Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Recent Advances in the Development of Nitrogen-containing Heterocyclic Anti-alzheimer’s Agents

Author(s): Ankur Kumar, Bhupender Nehra, Dilpreet Singh, Dileep Kumar and Pooja A. Chawla*

Volume 23, Issue 13, 2023

Published on: 08 November, 2022

Page: [1277 - 1306] Pages: 30

DOI: 10.2174/1568026623666221019152502

Price: $65

conference banner
Abstract

Alzheimer’s disease (AD) remains one of the major neurodegenerative diseases overwhelming the world today. Alzheimer’s is the most complicated as well as perplexing disease encountering serious global health issues. Alzheimer’s disease is well characterized as a general cause of dementia, which includes issues with memory, language, problem-solving, and other cognitive behaviours, such as disabled perception as well as trouble talking due to degeneration of neurons. According to the latest report, there are about 44 million individuals who are currently suffering from dementia, which has been prophesied to extensively grow up to 3-fold by 2050. Alzheimer’s disease is usually triggered by numerous associated factors, including depleted amount of acetylcholine (ACh), excessive aggregation of β-amyloid peptide (Aβ), tau hyperphosphorylation with neurofibrillary tangle formation as well as deposition of feeble plaques in a specific portion of the brain (hippocampus and cortex). Besides these superior factors, sometimes AD can be induced or become complex due to several reasons, such as inflammatory mechanisms and oxidative stress. Furthermore, heterocyclic scaffolds comprise assorted implications in the drug design and development process. Heterocycles have also elicited their evolving role as core scaffolds in numerous synthetic derivatives with potent anti-Alzheimer’s potential. There are only limited drugs that are present in the market to treat Alzheimer’s disease in an efficacious manner. Hence, the identification, design, and development of new anti-Alzheimer’s drugs are an emerging need to eradicate complex clinical indications associated with Alzheimer’s disease. This review aims to summarize various recent advancements in the medicinal chemistry of heterocycle-based compounds with the following objectives: (1) to represent inclusive literature reports describing the anti-Alzheimer’s potential of heterocyclic derivatives; (2) to cast light on recent advancements in the medicinal chemistry of heterocyclic compounds endowed with therapeutic potential against Alzheimer’s disease; (3) to summarize the comprehensive correlation of structure-activity relationship (SAR) with the pharmacological responses, including in silico and mechanistic studies to provide ideas related to design and development of lead molecules.

Keywords: Heterocycle, Anti-Alzheimer’s, Acetyl cholinesterase (AchE), Butyl cholinesterase (BuchE), Aβ aggregation, Neuroprotection, Docking.

« Previous
Graphical Abstract
[1]
Rosini, M.; Andrisano, V.; Bartolini, M.; Bolognesi, M.L.; Hrelia, P.; Minarini, A.; Tarozzi, A.; Melchiorre, C. Rational approach to discover multipotent anti-Alzheimer drugs. J. Med. Chem., 2005, 48(2), 360-363.
[http://dx.doi.org/10.1021/jm049112h] [PMID: 15658850]
[2]
Agrawal, M.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Chougule, M.B.; Shoyele, S.A.; Alexander, A. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J. Control. Release, 2018, 281, 139-177.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.011] [PMID: 29772289]
[3]
Rook, Y.; Schmidtke, K.U.; Gaube, F.; Schepmann, D.; Wünsch, B.; Heilmann, J.; Lehmann, J.; Winckler, T. Bivalent β-carbolines as potential multitarget anti-Alzheimer agents. J. Med. Chem., 2010, 53(9), 3611-3617.
[http://dx.doi.org/10.1021/jm1000024] [PMID: 20361801]
[4]
Congiu, C.; Cocco, M.T.; Onnis, V. Design, synthesis, and in vitro antitumor activity of new 1,4-diarylimidazole-2-ones and their 2-thione analogues. Bioorg. Med. Chem. Lett., 2008, 18(3), 989-993.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.023] [PMID: 18164978]
[5]
Huttner, A.; Verhaegh, E.M.; Harbarth, S.; Muller, A.E.; Theuretzbacher, U.; Mouton, J.W. Nitrofurantoin revisited: A systematic review and meta-analysis of controlled trials. J. Antimicrob. Chemother., 2015, 70(9), 2456-2464.
[http://dx.doi.org/10.1093/jac/dkv147] [PMID: 26066581]
[6]
Matias, M.; Silvestre, S.; Falcao, A.; Alves, G. Recent highlights on molecular hybrids potentially useful in central nervous system disorders. Mini Rev. Med. Chem., 2017, 17(6), 486-517.
[http://dx.doi.org/10.2174/1389557517666161111110121] [PMID: 27834131]
[7]
Fang, L.; Kraus, B.; Lehmann, J.; Heilmann, J.; Zhang, Y.; Decker, M. Design and synthesis of tacrine-ferulic acid hybrids as multipotent anti-Alzheimer drug candidates. Bioorg. Med. Chem. Lett., 2008, 18(9), 2905-2909.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.073] [PMID: 18406135]
[8]
Fang, L.; Appenroth, D.; Decker, M.; Kiehntopf, M.; Roegler, C.; Deufel, T.; Fleck, C.; Peng, S.; Zhang, Y.; Lehmann, J. Synthesis and biological evaluation of NO-donor-tacrine hybrids as hepatoprotective anti-Alzheimer drug candidates. J. Med. Chem., 2008, 51(4), 713-716.
[http://dx.doi.org/10.1021/jm701491k] [PMID: 18232655]
[9]
Economou, A.; Routsis, C.; Papageorgiou, S.G. Episodic memory in alzheimer disease, frontotemporal dementia, and dementia with lewy bodies/parkinson disease dementia: disentangling retrieval from consolidation. Alzheimer Dis. Assoc. Disord., 2016, 30(1), 47-52.
[http://dx.doi.org/10.1097/WAD.0000000000000089] [PMID: 25730300]
[10]
Viayna, E.; Sola, I.; Bartolini, M.; De Simone, A.; Tapia-Rojas, C.; Serrano, F.G.; Sabaté, R.; Juárez-Jiménez, J.; Pérez, B.; Luque, F.J.; Andrisano, V.; Clos, M.V.; Inestrosa, N.C.; Muñoz-Torrero, D. Synthesis and multitarget biological profiling of a novel family of rhein derivatives as disease-modifying anti-Alzheimer agents. J. Med. Chem., 2014, 57(6), 2549-2567.
[http://dx.doi.org/10.1021/jm401824w] [PMID: 24568372]
[11]
Messori, L.; Camarri, M.; Ferraro, T.; Gabbiani, C.; Franceschini, D. Promising in vitro anti-alzheimer properties for a ruthenium(III) complex. ACS Med. Chem. Lett., 2013, 4(3), 329-332.
[http://dx.doi.org/10.1021/ml3003567] [PMID: 24900669]
[12]
Oehlrich, D.; Berthelot, D.J.; Gijsen, H.J. γ-Secretase modulators as potential disease modifying anti-Alzheimer’s drugs. J. Med. Chem., 2011, 54(3), 669-698.
[http://dx.doi.org/10.1021/jm101168r] [PMID: 21141968]
[13]
Bartolini, M.; Bertucci, C.; Bolognesi, M.L.; Cavalli, A.; Melchiorre, C.; Andrisano, V. Insight into the kinetic of amyloid β (1-42) peptide self-aggregation: Elucidation of inhibitors’ mechanism of action. ChemBioChem, 2007, 8(17), 2152-2161.
[http://dx.doi.org/10.1002/cbic.200700427] [PMID: 17939148]
[14]
Knight, E.M.; Kim, S.H.; Kottwitz, J.C.; Hatami, A.; Albay, R.; Suzuki, A.; Lublin, A.; Alberini, C.M.; Klein, W.L.; Szabo, P.; Relkin, N.R.; Ehrlich, M.; Glabe, C.G.; Gandy, S.; Steele, J.W. Effective anti-Alzheimer Aβ therapy involves depletion of specific Aβ oligomer subtypes. Neurol. Neuroimmunol. Neuroinflamm., 2016, 3(3), e237.
[http://dx.doi.org/10.1212/NXI.0000000000000237] [PMID: 27218118]
[15]
Cole, S.L.; Vassar, R. The Alzheimer’s disease β-secretase enzyme, BACE1. Mol. Neurodegener., 2007, 2(1), 22.
[http://dx.doi.org/10.1186/1750-1326-2-22] [PMID: 18005427]
[16]
Piazzi, L.; Cavalli, A.; Colizzi, F.; Belluti, F.; Bartolini, M.; Mancini, F.; Recanatini, M.; Andrisano, V.; Rampa, A. Multi-target-directed coumarin derivatives: HAChE and BACE1 inhibitors as potential anti-Alzheimer compounds. Bioorg. Med. Chem. Lett., 2008, 18(1), 423-426.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.100] [PMID: 17998161]
[17]
Mariano, M.; Schmitt, C.; Miralinaghi, P.; Catto, M.; Hartmann, R.W.; Carotti, A.; Engel, M. First selective dual inhibitors of tau phosphorylation and Beta-amyloid aggregation, two major pathogenic mechanisms in Alzheimer’s disease. ACS Chem. Neurosci., 2014, 5(12), 1198-1202.
[http://dx.doi.org/10.1021/cn5001815] [PMID: 25247807]
[18]
Mao, J.J.; Katayama, S.; Watanabe, C.; Harada, Y.; Noda, K.; Yamamura, Y.; Nakamura, S. The relationship between alphaB-crystallin and neurofibrillary tangles in Alzheimer’s disease. Neuropathol. Appl. Neurobiol., 2001, 27(3), 180-188.
[http://dx.doi.org/10.1046/j.1365-2990.2001.00310.x] [PMID: 11489137]
[19]
Honjo, Y.; Ito, H.; Horibe, T.; Takahashi, R.; Kawakami, K. Protein disulfide isomerase-immunopositive inclusions in patients with Alzheimer disease. Brain Res., 2010, 1349, 90-96.
[http://dx.doi.org/10.1016/j.brainres.2010.06.016] [PMID: 20550946]
[20]
Honjo, Y.; Horibe, T.; Torisawa, A.; Ito, H.; Nakanishi, A.; Mori, H.; Komiya, T.; Takahashi, R.; Kawakami, K. Protein disulfide isomerase P5-immunopositive inclusions in patients with Alzheimer’s disease. J. Alzheimers Dis., 2014, 38(3), 601-609.
[http://dx.doi.org/10.3233/JAD-130632] [PMID: 24037032]
[21]
Dias Viegas, F.P.; de Freitas Silva, M.; Divino da Rocha, M.; Castelli, M.R.; Riquiel, M.M.; Machado, R.P.; Vaz, S.M.; Simões de Lima, L.M.; Mancini, K.C.; Marques de Oliveira, P.C.; Morais, É.P.; Gontijo, V.S.; da Silva, F.M.R.; D’Alincourt da Fonseca Peçanha, D.; Castro, N.G.; Neves, G.A.; Giusti-Paiva, A.; Vilela, F.C.; Orlandi, L.; Camps, I.; Veloso, M.P.; Leomil Coelho, L.F.; Ionta, M.; Ferreira-Silva, G.Á.; Pereira, R.M.; Dardenne, L.E.; Guedes, I.A.; de Oliveira Carneiro, Junior, W.; Quaglio Bellozi, P.M.; Pinheiro de Oliveira, A.C.; Ferreira, F.F.; Pruccoli, L.; Tarozzi, A.; Viegas, C., Jr. Design, synthesis and pharmacological evaluation of N-benzyl-piperidinyl-aryl-acylhydrazone derivatives as donepezil hybrids: Discovery of novel multi-target anti-alzheimer prototype drug candidates. Eur. J. Med. Chem., 2018, 147, 48-65.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.066] [PMID: 29421570]
[22]
Mayo Clinic. How Alzheimer's drugs help manage symptoms., 2022. Available from: https://www.mayoclinic.org/diseases-conditions/alzheimers-disease/in-depth/alzheimers/art-20048103 (Accessed on: 28 January 2022).
[23]
Kalaria, P.N.; Karad, S.C.; Raval, D.K. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur. J. Med. Chem., 2018, 158, 917-936.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.040] [PMID: 30261467]
[24]
Gupta, P. Synthesis of bioactive imidazoles: A Review. Chem. Sci. J., 2015, 6(2), 100091.
[http://dx.doi.org/10.4172/2150-3494.100091]
[25]
Nehra, B.; Rulhania, S.; Jaswal, S.; Kumar, B.; Singh, G.; Monga, V. Recent advancements in the development of bioactive pyrazoline derivatives. Eur. J. Med. Chem., 2020, 205, 112666.
[http://dx.doi.org/10.1016/j.ejmech.2020.112666] [PMID: 32795767]
[26]
Rulhania, S.; Kumar, S.; Nehra, B.; Gupta, G.; Monga, V. An insight into the medicinal perspective of synthetic analogs of imidazole. J. Mol. Struct., 2021, 1232, 129982.
[http://dx.doi.org/10.1016/j.molstruc.2021.129982]
[27]
Garg, V.; Maurya, R.K.; Thanikachalam, P.V.; Bansal, G.; Monga, V. An insight into the medicinal perspective of synthetic analogs of indole: A review. Eur. J. Med. Chem., 2019, 180, 562-612.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.019] [PMID: 31344615]
[28]
Saini, M.S.; Kumar, A.; Dwivedi, J.; Singh, R.A. Review: biological significances of heterocyclic compounds. Int. J. Pharm. Sci. Res., 2013, 4, 66-77.
[29]
Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of heterocyclic chemistry: a review. Int. J. Pharm. Sci. Res., 2012, 3, 2947-2954.
[30]
El-Naggar, M.; Almahli, H.; Ibrahim, H.S.; Eldehna, W.M.; Abdel-Aziz, H.A. Pyridine-ureas as potential anticancer agents: Synthesis and in vitro biological evaluation. Molecules, 2018, 23(6), 1459.
[http://dx.doi.org/10.3390/molecules23061459] [PMID: 29914120]
[31]
Mrozek-Wilczkiewicz, A.; Malarz, K.; Rejmund, M.; Polanski, J.; Musiol, R. Anticancer activity of the thiosemicarbazones that are based on di-2-pyridine ketone and quinoline moiety. Eur. J. Med. Chem., 2019, 171, 180-194.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.027] [PMID: 30921758]
[32]
Köprülü, T.K.; Ökten, S.; Tekin, Ş.; Çakmak, O. Biological evaluation of some quinoline derivatives with different functional groups as anticancer agents. J. Biochem. Mol. Toxicol., 2019, 33(3), e22260.
[http://dx.doi.org/10.1002/jbt.22260] [PMID: 30431695]
[33]
Zhang, J.; Wang, S.; Ba, Y.; Xu, Z. Tetrazole hybrids with potential anticancer activity. Eur. J. Med. Chem., 2019, 178, 341-351.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.071] [PMID: 31200236]
[34]
Huang, M.; Deng, Z.; Tian, J.; Liu, T. Synthesis and biological evaluation of salinomycin triazole analogues as anticancer agents. Eur. J. Med. Chem., 2017, 127, 900-908.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.067] [PMID: 27876192]
[35]
Wang, H.H.; Qiu, K.M.; Cui, H.E.; Yang, Y.S.; Yin-Luo; Xing, M.; Qiu, X.Y.; Bai, L.F.; Zhu, H.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives containing benzodioxole as potential anticancer agents. Bioorg. Med. Chem., 2013, 21(2), 448-455.
[http://dx.doi.org/10.1016/j.bmc.2012.11.020] [PMID: 23245802]
[36]
El-Feky, S.A.; Abd El-Samii, Z.K.; Osman, N.A.; Lashine, J.; Kamel, M.A.; Thabet, H. Kh. Synthesis, molecular docking and anti-inflammatory screening of novel quinoline incorporated pyrazole derivatives using the Pfitzinger reaction II. Bioorg. Chem., 2015, 58, 104-116.
[http://dx.doi.org/10.1016/j.bioorg.2014.12.003] [PMID: 25590381]
[37]
Abdelrahman, M.H.; Youssif, B.G.M.; Abdelgawad, M.A.; Abdelazeem, A.H.; Ibrahim, H.M.; Moustafa, A.E.G.A.; Treamblu, L.; Bukhari, S.N.A. Synthesis, biological evaluation, docking study and ulcerogenicity profiling of some novel quinoline-2-carboxamides as dual COXs/LOX inhibitors endowed with anti-inflammatory activity. Eur. J. Med. Chem., 2017, 127, 972-985.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.006] [PMID: 27837994]
[38]
Paprocka, R.; Wiese, M.; Eljaszewicz, A.; Helmin-Basa, A.; Gzella, A.; Modzelewska-Banachiewicz, B.; Michalkiewicz, J. Synthesis and anti-inflammatory activity of new 1,2,4-triazole derivatives. Bioorg. Med. Chem. Lett., 2015, 25(13), 2664-2667.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.079] [PMID: 25978961]
[39]
Zhang, H.J.; Wang, X.Z.; Cao, Q.; Gong, G.H.; Quan, Z.S. Design, synthesis, anti-inflammatory activity, and molecular docking studies of perimidine derivatives containing triazole. Bioorg. Med. Chem. Lett., 2017, 27(18), 4409-4414.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.014] [PMID: 28823493]
[40]
Khode, S.; Maddi, V.; Aragade, P.; Palkar, M.; Ronad, P.K.; Mamledesai, S.; Thippeswamy, A.H.; Satyanarayana, D. Synthesis and pharmacological evaluation of a novel series of 5-(substituted)aryl-3-(3-coumarinyl)-1-phenyl-2-pyrazolines as novel anti-inflamma-tory and analgesic agents. Eur. J. Med. Chem., 2009, 44(4), 1682-1688.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.020] [PMID: 18986738]
[41]
Angelova, V.T.; Rangelov, M.; Todorova, N.; Dangalov, M.; Andreeva-Gateva, P.; Kondeva-Burdina, M.; Karabeliov, V.; Shivachev, B.; Tchekalarova, J. Discovery of novel indole-based aroylhydrazones as anticonvulsants: Pharmacophore-based design. Bioorg. Chem., 2019, 90, 103028.
[http://dx.doi.org/10.1016/j.bioorg.2019.103028] [PMID: 31220672]
[42]
Dehestani, L.; Ahangar, N.; Hashemi, S.M.; Irannejad, H.; Honarchian Masihi, P.; Shakiba, A.; Emami, S. Design, synthesis, in vivo and in silico evaluation of phenacyl triazole hydrazones as new anticonvulsant agents. Bioorg. Chem., 2018, 78, 119-129.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.001] [PMID: 29550532]
[43]
Bhandari, S.; Tripathi, A.; Saraf, S. Novel 2-pyrazoline derivatives as potential anticonvulsant agents. Med. Chem. Res., 2013, 22(11), 5290-5296.
[http://dx.doi.org/10.1007/s00044-013-0530-7]
[44]
Kumar, G.; Siva Krishna, V.; Sriram, D.; Jachak, S.M. Pyrazole-coumarin and pyrazole-quinoline chalcones as potential antitubercular agents. Arch. Pharm. (Weinheim), 2020, 353(8), e2000077.
[http://dx.doi.org/10.1002/ardp.202000077] [PMID: 32484273]
[45]
Ramprasad, J.; Kumar Sthalam, V.; Linga Murthy Thampunuri, R.; Bhukya, S.; Ummanni, R.; Balasubramanian, S.; Pabbaraja, S. Synthesis and evaluation of a novel quinoline-triazole analogs for antitubercular properties via molecular hybridization approach. Bioorg. Med. Chem. Lett., 2019, 29(20), 126671.
[http://dx.doi.org/10.1016/j.bmcl.2019.126671] [PMID: 31526604]
[46]
Ali, M.A.; Shaharyar, M.; Siddiqui, A.A. Synthesis, structural activity relationship and anti-tubercular activity of novel pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42(2), 268-275.
[http://dx.doi.org/10.1016/j.ejmech.2006.08.004] [PMID: 17007966]
[47]
Gehrcke, M.; Sari, M.H.M.; Ferreira, L.M.; Barbieri, A.V.; Giuliani, L.M.; Prado, V.C.; Nadal, J.M.; Farago, P.V.; Nogueira, C.W.; Cruz, L. Nanocapsules improve indole-3-carbinol photostability and prolong its antinociceptive action in acute pain animal models. Eur. J. Pharm. Sci., 2018, 111, 133-141.
[http://dx.doi.org/10.1016/j.ejps.2017.09.050] [PMID: 28966097]
[48]
Kaplancikli, Z.A.; Turan-Zitouni, G.; Özdemir, A.; Can, O.; Chevallet, P. Synthesis and antinociceptive activities of some pyrazoline derivatives. Eur. J. Med. Chem., 2009, 44(6), 2606-2610.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.002] [PMID: 18922604]
[49]
Tantray, M.; Khan, I.; Hamid, H.; Alam, M.; Dhulap, A.; Kalam, A. Synthesis of benzimidazole-based 1,3,4-oxadiazole-1,2,3-triazole conjugates as glycogen synthase kinase-3β inhibitors with antidepressant activity in in vivo models. RSC Advances, 2016, 6(49), 43345-43355.
[http://dx.doi.org/10.1039/C6RA07273A]
[50]
Rajendra Prasad, Y.; Lakshmana Rao, A.; Prasoona, L.; Murali, K.; Ravi Kumar, P. Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazolines and 3-(2′'-hydroxy naphthalen-1′'-yl)-1,5-diphenyl-2-pyrazolines. Bioorg. Med. Chem. Lett., 2005, 15(22), 5030-5034.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.040] [PMID: 16168645]
[51]
Qin, H.L.; Liu, J.; Fang, W.Y.; Ravindar, L.; Rakesh, K.P. Indole-based derivatives as potential antibacterial activity against methicillin-resistance Staphylococcus aureus (MRSA). Eur. J. Med. Chem., 2020, 194, 112245.
[http://dx.doi.org/10.1016/j.ejmech.2020.112245] [PMID: 32220687]
[52]
Gao, F.; Wang, T.; Xiao, J.; Huang, G. Antibacterial activity study of 1,2,4-triazole derivatives. Eur. J. Med. Chem., 2019, 173, 274-281.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.043] [PMID: 31009913]
[53]
Sivakumar, P.M.; Ganesan, S.; Veluchamy, P.; Doble, M. Novel chalcones and 1,3,5-triphenyl-2-pyrazoline derivatives as antibacterial agents. Chem. Biol. Drug Des., 2010, 76(5), 407-411.
[http://dx.doi.org/10.1111/j.1747-0285.2010.01020.x] [PMID: 20925692]
[54]
Negi, B.; Poonan, P.; Ansari, M.F.; Kumar, D.; Aggarwal, S.; Singh, R.; Azam, A.; Rawat, D.S. Synthesis, antiamoebic activity and docking studies of metronidazole-triazole-styryl hybrids. Eur. J. Med. Chem., 2018, 150, 633-641.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.033] [PMID: 29558734]
[55]
Ansari, M.F.; Inam, A.; Ahmad, K.; Fatima, S.; Agarwal, S.M.; Azam, A. Synthesis of metronidazole based thiazolidinone analogs as promising antiamoebic agents. Bioorg. Med. Chem. Lett., 2020, 30(23), 127549.
[http://dx.doi.org/10.1016/j.bmcl.2020.127549] [PMID: 32927029]
[56]
Bhat, A.R.; Athar, F.; Azam, A. Bis-pyrazolines: Synthesis, characterization and antiamoebic activity as inhibitors of growth of Entamoeba histolytica. Eur. J. Med. Chem., 2009, 44(1), 426-431.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.005] [PMID: 18187238]
[57]
Luthra, T.; Nayak, A.K.; Bose, S.; Chakrabarti, S.; Gupta, A.; Sen, S. Indole based antimalarial compounds targeting the melatonin pathway: Their design, synthesis and biological evaluation. Eur. J. Med. Chem., 2019, 168, 11-27.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.019] [PMID: 30798050]
[58]
Acharya, B.N.; Saraswat, D.; Tiwari, M.; Shrivastava, A.K.; Ghorpade, R.; Bapna, S.; Kaushik, M.P. Synthesis and antimalarial evaluation of 1, 3, 5-trisubstituted pyrazolines. Eur. J. Med. Chem., 2010, 45(2), 430-438.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.023] [PMID: 19926176]
[59]
Wang, S.Q.; Wang, Y.F.; Xu, Z. Tetrazole hybrids and their antifungal activities. Eur. J. Med. Chem., 2019, 170, 225-234.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.023] [PMID: 30904780]
[60]
Özdemir, A.; Turan-Zitouni, G.; Kaplancikli, Z.A.; Revial, G.; Demirci, F. Işcan, G. Preparation of some pyrazoline derivatives and evaluation of their antifungal activities. J. Enzyme Inhib. Med. Chem., 2010, 25(4), 565-571.
[http://dx.doi.org/10.3109/14756360903373368] [PMID: 20205628]
[61]
Havrylyuk, D.; Zimenkovsky, B.; Karpenko, O.; Grellier, P.; Lesyk, R. Synthesis of pyrazoline-thiazolidinone hybrids with trypanocidal activity. Eur. J. Med. Chem., 2014, 85, 245-254.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.103] [PMID: 25089808]
[62]
Song, Y.L.; Tian, C.P.; Wu, Y.; Jiang, L.H.; Shen, L.Q. Design, synthesis and antitumor activity of steroidal pyridine derivatives based on molecular docking. Steroids, 2019, 143, 53-61.
[http://dx.doi.org/10.1016/j.steroids.2018.12.007] [PMID: 30590064]
[63]
Amin, K.M.; Eissa, A.A.; Abou-Seri, S.M.; Awadallah, F.M.; Hassan, G.S. Synthesis and biological evaluation of novel coumarin-pyrazoline hybrids endowed with phenylsulfonyl moiety as antitumor agents. Eur. J. Med. Chem., 2013, 60, 187-198.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.004] [PMID: 23291120]
[64]
Abdelhafez, O.M.; Amin, K.M.; Ali, H.I.; Abdalla, M.M.; Batran, R.Z. Synthesis of new 7-oxycoumarin derivatives as potent and selective monoamine oxidase A inhibitors. J. Med. Chem., 2012, 55(23), 10424-10436.
[http://dx.doi.org/10.1021/jm301014y] [PMID: 23153282]
[65]
Tzvetkov, N.T.; Hinz, S.; Küppers, P.; Gastreich, M.; Müller, C.E. Indazole- and indole-5-carboxamides: Selective and reversible monoamine oxidase B inhibitors with subnanomolar potency. J. Med. Chem., 2014, 57(15), 6679-6703.
[http://dx.doi.org/10.1021/jm500729a] [PMID: 24955776]
[66]
Vishnu Nayak, B.; Ciftci-Yabanoglu, S.; Jadav, S.S.; Jagrat, M.; Sinha, B.N.; Ucar, G.; Jayaprakash, V. Monoamine oxidase inhibitory activity of 3,5-biaryl-4,5-dihydro-1H-pyrazole-1-carboxylate derivatives. Eur. J. Med. Chem., 2013, 69, 762-767.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.010] [PMID: 24099995]
[67]
Zhan, Z.J.; Yu, Q.; Wang, Z.L.; Shan, W.G. Indole alkaloids from Ervatamia hainanensis with potent acetylcholinesterase inhibition activities. Bioorg. Med. Chem. Lett., 2010, 20(21), 6185-6187.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.123] [PMID: 20850311]
[68]
Nepovimova, E.; Uliassi, E.; Korabecny, J.; Peña-Altamira, L.E.; Samez, S.; Pesaresi, A.; Garcia, G.E.; Bartolini, M.; Andrisano, V.; Bergamini, C.; Fato, R.; Lamba, D.; Roberti, M.; Kuca, K.; Monti, B.; Bolognesi, M.L. Multitarget drug design strategy: Quinone-tacrine hybrids designed to block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects. J. Med. Chem., 2014, 57(20), 8576-8589.
[http://dx.doi.org/10.1021/jm5010804] [PMID: 25259726]
[69]
Ovais, S.; Pushpalatha, H.; Reddy, G.B.; Rathore, P.; Bashir, R.; Yaseen, S.; Dheyaa, A.; Yaseen, R.; Tanwar, O.; Akthar, M.; Samim, M.; Javed, K. Synthesis and biological evaluation of some new pyrazoline substituted benzenesulfonylurea/thiourea derivatives as anti-hyperglycaemic agents and aldose reductase inhibitors. Eur. J. Med. Chem., 2014, 80, 209-217.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.046] [PMID: 24780598]
[70]
Singh, P.; Swain, B.; Thacker, P.S.; Sigalapalli, D.K.; Purnachander Yadav, P.; Angeli, A.; Supuran, C.T.; Arifuddin, M. Synthesis and carbonic anhydrase inhibition studies of sulfonamide based indole-1,2,3-triazole chalcone hybrids. Bioorg. Chem., 2020, 99, 103839.
[http://dx.doi.org/10.1016/j.bioorg.2020.103839] [PMID: 32289586]
[71]
Khloya, P.; Ceruso, M.; Ram, S.; Supuran, C.T.; Sharma, P.K. Sulfonamide bearing pyrazolylpyrazolines as potent inhibitors of carbonic anhydrase isoforms I, II, IX and XII. Bioorg. Med. Chem. Lett., 2015, 25(16), 3208-3212.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.096] [PMID: 26105196]
[72]
El-Sherief, H.A.M.; Youssif, B.G.M.; Abbas Bukhari, S.N.; Abdelazeem, A.H.; Abdel-Aziz, M.; Abdel-Rahman, H.M. Synthesis, anticancer activity and molecular modeling studies of 1,2,4-triazole derivatives as EGFR inhibitors. Eur. J. Med. Chem., 2018, 156, 774-789.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.024] [PMID: 30055463]
[73]
Lv, P.C.; Li, D.D.; Li, Q.S.; Lu, X.; Xiao, Z.P.; Zhu, H.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives as EGFR TK inhibitors and potential anticancer agents. Bioorg. Med. Chem. Lett., 2011, 21(18), 5374-5377.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.010] [PMID: 21802290]
[74]
Cooper, A.G.; MacDonald, C.; Glass, M.; Hook, S.; Tyndall, J.D.A.; Vernall, A.J. Alkyl indole-based cannabinoid type 2 receptor tools: Exploration of linker and fluorophore attachment. Eur. J. Med. Chem., 2018, 145, 770-789.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.076] [PMID: 29407590]
[75]
Kumar, R.S.; Almansour, A.I.; Arumugam, N.; Kotresha, D.; Manohar, T.S.; Venketesh, S. Cholinesterase inhibitory activity of highly functionalized fluorinated spiropyrrolidine heterocyclic hybrids. Saudi J. Biol. Sci., 2021, 28(1), 754-761.
[http://dx.doi.org/10.1016/j.sjbs.2020.11.005] [PMID: 33424364]
[76]
Almansour, A.I.; Arumugam, N.; Kumar, R.S.; Kotresha, D.; Manohar, T.S.; Venketesh, S. Design, synthesis and cholinesterase inhibitory activity of novel spiropyrrolidine tethered imidazole heterocyclic hybrids. Bioorg. Med. Chem. Lett., 2020, 30(2), 126789.
[http://dx.doi.org/10.1016/j.bmcl.2019.126789] [PMID: 31753696]
[77]
Mishra, C.B.; Gusain, S.; Shalini, S.; Kumari, S.; Prakash, A.; Kumari, N.; Yadav, A.K.; Kumari, J.; Kumar, K.; Tiwari, M. Development of novel carbazole derivatives with effective multifunctional action against Alzheimer’s diseases: Design, synthesis, in silico, in vitro and in vivo investigation. Bioorg. Chem., 2020, 95, 103524.
[http://dx.doi.org/10.1016/j.bioorg.2019.103524] [PMID: 31918396]
[78]
Patel, D.V.; Patel, N.R.; Kanhed, A.M.; Teli, D.M.; Patel, K.B.; Joshi, P.D.; Patel, S.P.; Gandhi, P.M.; Chaudhary, B.N.; Prajapati, N.K.; Patel, K.V.; Yadav, M.R. Novel carbazole-stilbene hybrids as multifunctional anti-Alzheimer agents. Bioorg. Chem., 2020, 101, 103977.
[http://dx.doi.org/10.1016/j.bioorg.2020.103977] [PMID: 32485470]
[79]
Kumar, R.S.; Almansour, A.I.; Arumugam, N.; Althomili, D.M.Q.; Altaf, M.; Basiri, A.; D, K.; Sai Manohar, T.; S,, V. Ionic liquid-enabled synthesis, cholinesterase inhibitory activity, and molecular docking study of highly functionalized tetrasubstituted pyrrolidines. Bioorg. Chem., 2018, 77, 263-268.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.019] [PMID: 29421701]
[80]
Arumugam, N.; Almansour, A.I.; Suresh Kumar, R.; Altaf, M.; Padmanaban, R.; Sureshbabu, P.; Angamuthu, G.; Kotresha, D.; Manohar, T.S.; Venketesh, S. Spiropyrrolidine/spiroindolizino[6,7-b]indole heterocyclic hybrids: Stereoselective synthesis, cholinesterase inhibitory activity and their molecular docking study. Bioorg. Chem., 2018, 79, 64-71.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.025] [PMID: 29723743]
[81]
Munir, R.; Zia-Ur-Rehman, M.; Murtaza, S.; Zaib, S.; Javid, N.; Awan, S.J.; Iftikhar, K.; Athar, M.M.; Khan, I. Microwave-Assisted Synthesis of (Piperidin-1-yl)quinolin-3-yl)methylene)hydrazinecarbothioamides as potent inhibitors of cholinesterases: A biochemical and in silico approach. Molecules, 2021, 26(3), 656.
[http://dx.doi.org/10.3390/molecules26030656] [PMID: 33513837]
[82]
Ragab, H.M.; Teleb, M.; Haidar, H.R.; Gouda, N. Chlorinated tacrine analogs: Design, synthesis and biological evaluation of their anti-cholinesterase activity as potential treatment for Alzheimer’s disease. Bioorg. Chem., 2019, 86, 557-568.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.033] [PMID: 30782574]
[83]
Zhang, X.; Wang, Y.; Wang, S.; Chen, Q.; Tu, Y.; Yang, X.; Chen, J.; Yan, J.; Pi, R.; Wang, Y. Discovery of a novel multifunctional carbazole–aminoquinoline dimer for Alzheimer’s disease: Copper selective chelation, anti-amyloid aggregation, and neuroprotection. Med. Chem. Res., 2017, 27(3), 777-784.
[http://dx.doi.org/10.1007/s00044-017-2101-9]
[84]
Hussein, W.; Sağlık, B.N.; Levent, S.; Korkut, B.; Ilgın, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis and biological evaluation of new cholinesterase inhibitors for Alzheimer’s Disease. Molecules, 2018, 23(8), 2033.
[http://dx.doi.org/10.3390/molecules23082033] [PMID: 30110946]
[85]
Duarte, L.; Barbosa, E.; Oliveira, R.; Pinz, M.; Godoi, B.; Schumacher, R.; Luchese, C.; Wilhelm, E.A.; Alves, D. A simple method for the synthesis of 4-arylselanyl-7-chloroquinolines used as in vitro acetylcholinesterase inhibitors and in vivo memory improvement. Tetrahedron Lett., 2017, 58(33), 3319-3322.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.039]
[86]
Reddy, E.K.; Remya, C.; Mantosh, K.; Sajith, A.M.; Omkumar, R.V.; Sadasivan, C.; Anwar, S. Novel tacrine derivatives exhibiting improved acetylcholinesterase inhibition: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2017, 139, 367-377.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.013] [PMID: 28810188]
[87]
Eghtedari, M.; Sarrafi, Y.; Nadri, H.; Mahdavi, M.; Moradi, A.; Homayouni Moghadam, F.; Emami, S.; Firoozpour, L.; Asadipour, A.; Sabzevari, O.; Foroumadi, A. New tacrine-derived AChE/BuChE inhibitors: Synthesis and biological evaluation of 5-amino-2-phenyl-4H-pyrano[2,3-b]quinoline-3-carboxylates. Eur. J. Med. Chem., 2017, 128, 237-246.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.042] [PMID: 28189905]
[88]
Xia, C.L.; Wang, N.; Guo, Q.L.; Liu, Z.Q.; Wu, J.Q.; Huang, S.L.; Ou, T.M.; Tan, J.H.; Wang, H.G.; Li, D.; Huang, Z.S. Design, synthesis and evaluation of 2-arylethenyl-N-methylquinolinium derivatives as effective multifunctional agents for Alzheimer’s disease treatment. Eur. J. Med. Chem., 2017, 130, 139-153.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.042] [PMID: 28242549]
[89]
Le-Nhat-Thuy, G.; Nguyen Thi, N.; Pham-The, H.; Dang Thi, T.A.; Nguyen Thi, H.; Nguyen Thi, T.H.; Nguyen Hoang, S.; Nguyen, T.V. Synthesis and biological evaluation of novel quinazoline-triazole hybrid compounds with potential use in Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2020, 30(18), 127404.
[http://dx.doi.org/10.1016/j.bmcl.2020.127404] [PMID: 32717612]
[90]
Sarfaraz, M.; Sultana, N.; Jamil, M.; Ilyas Tariq, M. Synthesis, in silico study and cholinesterases inhibition activity of 2-substituted 2,3-dihydroquinazolin-4(1H)-one derivatives. Rev. Roum. Chim., 2018, 63(3), 227-234.
[91]
Sultana, N.; Sarfraz, M.; Tanoli, S.T.; Akram, M.S.; Sadiq, A.; Rashid, U.; Tariq, M.I. Synthesis, crystal structure determination, biological screening and docking studies of N1-substituted derivatives of 2,3-dihydroquinazolin-4(1H)-one as inhibitors of cholinesterases. Bioorg. Chem., 2017, 72, 256-267.
[http://dx.doi.org/10.1016/j.bioorg.2017.04.009] [PMID: 28495556]
[92]
Mohamed, T.; Rao, P.P.N. 2,4-Disubstituted quinazolines as amyloid-β aggregation inhibitors with dual cholinesterase inhibition and antioxidant properties: Development and structure-activity relationship (SAR) studies. Eur. J. Med. Chem., 2017, 126, 823-843.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.005] [PMID: 27951490]
[93]
Sarfaraz, M.; Rashid, U.; Sultana, N.; Ilyas Tariq, M. Synthesis, X-Rays analysis, docking study and cholinesterase inhibition activity of 2,3-dihydroquinazolin-4(1H)-one derivatives. Iran. J. Chem. Chem. Eng., 2019, 38(6), 213-227.
[94]
Reddy, M.V.K.; Rao, K.Y.; Anusha, G.; Kumar, G.M.; Damu, A.G.; Reddy, K.R.; Shetti, N.P.; Aminabhavi, T.M.; Reddy, P.V.G. In-vitro evaluation of antioxidant and anticholinesterase activities of novel pyridine, quinoxaline and s-triazine derivatives. Environ. Res., 2021, 199, 111320.
[http://dx.doi.org/10.1016/j.envres.2021.111320] [PMID: 33991570]
[95]
Kumar Jain, A.; Gupta, A.; Karthikeyan, C.; Trivedi, P.; Dutt Konar, A. Unravelling the selectivity of 6,7-dimethyl quinoxaline analogs for kinase inhibition: an insight towards the development of alzheimer’s therapeutics. Chem. Biodivers., 2021, 18(11), e2100364.
[http://dx.doi.org/10.1002/cbdv.202100364] [PMID: 34486216]
[96]
Arumugam, N.; Almansour, A.I.; Kumar, R.S.; Kotresha, D.; Saiswaroop, R.; Venketesh, S. Dispiropyrrolidinyl-piperidone embedded indeno[1,2-b]quinoxaline heterocyclic hybrids: Synthesis, cholinesterase inhibitory activity and their molecular docking simulation. Bioorg. Med. Chem., 2019, 27(12), 2621-2628.
[http://dx.doi.org/10.1016/j.bmc.2019.03.058] [PMID: 30952387]
[97]
Akondi, A.; Mekala, S.; Kantam, M.; Trivedi, R.; Raju Chowhan, L.; Das, A. An expedient microwave assisted regio- and stereoselective synthesis of spiroquinoxaline pyrrolizine derivatives and their AChE inhibitory activity. New J. Chem., 2017, 41(2), 873-878.
[http://dx.doi.org/10.1039/C6NJ02869A]
[98]
Saeedi, M.; Mohtadi-Haghighi, D.; Mirfazli, S.S.; Mahdavi, M.; Hariri, R.; Lotfian, H.; Edraki, N.; Iraji, A.; Firuzi, O.; Akbarzadeh, T. Design and synthesis of selective acetylcholinesterase inhibitors: arylisoxazole-phenylpiperazine derivatives. Chem. Biodivers., 2019, 16(2), e1800433.
[http://dx.doi.org/10.1002/cbdv.201800433] [PMID: 30460743]
[99]
Sari, S.; Yilmaz, M. Acetylcholinesterase inhibition, molecular docking and ADME prediction studies of new dihydrofuran-piperazine hybrid compounds. Med. Chem. Res., 2021, 30, 2114-2126.
[http://dx.doi.org/10.21203/rs.3.rs-588104/v1]
[100]
Mishra, C.B.; Kumari, S.; Manral, A.; Prakash, A.; Saini, V.; Lynn, A.M.; Tiwari, M. Design, synthesis, in-silico and biological evaluation of novel donepezil derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 125, 736-750.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.057] [PMID: 27721157]
[101]
Sameem, B.; Saeedi, M.; Mahdavi, M.; Nadri, H.; Moghadam, F.H.; Edraki, N.; Khan, M.I.; Amini, M. Synthesis, docking study and neuroprotective effects of some novel pyrano[3,2-c]chromene derivatives bearing morpholine/phenylpiperazine moiety. Bioorg. Med. Chem., 2017, 25(15), 3980-3988.
[http://dx.doi.org/10.1016/j.bmc.2017.05.043] [PMID: 28587871]
[102]
Panek, D.; Więckowska, A.; Wichur, T.; Bajda, M.; Godyń, J.; Jończyk, J.; Mika, K.; Janockova, J.; Soukup, O.; Knez, D.; Korabecny, J.; Gobec, S.; Malawska, B. Design, synthesis and biological evaluation of new phthalimide and saccharin derivatives with alicyclic amines targeting cholinesterases, beta-secretase and amyloid beta aggregation. Eur. J. Med. Chem., 2017, 125, 676-695.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.078] [PMID: 27721153]
[103]
Zhang, P.; Jiang, M.Y.; Le, M.L.; Zhang, B.; Zhou, Q.; Wu, Y.; Zhang, C.; Luo, H.B. Design, synthesis and evaluation of pyrazolopyrimidinone derivatives as novel PDE9A inhibitors for treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2020, 30(14), 127254.
[http://dx.doi.org/10.1016/j.bmcl.2020.127254] [PMID: 32527553]
[104]
Xu, Y.; Zhang, Z.; Jiang, X.; Chen, X.; Wang, Z.; Alsulami, H.; Qin, H.L.; Tang, W. Discovery of δ-sultone-fused pyrazoles for treating Alzheimer’s disease: Design, synthesis, biological evaluation and SAR studies. Eur. J. Med. Chem., 2019, 181, 111598.
[http://dx.doi.org/10.1016/j.ejmech.2019.111598] [PMID: 31415981]
[105]
Derabli, C.; Boualia, I.; Abdelwahab, A.B.; Boulcina, R.; Bensouici, C.; Kirsch, G.; Debache, A. A cascade synthesis, in vitro cholinesterases inhibitory activity and docking studies of novel Tacrine-pyranopyrazole derivatives. Bioorg. Med. Chem. Lett., 2018, 28(14), 2481-2484.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.063] [PMID: 29887354]
[106]
Yamali, C.; Gul, H.I.; Ece, A.; Taslimi, P.; Gulcin, I. Synthesis, molecular modeling, and biological evaluation of 4-[5-aryl-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl] benzenesulfonamides toward acetylcholinesterase, carbonic anhydrase I and II enzymes. Chem. Biol. Drug Des., 2018, 91(4), 854-866.
[http://dx.doi.org/10.1111/cbdd.13149] [PMID: 29143485]
[107]
Jalili-Baleh, L.; Nadri, H.; Moradi, A.; Bukhari, S.N.A.; Shakibaie, M.; Jafari, M.; Golshani, M.; Homayouni Moghadam, F.; Firoozpour, L.; Asadipour, A.; Emami, S.; Khoobi, M.; Foroumadi, A. New racemic annulated pyrazolo[1,2-b]phthalazines as tacrine-like AChE inhibitors with potential use in Alzheimer’s disease. Eur. J. Med. Chem., 2017, 139, 280-289.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.072] [PMID: 28803044]
[108]
de Candia, M.; Zaetta, G.; Denora, N.; Tricarico, D.; Majellaro, M.; Cellamare, S.; Altomare, C.D. New azepino[4,3-b]indole derivatives as nanomolar selective inhibitors of human butyrylcholinesterase showing protective effects against NMDA-induced neurotoxicity. Eur. J. Med. Chem., 2017, 125, 288-298.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.037] [PMID: 27688184]
[109]
Purgatorio, R.; de Candia, M.; Catto, M.; Carrieri, A.; Pisani, L.; De Palma, A.; Toma, M.; Ivanova, O.A.; Voskressensky, L.G.; Altomare, C.D. Investigating 1,2,3,4,5,6-hexahydroazepino[4,3-b]indole as scaffold of butyrylcholinesterase-selective inhibitors with additional neuroprotective activities for Alzheimer’s disease. Eur. J. Med. Chem., 2019, 177, 414-424.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.062] [PMID: 31158754]
[110]
Hroch, L.; Guest, P.; Benek, O.; Soukup, O.; Janockova, J.; Dolezal, R.; Kuca, K.; Aitken, L.; Smith, T.K.; Gunn-Moore, F.; Zala, D.; Ramsay, R.R.; Musilek, K. Synthesis and evaluation of frentizole-based indolyl thiourea analogues as MAO/ABAD inhibitors for Alzheimer’s disease treatment. Bioorg. Med. Chem., 2017, 25(3), 1143-1152.
[http://dx.doi.org/10.1016/j.bmc.2016.12.029] [PMID: 28082069]
[111]
Tarazi, H.; Odeh, R.A.; Al-Qawasmeh, R.; Yousef, I.A.; Voelter, W.; Al-Tel, T.H. Design, synthesis and SAR analysis of potent BACE1 inhibitors: Possible lead drug candidates for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 125, 1213-1224.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.021] [PMID: 27871037]
[112]
Pal, T.; Bhimaneni, S.; Sharma, A.; Flora, S.J.S. Design, synthesis, biological evaluation and molecular docking study of novel pyridoxine-triazoles as anti-Alzheimer’s agents. RSC Advances, 2020, 10(44), 26006-26021.
[http://dx.doi.org/10.1039/D0RA04942E] [PMID: 35519785]
[113]
Dalvi, T.; Dewangan, B.; Agarwal, G.; Shinde Suchita, D.; Jain, A.; Srivastava, A.; Sahu, B. Design, synthesis and in-vitro evaluation of fluorinated triazoles as multi-target directed ligands for Alzheimer disease. Bioorg. Med. Chem. Lett., 2021, 42, 127999.
[http://dx.doi.org/10.1016/j.bmcl.2021.127999] [PMID: 33839248]
[114]
Saeedi, M.; Maleki, A.; Iraji, A.; Hariri, R.; Akbarzadeh, T.; Edraki, N.; Firuzi, O.; Mirfazli, S.S. Synthesis and bio-evaluation of new multifunctional methylindolinone-1,2,3-triazole hybrids as anti-Alzheimer’s agents. J. Mol. Struct., 2021, 1229, 129828.
[http://dx.doi.org/10.1016/j.molstruc.2020.129828]
[115]
Kaur, A.; Mann, S.; Kaur, A.; Priyadarshi, N.; Goyal, B.; Singhal, N.K.; Goyal, D. Multi-target-directed triazole derivatives as promising agents for the treatment of Alzheimer’s disease. Bioorg. Chem., 2019, 87, 572-584.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.058] [PMID: 30928879]
[116]
Arfan, M.; Siddiqui, S.Z.; Abbasi, M.A.; Rehman, A.; Shah, S.A.A.; Ashraf, M.; Rehman, J.; Saleem, R.S.Z.; Khalid, H.; Hussain, R.; Khan, U. Synthesis, in vitro and in silico studies of S-alkylated 5-(4-methoxyphenyl)-4-phenyl-4H-1,2,4-triazole-3-thiols as cholinesterase inhibitors. Pak. J. Pharm. Sci., 2018, 31(6)(Suppl.), 2697-2708.
[PMID: 30587482]
[117]
Zribi, L.; Pachòn-Angona, I.; Bautista-Aguilera, Ò.M.; Diez-Iriepa, D.; Marco-Contelles, J.; Ismaili, L.; Iriepa, I.; Chabchoub, F. Triazolopyridopyrimidine: A new scaffold for dual-target small molecules for Alzheimer’s disease therapy. Molecules, 2020, 25(14), 3190.
[http://dx.doi.org/10.3390/molecules25143190] [PMID: 32668671]
[118]
Kumar, B.; Kumar, V.; Prashar, V.; Saini, S.; Dwivedi, A.R.; Bajaj, B.; Mehta, D.; Parkash, J.; Kumar, V. Dipropargyl substituted diphenylpyrimidines as dual inhibitors of monoamine oxidase and acetylcholinesterase. Eur. J. Med. Chem., 2019, 177, 221-234.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.039] [PMID: 31151057]
[119]
Rehman, T.U.; Khan, I.U.; Ashraf, M.; Tarazi, H.; Riaz, S.; Yar, M. An efficient synthesis of bi-aryl pyrimidine heterocycles: Potential new drug candidates to treat Alzheimer’s disease. Arch. Pharm. (Weinheim), 2017, 350(3-4), 1600304.
[http://dx.doi.org/10.1002/ardp.201600304] [PMID: 28220522]
[120]
Polo, E.; Prent-Peñaloza, L.; Núñez, Y.; Valdés-Salas, L.; Trilleras, J.; Ramos, J.; Henao, J.A.; Galdámez, A.; Morales-Bayuelo, A.; Gutiérrez, M. Microwave-assisted synthesis, biological assessment, and molecular modeling of aza-heterocycles: Potential inhibitory capacity of cholinergic enzymes to Alzheimer’s disease. J. Mol. Struct., 2021, 1224, 129307.
[http://dx.doi.org/10.1016/j.molstruc.2020.129307]
[121]
Saeedi, M.; Felegari, P.; Iraji, A.; Hariri, R.; Rastegari, A.; Mirfazli, S.S.; Edraki, N.; Firuzi, O.; Mahdavi, M.; Akbarzadeh, T. Novel N-benzylpiperidine derivatives of 5-arylisoxazole-3-carboxamides as anti-Alzheimer’s agents. Arch. Pharm. (Weinheim), 2021, 354(3), e2000258.
[http://dx.doi.org/10.1002/ardp.202000258] [PMID: 33226157]
[122]
Azimi, S.; Zonouzi, A.; Firuzi, O.; Iraji, A.; Saeedi, M.; Mahdavi, M.; Edraki, N. Discovery of imidazopyridines containing isoindoline-1,3-dione framework as a new class of BACE1 inhibitors: Design, synthesis and SAR analysis. Eur. J. Med. Chem., 2017, 138, 729-737.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.040] [PMID: 28728105]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy