodegenerative diseases in man. review. Toxicology., 2018, 410, 125-131.
[http://dx.doi.org/10.1016/j.tox.2018.09.009] [PMID: 30266654]
[72]
Yahaya, A.; Okoh, O.; Okoh, A.; Adeniji, A. Occurrences of organochlorine pesticides along the course of the buffalo river in the Eastern cape of South Africa and its health implications. Int. J. Environ. Res. Public Health, 2017, 14(11), 1372.
[http://dx.doi.org/10.3390/ijerph14111372] [PMID: 29125583]
[73]
Gereslassie, T.; Workineh, A.; Atieno, O.J.; Wang, J. Determination of occurrences, distribution, health impacts of organochlorine pesticides in soils of central China. Int. J. Environ. Res. Public Health, 2019, 16(1), 146.
[http://dx.doi.org/10.3390/ijerph16010146] [PMID: 30621114]
[74]
El-Sheikh, M.A.; Hadibarata, T.; Yuniarto, A.; Sathishkumar, P.; Abdel-Salam, E.M.; Alatar, A.A. Role of nanocatalyst in the treatment of organochlorine compounds - A review. Chemosphere, 2021, 268, 128873.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128873] [PMID: 33220978]
[75]
Chu, W.K.; Wong, M.H.; Zhang, J. Accumulation, distribution and transformation of DDT and PCBs by Phragmites australis and Oryza sativa L.: II. Enzyme study. Environ. Geochem. Health, 2006, 28(1-2), 169-181.
[http://dx.doi.org/10.1007/s10653-005-9028-7] [PMID: 16547764]
[76]
Ashraf, M.A. Persistent organic pollutants (POPs): A global issue, a global challenge. Environ. Sci. Pollut. Res. Int., 2017, 24(5), 4223-4227.
[http://dx.doi.org/10.1007/s11356-015-5225-9] [PMID: 26370807]
[77]
Cederlund, H.; Börjesson, E.; Lundberg, D.; Stenström, J. Adsorption of pesticides with different chemical properties to a wood biochar treated with heat and iron. Water Air Soil Pollut., 2016, 227(6), 203.
[http://dx.doi.org/10.1007/s11270-016-2894-z]
[78]
Schenk, G.; Mateen, I.; Ng, T.K.; Pedroso, M.M.; Mitić, N.; Jafelicci, M., Jr; Marques, R.F.C.; Gahan, L.R.; Ollis, D.L. Organophosphate-degrading metallohydrolases: Structure and function of potent catalysts for applications in bioremediation. Coord. Chem. Rev., 2016, 317, 122-131.
[http://dx.doi.org/10.1016/j.ccr.2016.03.006]
[79]
Ghanem, I.; Orfi, M.; Shamma, M. Biodegradation of chlorphyrifos by Klebsiella sp. isolated from an activated sludge sample of waste water treatment plant in damascus. Folia Microbiol. (Praha), 2007, 52(4), 423-427.
[http://dx.doi.org/10.1007/BF02932098] [PMID: 18062192]
[80]
Jayaraj, R.; Megha, P.; Sreedev, P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol., 2016, 9(3-4), 90-100.
[http://dx.doi.org/10.1515/intox-2016-0012] [PMID: 28652852]
[81]
Tatarková, V.; Hiller, E.; Vaculík, M. Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy)acetic acid and the growth of sunflower (Helianthus annuus L.). Ecotoxicol. Environ. Saf., 2013, 92, 215-221.
[http://dx.doi.org/10.1016/j.ecoenv.2013.02.005] [PMID: 23474069]
[82]
Chapalamadugu, S.; Chaudhry, G.R. Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates. Crit. Rev. Biotechnol., 1992, 12(5-6), 357-389.
[http://dx.doi.org/10.3109/07388559209114232] [PMID: 1423649]
[83]
Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review. Chemosphere, 2017, 172, 52-71.
[http://dx.doi.org/10.1016/j.chemosphere.2016.12.129] [PMID: 28061345]
[84]
Zhang, P.; Sun, H.; Yu, L.; Sun, T. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars. J. Hazard. Mater., 2013, 244-245, 217-224.
[http://dx.doi.org/10.1016/j.jhazmat.2012.11.046] [PMID: 23246958]
[85]
Anguiano, O.L.; Vacca, M.; Rodriguez Araujo, M.E.; Montagna, M.; Venturino, A.; Ferrari, A. Acute toxicity and esterase response to carbaryl exposure in two different populations of amphipods Hyalella curvispina. Aquat. Toxicol., 2017, 188(188), 72-79.
[http://dx.doi.org/10.1016/j.aquatox.2017.04.013] [PMID: 28460306]
[86]
McDonald, I.R.; Kämpfer, P.; Topp, E.; Warner, K.L.; Cox, M.J.; Hancock, T.L.C.; Miller, L.G.; Larkin, M.J.; Ducrocq, V.; Coulter, C.; Harper, D.B.; Murrell, J.C.; Oremland, R.S. Aminobacter ciceronei sp. nov. and Aminobacter lissarensis sp. nov., isolated from various terrestrial environments. Int. J. Syst. Evol. Microbiol., 2005, 55(5), 1827-1832.
[http://dx.doi.org/10.1099/ijs.0.63716-0] [PMID: 16166673]
[87]
Berman, T.; Göen, T.; Novack, L.; Beacher, L.; Grinshpan, L.; Segev, D.; Tordjman, K. Corrigendum to urinary concentrations of organophosphate and carbamate pesticides in residents of a vegetarian community. Environ. Int., 2017, 106, 267.
[http://dx.doi.org/10.1016/j.envint.2017.06.017]
[88]
Guo, D.; Luo, J.; Zhou, Y.; Xiao, H.; He, K.; Yin, C.; Xu, J.; Li, F. ACE: an efficient and sensitive tool to detect insecticide resistance-associated mutations in insect acetylcholinesterase from RNA-Seq data. BMC Bioinformatics, 2017, 18(1), 330.
[http://dx.doi.org/10.1186/s12859-017-1741-6] [PMID: 28693417]
[89]
Hernández, A.F.; Parrón, T.; Tsatsakis, A.M.; Requena, M.; Alarcón, R.; López-Guarnido, O. Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health. Toxicology, 2013, 307, 136-145.
[http://dx.doi.org/10.1016/j.tox.2012.06.009] [PMID: 22728724]
[90]
Dorman, D.C.; Beasley, V.R. Neurotoxicology of pyrethrin and the pyrethroid insecticides. Vet. Hum. Toxicol., 1991, 33(3), 238-243.
[PMID: 1713367]
[91]
Gupta, A.; Nigam, D.; Gupta, A.; Shukla, G.S.; Agarwal, A.K. Effect of pyrethroid‐based liquid mosquito repellent inhalation on the blood-brain barrier function and oxidative damage in selected organs of developing rats. J. Appl. Toxicol., 1999, 19(1), 67-72.
[http://dx.doi.org/10.1002/(SICI)1099-1263(199901/02)19:1<67:AID-JAT540>3.0.CO;2-#] [PMID: 9989480]
[92]
Kale, M.; Rathore, N.; John, S.; Bhatnagar, D. Lipid peroxidation and antioxidant enzymes in rat tissues in pyrethroid toxicity: possible involvement of reactive oxygen species. J. Nutr. Environ. Med., 1999, 9(1), 37-46.
[http://dx.doi.org/10.1080/13590849961825]
[93]
Giray, B.; Gürbay, A.; Hincal, F. Cypermethrin-induced oxidative stress in rat brain and liver is prevented by Vitamin E or allopurinol. Toxicol. Lett., 2001, 118(3), 139-146.
[http://dx.doi.org/10.1016/S0378-4274(00)00277-0] [PMID: 11137320]
[94]
Vontas, J.G.; Small, G.J.; Hemingway, J. Glutathione Stransferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem. J., 2001, 357(1), 65-72.
[http://dx.doi.org/10.1042/bj3570065] [PMID: 11415437]
[95]
Gabbianelli, R.; Falcioni, G.; Nasuti, C.; Cantalamessa, F. Cypermethrin-induced plasma membrane perturbation on erythrocytes from rats: reduction of fluidity in the hydrophobic core and in glutathione peroxidase activity. Toxicology, 2002, 175(1-3), 91-101.
[http://dx.doi.org/10.1016/S0300-483X(02)00058-6] [PMID: 12049839]
[96]
Dudda, A. Lipid peroxidation, a consequence of cell injury? S. Afr. J. Chem., 1996, 49(3), 59-64.
[97]
Hakulinen, N.; Rouvinen, J. Three-dimensional structures of laccases. Cell. Mol. Life Sci., 2015, 72(5), 857-868.
[http://dx.doi.org/10.1007/s00018-014-1827-5] [PMID: 25586561]
[98]
Baldrian, P. Fungal laccases-occurrence and properties. FEMS Microbiol. Rev., 2006, 30(2), 215-242.
[http://dx.doi.org/10.1111/j.1574-4976.2005.00010.x] [PMID: 16472305]
[99]
Ko, E.M.; Leem, Y.E.; Choi, H.T. Purification and characterization of laccase isozymes from the white-rot basidiomycete Ganoderma lucidum. Appl. Microbiol. Biotechnol., 2001, 57(1-2), 98-102.
[http://dx.doi.org/10.1007/s002530100727] [PMID: 11693941]
[100]
Yoshitake, A.; Katayama, Y.; Nakamura, M.; Iimura, Y.; Kawai, S.; Morohoshi, N. N-linked carbohydrate chains protect laccase III from proteolysis in Coriolus versicolor. J. Gen. Microbiol., 1993, 139(1), 179-185.
[http://dx.doi.org/10.1099/00221287-139-1-179]
[101]
Slomczynski, D.; Nakas, J.P.; Tanenbaum, S.W. Production and characterization of laccase from Botrytis cinerea 61-34. Appl. Environ. Microbiol., 1995, 61(3), 907-912.
[http://dx.doi.org/10.1128/aem.61.3.907-912.1995] [PMID: 16534974]
[102]
Agrawal, K.; Chaturvedi, V.; Verma, P. Fungal laccase discovered but yet undiscovered. Bioresour. Bioprocess., 2018, 5(1), 4.
[http://dx.doi.org/10.1186/s40643-018-0190-z]
[103]
Quintanar, L.; Yoon, J.; Aznar, C.P.; Palmer, A.E.; Andersson, K.K.; Britt, R.D.; Solomon, E.I. Spectroscopic and electronic structure studies of the trinuclear Cu cluster active site of the multicopper oxidase laccase: nature of its coordination unsaturation. J. Am. Chem. Soc., 2005, 127(40), 13832-13845.
[http://dx.doi.org/10.1021/ja0421405] [PMID: 16201804]
[104]
Solomon, E.I. Electronic structures of active sites in copper proteins: Contributions to reactivity. J. Inorg. Biochem., 1993, 51(1-2), 450.
[http://dx.doi.org/10.1016/0162-0134(93)85478-Q]
[105]
Chaurasia, P.K.; Shanker, R.; Yadav, S.; Yadava, S. A review on mechanism of laccase action. RRBS, 2013, 7(2), 2013-2066.
[106]
Giardina, P.; Faraco, V.; Pezzella, C.; Piscitelli, A.; Vanhulle, S.; Sannia, G. Laccases: a never-ending story. Cell. Mol. Life Sci., 2010, 67(3), 369-385.
[http://dx.doi.org/10.1007/s00018-009-0169-1] [PMID: 19844659]
[107]
Palmer, A.E.; Randall, D.W.; Xu, F.; Solomon, E.I. Spectroscopic studies and electronic structure description of the high potential type 1 copper site in fungal laccase: Insight into the effect of the axial ligand. J. Am. Chem. Soc., 1999, 121(30), 7138-7149.
[http://dx.doi.org/10.1021/ja991087v]
[108]
Piontek, K.; Antorini, M.; Choinowski, T. Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers. J. Biol. Chem., 2002, 277(40), 37663-37669.
[http://dx.doi.org/10.1074/jbc.M204571200] [PMID: 12163489]
[109]
Jones, S.M.; Solomon, E.I. Electron transfer and reaction mechanism of laccases. Cell. Mol. Life Sci., 2015, 72(5), 869-883.
[http://dx.doi.org/10.1007/s00018-014-1826-6] [PMID: 25572295]
[110]
Kallio, J.P.; Auer, S.; Jänis, J.; Andberg, M.; Kruus, K.; Rouvinen, J.; Koivula, A.; Hakulinen, N. Structure-function studies of a Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds. J. Mol. Biol., 2009, 392(4), 895-909.
[http://dx.doi.org/10.1016/j.jmb.2009.06.053] [PMID: 19563811]
[111]
Bertrand, T.; Jolivalt, C.; Briozzo, P.; Caminade, E.; Joly, N.; Madzak, C.; Mougin, C. Crystal structure of a four-copper laccase complexed with an arylamine: Insights into substrate recognition and correlation with kinetics. Biochemistry, 2002, 41(23), 7325-7333.
[http://dx.doi.org/10.1021/bi0201318] [PMID: 12044164]
[112]
Damas, J.M.; Baptista, A.M.; Soares, C.M. The pathway for O2 diffusion inside CotA laccase and possible implications on the multicopper oxidases family. J. Chem. Theory Comput., 2014, 10(8), 3525-3531.
[http://dx.doi.org/10.1021/ct500196e] [PMID: 26588316]
[113]
Garavaglia, S.; Teresa Cambria, M.; Miglio, M.; Ragusa, S.; Iacobazzi, V.; Palmieri, F.; D’Ambrosio, C.; Scaloni, A.; Rizzi, M. The structure of rigidoporus lignosus laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair. J. Mol. Biol., 2004, 342(5), 1519-1531.
[http://dx.doi.org/10.1016/j.jmb.2004.07.100] [PMID: 15364578]
[114]
Glazunova, O.; Trushkin, N.; Moiseenko, K.; Filimonov, I.; Fedorova, T. Catalytic efficiency of basidiomycete laccases: Redox potential versus substrate-binding pocket structure. Catalysts, 2018, 8(4), 152.
[http://dx.doi.org/10.3390/catal8040152]
[115]
Frasconi, M.; Favero, G.; Boer, H.; Koivula, A.; Mazzei, F. Kinetic and biochemical properties of high and low redox potential laccases from fungal and plant origin. Biochim. Biophys. Acta. Proteins Proteomics, 2010, 1804(4), 899-908.
[http://dx.doi.org/10.1016/j.bbapap.2009.12.018] [PMID: 20056172]
[116]
Lahtinen, M.; Kruus, K.; Boer, H.; Kemell, M.; Andberg, M.; Viikari, L.; Sipilä, J. The effect of lignin model compound structure on the rate of oxidation catalyzed by two different fungal laccases. J. Mol. Catal., B Enzym., 2009, 57(1-4), 204-210.
[http://dx.doi.org/10.1016/j.molcatb.2008.09.004]
[117]
Xu, F. Oxidation of phenols, anilines, and benzenethiols by fungal laccases: Correlation between activity and redox potentials as well as halide inhibition. Biochemistry, 1996, 35(23), 7608-7614.
[http://dx.doi.org/10.1021/bi952971a] [PMID: 8652543]
[118]
Xu, F.; Berka, R.M.; Wahleithner, J.A.; Nelson, B.A.; Shuster, J.R.; Brown, S.H.; Palmer, A.E.; Solomon, E.I. Site-directed mutations in fungal laccase: Effect on redox potential, activity and pH profile. Biochem. J., 1998, 334(1), 63-70.
[http://dx.doi.org/10.1042/bj3340063] [PMID: 9693103]
[119]
Rivera-Hoyos, C.M.; Morales-Álvarez, E.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M. RodrÍguez-Vázquez, R.; Delgado-Boada, J.M. Fungal laccases. Fungal Biol. Rev., 2013, 27(3-4), 67-82.
[http://dx.doi.org/10.1016/j.fbr.2013.07.001]
[120]
Quintanar, L.; Stoj, C.; Taylor, A.B.; Hart, P.J.; Kosman, D.J.; Solomon, E.I. Shall we dance? How a multicopper oxidase chooses its electron transfer partner. Acc. Chem. Res., 2007, 40(6), 445-452.
[http://dx.doi.org/10.1021/ar600051a] [PMID: 17425282]
[121]
Osipov, E.; Polyakov, K.; Kittl, R.; Shleev, S.; Dorovatovsky, P.; Tikhonova, T.; Hann, S.; Ludwig, R.; Popov, V. Effect of the L499M mutation of the ascomycetous Botrytis aclada laccase on redox potential and catalytic properties. Acta Crystallogr. D Biol. Crystallogr., 2014, 70(11), 2913-2923.
[http://dx.doi.org/10.1107/S1399004714020380] [PMID: 25372682]
[122]
Hong, G.; Ivnitski, D.M.; Johnson, G.R.; Atanassov, P.; Pachter, R. Design parameters for tuning the type 1 Cu multicopper oxidase redox potential: insight from a combination of first principles and empirical molecular dynamics simulations. J. Am. Chem. Soc., 2011, 133(13), 4802-4809.
[http://dx.doi.org/10.1021/ja105586q] [PMID: 21388209]
[123]
Solomon, E.I.; Chen, P.; Metz, M.; Lee, S.K.; Palmer, A.E. Oxygen binding, activation, and reduction to water by copper proteins. Angew. Chem. Int. Ed., 2001, 40(24), 4570-4590.
[http://dx.doi.org/10.1002/1521-3773(20011217)40:24<4570:AID-ANIE4570>3.0.CO;2-4] [PMID: 12404359]
[124]
Cole, J.L.; Ballou, D.P.; Solomon, E.I. Spectroscopic characterization of the peroxide intermediate in the reduction of dioxygen catalyzed by the multicopper oxidases. J. Am. Chem. Soc., 1991, 113(22), 8544-8546.
[http://dx.doi.org/10.1021/ja00022a064]
[125]
Rulíšek, L.; Solomon, E.I.; Ryde, U. A combined quantum and molecular mechanical study of the O2 reductive cleavage in the catalytic cycle of multicopper oxidases. Inorg. Chem., 2005, 44(16), 5612-5628.
[http://dx.doi.org/10.1021/ic050092z] [PMID: 16060610]
[126]
Shleev, S.; Reimann, C.T.; Serezhenkov, V.; Burbaev, D.; Yaropolov, A.I.; Gorton, L.; Ruzgas, T. Autoreduction and aggregation of fungal laccase in solution phase: possible correlation with a resting form of laccase. Biochimie, 2006, 88(9), 1275-1285.
[http://dx.doi.org/10.1016/j.biochi.2006.02.007] [PMID: 16581176]
[127]
Palmer, A.E.; Lee, S.K.; Solomon, E.I. Decay of the peroxide intermediate in laccase: reductive cleavage of the O-O bond. J. Am. Chem. Soc., 2001, 123(27), 6591-6599.
[http://dx.doi.org/10.1021/ja010365z] [PMID: 11439045]
[128]
Yoon, J.; Solomon, E.I. Electronic structure of the peroxy intermediate and its correlation to the native intermediate in the multicopper oxidases: insights into the reductive cleavage of the O-O bond. J. Am. Chem. Soc., 2007, 129(43), 13127-13136.
[http://dx.doi.org/10.1021/ja073947a] [PMID: 17918839]
[129]
Witayakran, S.; Ragauskas, A.J. Synthetic applications of laccase in green chemistry. Adv. Synth. Catal., 2009, 351(9), 1187-1209.
[http://dx.doi.org/10.1002/adsc.200800775]
[130]
Matera, I.; Gullotto, A.; Tilli, S.; Ferraroni, M.; Scozzafava, A.; Briganti, F. Crystal structure of the blue multicopper oxidase from the white-rot fungus Trametes trogii complexed with p-toluate. Inorg. Chim. Acta, 2008, 361(14-15), 4129-4137.
[http://dx.doi.org/10.1016/j.ica.2008.03.091]
[131]
Fernández-Sánchez, C.; Tzanov, T.; Gübitz, G.M.; Cavaco-Paulo, A. Voltammetric monitoring of laccase-catalysed mediated reactions. Bioelectrochemistry, 2002, 58(2), 149-156.
[http://dx.doi.org/10.1016/S1567-5394(02)00119-6] [PMID: 12414320]
[132]
Johannes, C.; Majcherczyk, A. Laccase activity tests and laccase inhibitors. J. Biotechnol., 2000, 78(2), 193-199.
[http://dx.doi.org/10.1016/S0168-1656(00)00208-X] [PMID: 10725542]
[133]
Johannes, C.; Majcherczyk, A. Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl. Environ. Microbiol., 2000, 66(2), 524-528.
[http://dx.doi.org/10.1128/AEM.66.2.524-528.2000] [PMID: 10653713]
[134]
Cañas, A.I.; Camarero, S. Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes. Biotechnol. Adv., 2010, 28(6), 694-705.
[http://dx.doi.org/10.1016/j.biotechadv.2010.05.002] [PMID: 20471466]
[135]
Astolfi, P.; Brandi, P.; Galli, C.; Gentili, P.; Gerini, M.F.; Greci, L.; Lanzalunga, O. New mediators for the enzyme laccase: mechanistic features and selectivity in the oxidation of non-phenolic substrates. New J. Chem., 2005, 29(10), 1308-1317.
[http://dx.doi.org/10.1039/b507657a]
[136]
Baiocco, P.; Barreca, A.M.; Fabbrini, M.; Galli, C.; Gentili, P. Promoting laccase activity towards non-phenolic substrates: a mechanistic investigation with some laccase-mediator systems. Org. Biomol. Chem., 2003, 1(1), 191-197.
[http://dx.doi.org/10.1039/B208951C] [PMID: 12929410]
[137]
d’Acunzo, F.; Baiocco, P.; Fabbrini, M.; Galli, C.; Gentili, P. A mechanistic survey of the oxidation of alcohols and ethers with the enzyme laccase and its mediation by TEMPO. Eur. J. Org. Chem., 2002, 2002(24), 4195-4201.
[http://dx.doi.org/10.1002/1099-0690(200212)2002:24<4195:AID-EJOC4195>3.0.CO;2-X]
[138]
González Arzola, K.; Arévalo, M.C.; Falcón, M.A. Catalytic efficiency of natural and synthetic compounds used as laccase-mediators in oxidising veratryl alcohol and a kraft lignin, estimated by electrochemical analysis. Electrochim. Acta, 2009, 54(9), 2621-2629.
[http://dx.doi.org/10.1016/j.electacta.2008.10.059]
[139]
Bourbonnais, R.; Leech, D.; Paice, M.G. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochim. Biophys. Acta, Gen. Subj., 1998, 1379(3), 381-390.
[http://dx.doi.org/10.1016/S0304-4165(97)00117-7] [PMID: 9545600]
[140]
Mani, P.; Kumar, V.T.F.; Keshavarz, T.; Chandra, T.S.; Kyazze, G. The role of natural laccase redox mediators in simultaneous dye decolorization and power production in microbial fuel cells. Energies, 2018, 11(12), 3455.
[http://dx.doi.org/10.3390/en11123455]
[141]
Srebotnik, E.; Hammel, K.E. Degradation of nonphenolic lignin by the laccase/1-hydroxybenzotriazole system. J. Biotechnol., 2000, 81(2-3), 179-188.
[http://dx.doi.org/10.1016/S0168-1656(00)00303-5] [PMID: 10989177]
[142]
Xu, F.; Kulys, J.J.; Duke, K.; Li, K.; Krikstopaitis, K.; Deussen, H.J.W.; Abbate, E.; Galinyte, V.; Schneider, P. Redox chemistry in laccase-catalyzed oxidation of N-hydroxy compounds. Appl. Environ. Microbiol., 2000, 66(5), 2052-2056.
[http://dx.doi.org/10.1128/AEM.66.5.2052-2056.2000] [PMID: 10788380]
[143]
Fabbrini, M.; Galli, C.; Gentili, P. Comparing the catalytic efficiency of some mediators of laccase. J. Mol. Catal., B Enzym., 2002, 16(5-6), 231-240.
[http://dx.doi.org/10.1016/S1381-1177(01)00067-4]
[144]
Bourbonnais, R. Reactivity and mechanism of laccase mediators for pulp delignification. TAPPI Biol. Sci. Symp. Proc, 1997, pp. 335-338.
[145]
Cantarella, G.; Galli, C.; Gentili, P. Free radical versus electron-transfer routes of oxidation of hydrocarbons by laccase/mediator systems. J. Mol. Catal., B Enzym., 2003, 22(3-4), 135-144.
[http://dx.doi.org/10.1016/S1381-1177(03)00014-6]
[146]
Barreca, A.M.; Fabbrini, M.; Galli, C.; Gentili, P.; Ljunggren, S. Laccase/mediated oxidation of a lignin model for improved delignification procedures. J. Mol. Catal., B Enzym., 2003, 26(1-2), 105-110.
[http://dx.doi.org/10.1016/j.molcatb.2003.08.001]
[147]
Nooy, A.E.J.; Besemer, A.C.; Bekkum, H. On the use of stable organic nitroxyl radicals for the oxidation of primary and secondary alcohols. Synthesis, 1996, 1996(10), 1153-1176.
[http://dx.doi.org/10.1055/s-1996-4369]
[148]
D’Souza, S.F. Immobilized enzymes in bioprocess. Curr. Sci., 1999, 77(1), 69-79.
[149]
Singh, G. Characterization of immobilized laccase from γ-proteobacterium JB: Approach towards the development of biosensor for the detection of phenolic compounds. Indian J. Sci. Technol., 2010, 3(1), 48-53.
[http://dx.doi.org/10.17485/ijst/2010/v3i1.8]
[150]
Al-Adhami, A.J.H.; Bryjak, J.; Greb-Markiewicz, B.; Peczyńska-Czoch, W. Immobilization of wood-rotting fungi laccases on modified cellulose and acrylic carriers. Process Biochem., 2002, 37(12), 1387-1394.
[http://dx.doi.org/10.1016/S0032-9592(02)00023-7]
[151]
Cordeiro, A.L.; Pompe, T.; Salchert, K.; Werner, C. Enzyme immobilization on reactive polymer films. Methods Mol. Biol., 2011, 751, 465-476.
[http://dx.doi.org/10.1007/978-1-61779-151-2_29]
[152]
Wu, S.C.; Lia, Y.K. Application of bacterial cellulose pellets in enzyme immobilization. J. Mol. Catal., B Enzym., 2008, 54(3-4), 103-108.
[http://dx.doi.org/10.1016/j.molcatb.2007.12.021]
[153]
Chen, X.; Zhou, Q.; Liu, F.; Peng, Q.; Teng, P. Removal of Nine Pesticide Residues from Water and Soil by Biosorption Coupled with Degradation on Biosorbent Immobilized Laccase; Elsevier Ltd: Amsterdam, 2019, p. 233.
[http://dx.doi.org/10.1016/j.chemosphere.2019.05.144]
[154]
Katwa, L.C.; Ramakrishna, M.; Rao, M.R.R. Spectrophotometric assay of immobilized tannase. J. Biosci., 1981, 3(2), 135-142.
[http://dx.doi.org/10.1007/BF02702656]
[155]
Hilal, N.; Kochkodan, V.; Nigmatullin, R.; Goncharuk, V.; Al-Khatib, L. Lipase-immobilized biocatalytic membranes for enzymatic esterification: Comparison of various approaches to membrane preparation. J. Membr. Sci., 2006, 268(2), 198-207.
[http://dx.doi.org/10.1016/j.memsci.2005.06.039]
[156]
Wang, H.Y.; Hettwer, D.J. Cell immobilization ink-carrageenan with tricalcium phosphate. Biotechnol. Bioeng., 1982, 24(8), 1827-1838.
[http://dx.doi.org/10.1002/bit.260240809] [PMID: 18548439]
[157]
Kenthorai Raman, J.; Foo Wang Ting, V.; Pogaku, R. Life cycle assessment of biodiesel production using alkali, soluble and immobilized enzyme catalyst processes. Biomass Bioenergy, 2011, 35(10), 4221-4229.
[http://dx.doi.org/10.1016/j.biombioe.2011.07.010]
[158]
Wang, Z.; Ren, D.; Jiang, S.; Yu, H.; Cheng, Y.; Zhang, S.; Zhang, X.; Chen, W. The study of laccase immobilization optimization and stability improvement on CTAB-KOH modified biochar. BMC Biotechnol., 2021, 21(1), 47.
[http://dx.doi.org/10.1186/s12896-021-00709-3] [PMID: 34353307]
[159]
Imam, A.; Suman, S.K.; Singh, R.; Vempatapu, B.P.; Ray, A.; Kanaujia, P.K. Application of laccase immobilized rice straw biochar for anthracene degradation. Environ. Pollut., 2021, 268((Pt A)), 115827.
[http://dx.doi.org/10.1016/j.envpol.2020.115827] [PMID: 33096462]
[160]
Girelli, A.M.; Quattrocchi, L.; Scuto, F.R. Silica-chitosan hybrid support for laccase immobilization. J. Biotechnol., 2020, 318(March), 45-50.
[http://dx.doi.org/10.1016/j.jbiotec.2020.05.004] [PMID: 32447128]
[161]
Zdarta, J.; Meyer, A.; Jesionowski, T.; Pinelo, M. A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility. Catalysts, 2018, 8(2), 92.
[http://dx.doi.org/10.3390/catal8020092]
[162]
Zhou, W.; Zhang, W.; Cai, Y. Laccase immobilization for water purification: A comprehensive review. Chem. Eng. J., 2021, 403, 126272.
[http://dx.doi.org/10.1016/j.cej.2020.126272]
[163]
Madadi, R.; Bester, K. Fungi and biochar applications in bioremediation of organic micropollutants from aquatic media. Mar. Pollut. Bull., 2021, 166(166), 112247.
[http://dx.doi.org/10.1016/j.marpolbul.2021.112247] [PMID: 33735702]
[164]
Palanisamy, S.; Ramaraj, S.K.; Chen, S.M.; Yang, T.C.K.; Yi-Fan, P.; Chen, T.W.; Velusamy, V.; Selvam, S. A novel laccase biosensor based on laccase immobilized graphene-cellulose microfiber composite modified screen-printed carbon electrode for sensitive determination of catechol. Sci. Rep., 2017, 7(1), 41214.
[http://dx.doi.org/10.1038/srep41214] [PMID: 28117357]
[165]
Minussi, R.C.; Miranda, M.A.; Silva, J.A.; Ferreira, C.V.; Aoyama, H.; Marangoni, S.; Rotilio, D.; Pastore, G.M.; Durán, N. Purification, characterization and application of laccase from trametes versicolor for colour and phenolic removal of olive mill wastewater in the presence of 1-hydroxybenzotriazole. Afr. J. Biotechnol., 2007, 6(10), 1248-1254.
[166]
Yang, J.; Wang, Z.; Lin, Y.; Ng, T.B.; Ye, X.; Lin, J. Immobilized Cerrena sp. laccase: preparation, thermal inactivation, and operational stability in malachite green decolorization. Sci. Rep., 2017, 7(1), 16429.
[http://dx.doi.org/10.1038/s41598-017-16771-x] [PMID: 29180686]
[167]
Mani, P.; Fidal, V.T.; Keshavarz, T.; Chandra, T.S.; Kyazze, G. Laccase immobilization strategies for application as a cathode catalyst in microbial fuel cells for azo dye decolourization. Front. Microbiol., 2021, 11(January), 620075.
[http://dx.doi.org/10.3389/fmicb.2020.620075] [PMID: 33537019]
[168]
Teerapatsakul, C.; Bucke, C.; Parra, R.; Keshavarz, T.; Chitradon, L. Dye decolorisation by laccase entrapped in copper alginate. World J. Microbiol. Biotechnol., 2008, 24(8), 1367-1374.
[http://dx.doi.org/10.1007/s11274-007-9617-y]
[169]
Taheran, M.; Naghdi, M.; Brar, S.K.; Knystautas, E.J.; Verma, M.; Surampalli, R.Y. Covalent immobilization of laccase onto nanofibrous membrane for degradation of pharmaceutical residues in water. ACS Sustain. Chem. Eng., 2017, 5(11), 10430-10438.
[http://dx.doi.org/10.1021/acssuschemeng.7b02465]
[170]
Srinivasan, P.; Selvankumar, T.; Paray, B. A.; Rehman, M.U.; Kamala-Kannan, S.; Govarthanan, M.; Kim, W.; Selvam, K. Chlorpyrifos degradation efficiency of Bacillus sp. laccase immobilized on iron magnetic nanoparticles. 3 Biotech, 2020, 10(8), 366.
[http://dx.doi.org/10.1007/s13205-020-02363-6]
[171]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108(6), 2064-2110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[172]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012] [PMID: 15626447]
[173]
Amin, R.; Khorshidi, A.; Shojaei, A.F.; Rezaei, S.; Faramarzi, M.A. Immobilization of laccase on modified Fe3O4@SiO2@Kit-6 magnetite nanoparticles for enhanced delignification of olive pomace bio-waste. Int. J. Biol. Macromol., 2018, 114, 106-113.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.086] [PMID: 29567496]
[174]
Dyal, A.; Loos, K.; Noto, M.; Chang, S.W.; Spagnoli, C.; Shafi, K.V.P.M.; Ulman, A.; Cowman, M.; Gross, R.A. Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. J. Am. Chem. Soc., 2003, 125(7), 1684-1685.
[http://dx.doi.org/10.1021/ja021223n] [PMID: 12580578]
[175]
Zhang, J.; Xu, Z.; Chen, H.; Zong, Y. Removal of 2,4-dichlorophenol by chitosan-immobilized laccase from Coriolus versicolor. Biochem. Eng. J., 2009, 45(1), 54-59.
[http://dx.doi.org/10.1016/j.bej.2009.02.005]
[176]
Gonzalez-Coronel, L.A.; Cobas, M.; Rostro-Alanis, M.J.; Parra-Saldívar, R.; Hernandez-Luna, C.; Pazos, M.; Sanromán, M.Á. Immobilization of laccase of Pycnoporus sanguineus CS43. N. Biotechnol., 2017, 39((Pt A)), 141-149.
[http://dx.doi.org/10.1016/j.nbt.2016.12.003] [PMID: 28011289]
[177]
Singh, J.; Kapoor, R.K. Immobilization and reusability efficiency of laccase onto different matrices using different approaches demulsification of water/sunflower oil view project laccase enzyme view project. pharma. Innov. J., 2019, 9(8(4)), 373-378.
[178]
Wang, Z.; Ren, D.; Yu, H.; Jiang, S.; Zhang, S.; Zhang, X. Study on improving the stability of adsorption-encapsulation immobilized Laccase@ZIF-67. Biotechnol. Rep. (Amst.), 2020, 28, e00553.
[http://dx.doi.org/10.1016/j.btre.2020.e00553] [PMID: 33240797]
[179]
Samui, A.; Sahu, S.K. One-pot synthesis of microporous nanoscale metal organic frameworks conjugated with laccase as a promising biocatalyst. New J. Chem., 2018, 42(6), 4192-4200.
[http://dx.doi.org/10.1039/C7NJ03619A]
[180]
Mazlan, S.Z.; Hanifah, S.A. Effects of temperature and ph on immobilized laccase activity in conjugated methacrylate-acrylate microspheres. Int. J. Polym. Sci., 2017, 2017, 1-8.
[http://dx.doi.org/10.1155/2017/5657271]
[181]
Aly, M.M.; Al-aidaroos, B.A.; Alfassi, F.A. Pesticides characters, importance and microbial degradation. IOSR J. Pharm. Biol. Sci., 2017, 12(2), 20-28.
[http://dx.doi.org/10.9790/3008-1202022028]
[182]
Kupski, L.; Salcedo, G.M.; Caldas, S.S.; de Souza, T.D.; Furlong, E.B.; Primel, E.G. Optimization of a laccase-mediator system with natural redox-mediating compounds for pesticide removal. Environ. Sci. Pollut. Res. Int., 2019, 26(5), 5131-5139.
[http://dx.doi.org/10.1007/s11356-018-4010-y] [PMID: 30607853]
[183]
Xie, H.; Li, Q.; Wang, M.; Zhao, L. Production of a recombinant laccase from Pichia pastoris and biodegradation of chlorpyrifos in a laccase/vanillin system. J. Microbiol. Biotechnol., 2013, 23(6), 864-871.
[http://dx.doi.org/10.4014/jmb.1212.12057] [PMID: 23676909]
[184]
Chauhan, P.S.; Jha, B. Pilot scale production of extracellular thermo-alkali stable laccase from Pseudomonas sp. S2 using agro waste and its application in organophosphorous pesticides degradation. J. Chem. Technol. Biotechnol., 2018, 93(4), 1022-1030.
[http://dx.doi.org/10.1002/jctb.5454]
[185]
Wang, X.; Yao, M.; Liu, L.; Cao, Y.; Bao, J. Degradation of chlorpyrifos in contaminated soil by immobilized laccase. J. Serb. Chem. Soc., 2016, 81(10), 1215-1224.
[http://dx.doi.org/10.2298/JSC160128066W]
[186]
Rudakiya, D.M.; Patel, D.H.; Gupte, A. Exploiting the potential of metal and solvent tolerant laccase from Tricholoma giganteum AGDR1 for the removal of pesticides. Int. J. Biol. Macromol., 2020, 144, 586-595.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.068] [PMID: 31830449]
[187]
Maruyama, T.; Komatsu, C.; Michizoe, J.; Ichinose, H.; Goto, M. Laccase-mediated oxidative degradation of the herbicide dymron. Biotechnol. Prog., 2006, 22(2), 426-430.
[http://dx.doi.org/10.1021/bp050251h] [PMID: 16599557]
[188]
Pizzul, L.; Castillo, M.P.; Stenström, J. Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation, 2009, 20(6), 751-759.
[http://dx.doi.org/10.1007/s10532-009-9263-1] [PMID: 19396551]
[189]
Zeng, S.; Qin, X.; Xia, L. Degradation of the herbicide isoproturon by laccase-mediator systems. Biochem. Eng. J., 2017, 119, 92-100.
[http://dx.doi.org/10.1016/j.bej.2016.12.016]
[190]
Bansal, M.; Kumar, D.; Chauhan, G.S.; Kaushik, A. Preparation, characterization and trifluralin degradation of laccase-modified cellulose nanofibers. Mater. Sci. Energy Technol., 2018, 1(1), 29-37.
[http://dx.doi.org/10.1016/j.mset.2018.04.002]
[191]
Kennedy, J.F.; Cabral, J.M.S. Immobilized enzymes. Solid Phase, Biochemistry; Wiley: New York, 1983, pp. 245-293.
[192]
Hyde, F.W.; Hunt, G.R.; Errede, L.A. Immobilization of bacteria and Saccharomyces cerevisiae in poly(tetrafluoroethylene) membranes. Appl. Environ. Microbiol., 1991, 57(1), 219-222.
[http://dx.doi.org/10.1128/aem.57.1.219-222.1991] [PMID: 2036008]
[193]
Ashe, B.; Nguyen, L.N.; Hai, F.I.; Lee, D.J.; van de Merwe, J.P.; Leusch, F.D.L.; Price, W.E.; Nghiem, L.D. Impacts of redox-mediator type on trace organic contaminants degradation by laccase: Degradation efficiency, laccase stability and effluent toxicity. Int. Biodeterior. Biodegradation, 2016, 113, 169-176.
[http://dx.doi.org/10.1016/j.ibiod.2016.04.027]
[194]
Huang, M.T.; Lu, Y.C.; Zhang, S.; Luo, F.; Yang, H. Rice (Oryza sativa) laccases involved in modification and detoxification of herbicides atrazine and isoproturon residues in plants. J. Agric. Food Chem., 2016, 64(33), 6397-6406.
[http://dx.doi.org/10.1021/acs.jafc.6b02187] [PMID: 27499219]
[195]
Yada, G.M., Jr; Shiraishi, I.S.; Dekker, R.F.H.; Schirmann, J.G.; Barbosa-Dekker, A.M.; de Araujo, I.C.; Abreu, L.M.; Daniel, J.F.S. Soil and entomopathogenic fungi with potential for biodegradation of insecticides: degradation of flubendiamide in vivo by fungi and in vitro by laccase. Ann. Microbiol., 2019, 69(13), 1517-1529.
[http://dx.doi.org/10.1007/s13213-019-01536-w]
[196]
Nguyen, L.N.; van de Merwe, J.P.; Hai, F.I.; Leusch, F.D.L.; Kang, J.; Price, W.E.; Roddick, F.; Magram, S.F.; Nghiem, L.D. Laccase-syringaldehyde-mediated degradation of trace organic contaminants in an enzymatic membrane reactor: Removal efficiency and effluent toxicity. Bioresour. Technol., 2016, 200, 477-484.
[http://dx.doi.org/10.1016/j.biortech.2015.10.054] [PMID: 26519700]
[197]
Mougin, C.; Boyer, F.D.; Caminade, E.; Rama, R. Cleavage of the diketonitrile derivative of the herbicide isoxaflutole by extracellular fungal oxidases. J. Agric. Food Chem., 2000, 48(10), 4529-4534.
[http://dx.doi.org/10.1021/jf000397q] [PMID: 11052694]
[198]
Sarker, A.; Lee, S.H.; Kwak, S.Y.; Nandi, R.; Kim, J.E. Comparative catalytic degradation of a metabolite 3,5-dichloroaniline derived from dicarboximide fungicide by laccase and MnO2 mediators. Ecotoxicol. Environ. Saf., 2020, 196(196), 110561.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110561] [PMID: 32276163]
[199]
Zhang, B.; Ni, Y.; Liu, J.; Yan, T.; Zhu, X.; Li, Q.X.; Hua, R.; Pan, D.; Wu, X. Bead-immobilized Pseudomonas stutzeri Y2 prolongs functions to degrade s-triazine herbicides in industrial wastewater and maize fields. Sci. Total Environ., 2020, 731, 139183.
[http://dx.doi.org/10.1016/j.scitotenv.2020.139183] [PMID: 32388161]
[200]
Farragher, N. Degradation of Pesticides by the Ligninolytic Enzyme Laccase-Optimisation of in vitro Conditions; Immobilisation and Screening for Natural Mediators; , 2013. Available from : [https://stud.epsilon.slu.se/5693/7/farragher_n_130618.pdf
[201]
Vidal-Limon, A.; García Suárez, P.C.; Arellano-García, E.; Contreras, O.E.; Aguila, S.A. Enhanced degradation of pesticide dichlorophen by laccase immobilized on nanoporous materials: A cytotoxic and molecular simulation investigation. Bioconjug. Chem., 2018, 29(4), 1073-1080.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00739] [PMID: 29337540]
[202]
Ruggiero, P.; Sarkar, J.M.; Bollag, J.M. Detoxification of 2,4-dichlorophenol by a laccase immobilized on soil or clay. Soil Sci., 1989, 147(5), 361-370.
[http://dx.doi.org/10.1097/00010694-198905000-00007]
[203]
Zhao, Y.C.; Fu, R.; Mo, C.H.; Yi, X.Y. Effect of Cd on remediation of DDT contaminated soil using different laccase forms. Huan Jing Ke Xue, 2008, 29(8), 2331-2335.
[PMID: 18839595]
[204]
Yang, Y.X.; Pi, N.; Zhang, J.B.; Huang, Y.; Yao, P.P.; Xi, Y.J.; Yuan, H.M. USPIO assisting degradation of MXC by host/guest-type immobilized laccase in AOT reverse micelle system. Environ. Sci. Pollut. Res. Int., 2016, 23(13), 13342-13354.
[http://dx.doi.org/10.1007/s11356-016-6502-y] [PMID: 27023821]
[205]
Majeau, J.A.; Brar, S.K.; Tyagi, R.D. Laccases for removal of recalcitrant and emerging pollutants. Bioresour. Technol., 2010, 101(7), 2331-2350.
[http://dx.doi.org/10.1016/j.biortech.2009.10.087] [PMID: 19948398]
[206]
Gao-Hong, Z.; Hui, W.; Hai-Feng, Y.; Xin-Quan, R.; Yu-Bin, W.; Zhen-Yi, W. Pyrolysis mechanism of cyclohexane. Wuli Huaxue Xuebao, 2001, 17(4), 348-355.
[http://dx.doi.org/10.3866/PKU.WHXB20010414]
[207]
Murugesan, K.; Chang, Y.Y.; Kim, Y.M.; Jeon, J.R.; Kim, E.J.; Chang, Y.S. Enhanced transformation of triclosan by laccase in the presence of redox mediators. Water Res., 2010, 44(1), 298-308.
[http://dx.doi.org/10.1016/j.watres.2009.09.058] [PMID: 19854464]
[208]
Uchiyama, M. Transformation products of the urea herbicide dymron in soils. J. Pestic. Sci., 1984, 9(3), 433-442.
[http://dx.doi.org/10.1584/jpestics.9.433]
[209]
Amitai, G.; Adani, R.; Sod-Moriah, G.; Rabinovitz, I.; Vincze, A.; Leader, H.; Chefetz, B.; Leibovitz-Persky, L.; Friesem, D.; Hadar, Y. Oxidative biodegradation of phosphorothiolates by fungal laccase. FEBS Lett., 1998, 438(3), 195-200.
[http://dx.doi.org/10.1016/S0014-5793(98)01300-3] [PMID: 9827544]
[210]
Gangola, S.; Sharma, A.; Bhatt, P.; Khati, P.; Chaudhary, P. Presence of esterase and laccase in Bacillus subtilis facilitates biodegradation and detoxification of cypermethrin. Sci. Rep., 2018, 8(1), 12755.
[http://dx.doi.org/10.1038/s41598-018-31082-5] [PMID: 30143738]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy