Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Stereoscopic Differences in the Identification, Bioactivity, and Metabolism of C-20 and C-24 Epimeric Ginseng Saponins

Author(s): Juan Zhang, Ruolin Zhao, Guige Hou*, Qibao Wang, Fenglan Zhao, Zhi Liu* and Qingguo Meng*

Volume 23, Issue 7, 2023

Published on: 07 November, 2022

Page: [804 - 820] Pages: 17

DOI: 10.2174/1389557522666221012095258

Price: $65

conference banner
Abstract

Ginseng, the roots and/or rhizomes of Panax spp.(Araliaceae), has been used as a popular herbal medicine in East Asia for at least two millennia. As a functional food and healthenhancing supplement, ginseng has been shown to have a wide range of pharmacological effects on cognition and blood circulation as well as antioxidant, antitumor, and anti-fatigue effects. The main active properties of ginseng are considered to be the triterpene saponins, often referred to as ginsenosides, which are the basis for their wide-ranging pharmacological effects. Four of these glycosides, including protopanaxadiol, protopanaxatriol, ocotillol, and oleanolic acid, are the most common saponins found in ginseng. Compared to other ginsenosides, the C-20 chimeric ginsenosides, including Rg3, Rh2, Rg2, Rh1, PF11, C-20, and C-24, as well as epimeric ocotillol-type saponins and their derivatives exhibit significant, steric differences in biological activity and metabolism. 20(R)-ginseng saponins, one class of important rare ginsenosides, have antitumor, antioxidative, antifatigue, neuroprotective and osteoclastogenesis inhibitory effects. However, 20(R)- ginsenosides are rare in natural products and are usually prepared from 20(S)-isomers through chemical differential isomerization and microbial transformation. The C20 configuration of 20(R)-ginseng saponins is usually determined by 13C NMR and X-ray single-crystal diffraction. There are regular differences in the chemical shift values of some of the carbons of the 20(S)- and 20(R)-epimers, including C-17, C-21, and C-22. Owing to their chemical structure and pharmacological and stereoselective properties, 20(R)-ginseng saponins have attracted a great deal of attention in recent years. Herein, the stereoscopic differences in the identification, bioactivity, and metabolism of C-20 and C-24 epimeric ginseng saponins are summarized.

Keywords: Saponin, epimer, identification, bioactivity, metabolism, stereoscopic difference.

Graphical Abstract
[1]
Li, G.; Cui, Y.; Wang, H.; Kwon, W.S.; Yang, D.C. Molecular differentiation of Russian wild ginseng using mitochondrial nad 7 intron 3 region. J. Ginseng Res., 2017, 41(3), 326-329.
[http://dx.doi.org/10.1016/j.jgr.2016.06.003] [PMID: 28701873]
[2]
Wang, X.D.; Su, G.Y.; Zhao, C.; Qu, F.Z.; Wang, P.; Zhao, Y.Q. Anticancer activity and potential mechanisms of 1C, a ginseng saponin derivative, on prostate cancer cells. J. Ginseng Res., 2018, 42(2), 133-143.
[http://dx.doi.org/10.1016/j.jgr.2016.12.014] [PMID: 29719459]
[3]
Bi, Y.; Ma, C.; Zhou, Z.W.; Zhang, T.T.; Zhang, H.Y.; Zhang, X.C.; Lu, J.; Meng, Q.G.; Lewis, P.J.; Xu, J.Y. Synthesis and antibacterial evaluation of novel hydrophilic ocotillol-type triterpenoid derivatives from 20(S)-protopanaxadiol Rec. Nat. Prod., 2015, 9, 365-368.
[4]
Lee, K.H.; Bae, I.Y.; Park, S.I.; Park, J.D.; Lee, H.G. Antihypertensive effect of Korean Red Ginseng by enrichment of ginsenoside Rg3 and arginine–fructose. J. Ginseng Res., 2016, 40(3), 237-244.
[http://dx.doi.org/10.1016/j.jgr.2015.08.002] [PMID: 27616899]
[5]
Yang, Y.; Lee, J.; Rhee, M.H.; Yu, T.; Baek, K.S.; Sung, N.Y.; Kim, Y.; Yoon, K.; Kim, J.H.; Kwak, Y.S.; Hong, S.; Kim, J.H.; Cho, J.Y. Molecular mechanism of protopanaxadiol saponin fraction-mediated anti-inflammatory actions. J. Ginseng Res., 2015, 39(1), 61-68.
[http://dx.doi.org/10.1016/j.jgr.2014.06.002] [PMID: 25535478]
[6]
Song, Y.; Zhao, F.; Zhang, L.; Du, Y.; Wang, T.; Fu, F. Ginsenoside Rg1 exerts synergistic anti-inflammatory effects with low doses of glucocorticoids in vitro. Fitoterapia, 2013, 91, 173-179.
[http://dx.doi.org/10.1016/j.fitote.2013.09.001] [PMID: 24035860]
[7]
Gan, L.; Wang, Z.; Zhang, H.; Zhou, X.; Zhou, H.; Sun, C.; Si, J.; Zhou, R.; Ma, C.; Li, J. Endothelium-independent vasorelaxant effect of 20(S)-protopanaxadiol on isolated rat thoracic aorta. Acta Pharmacol. Sin., 2016, 37(12), 1555-1562.
[http://dx.doi.org/10.1038/aps.2016.74] [PMID: 27616575]
[8]
Qi, L.W.; Wang, C.Z.; Yuan, C.S. Isolation and analysis of ginseng: Advances and challenges. Nat. Prod. Rep., 2011, 28(3), 467-495.
[http://dx.doi.org/10.1039/c0np00057d] [PMID: 21258738]
[9]
Wang, C.; Liu, J.; Deng, J.; Wang, J.; Weng, W.; Chu, H.; Meng, Q. Advances in the chemistry, pharmacological diversity, and metabolism of 20(R)-ginseng saponins. J. Ginseng Res., 2020, 44(1), 14-23.
[http://dx.doi.org/10.1016/j.jgr.2019.01.005] [PMID: 32095093]
[10]
Liu, J.; Xu, Y.; Yang, J.; Wang, W.; Zhang, J.; Zhang, R.; Meng, Q. Discovery, semisynthesis, biological activities, and metabolism of ocotillol-type saponins. J. Ginseng Res., 2017, 41(3), 373-378.
[http://dx.doi.org/10.1016/j.jgr.2017.01.001] [PMID: 28701880]
[11]
Zhu, S.; Zou, K.; Cai, S.; Meselhy, M.R.; Komatsu, K. Simultaneous determination of triterpene saponins in ginseng drugs by high-performance liquid chromatography. Chem. Pharm. Bull., 2004, 52(8), 995-998.
[http://dx.doi.org/10.1248/cpb.52.995] [PMID: 15305000]
[12]
Wang, J.; Wang, H.; Mou, X.; Luan, M.; Zhang, X.; He, X.; Zhao, F.; Meng, Q. The Advances on the protective effects of ginsenosides on myocardial ischemia and ischemia-reperfusion injury. Mini Rev. Med. Chem., 2020, 20(16), 1610-1618.
[http://dx.doi.org/10.2174/1389557520666200619115444] [PMID: 32560603]
[13]
Zhang, X.; Wang, H.; Xu, Y.; Luan, M.; Zhao, F.; Meng, Q. Advances on the anti-inflammatory activity of oleanolic acid and derivatives. Mini Rev. Med. Chem., 2021, 21(15), 2020-2038.
[http://dx.doi.org/10.2174/1389557521666210126142051] [PMID: 33573541]
[14]
Liu, L.; Wang, H.; Chai, X.; Meng, Q.; Jiang, S.; Zhao, F. Advances in biocatalytic synthesis, pharmacological activities, pharmaceutical preparation and metabolism of ginsenoside Rh2. Mini Rev. Med. Chem., 2022, 22(3), 437-448.
[http://dx.doi.org/10.2174/1389557521666210913114631] [PMID: 34517798]
[15]
Yang, H.; Kim, J.Y.; Kim, S.O.; Yoo, Y.H.; Sung, S.H. Complete 1H-NMR and 13C-NMR spectral analysis of the pairs of 20(S) and 20(R) ginsenosides. J. Ginseng Res., 2014, 38(3), 194-202.
[http://dx.doi.org/10.1016/j.jgr.2014.05.002] [PMID: 25378994]
[16]
Bi, Y.; Yang, J.; Ma, C.; Liu, Z.Y.; Zhang, T.T.; Zhang, X.C.; Lu, J.; Meng, Q.G. Design, synthesis and in vitro NO-releasing activities of ocotillol-type furoxans Pharmazie, 2015, 70(4), 213-218.
[PMID: 26012249]
[17]
Bi, Y.; Wang, T.; Meng, Q.G.; Zhang, J.F.; Wang, L.; Li, Q.; Zhao, F.L.; Sun, H.J. Synthesis and myocardial ischemia protective effect of ocotillol-type derivatives Rec. Nat. Prod., 2012, 6, 242-254.
[18]
Ji, Q.; Gao, Y.G.; Zhao, Y.; He, Z.M.; Zang, P.; Zhang, L.X. Progress on production of Ginsenoside Rg3 Shanghai Zhong Yao Za Zhi, 2014, 48, 95-97. [in Chinese]
[19]
Kitagawa, I.; Yoshikawa, M.; Yoshihara, M.; Hayashi, T.; Taniyama, T. [Chemical studies of crude drugs (1). Constituents of Ginseng Radix rubra] Yakugaku Zasshi, 1983, 103(6), 612-622.
[http://dx.doi.org/10.1248/yakushi1947.103.6_612] [PMID: 6655550]
[20]
Yoon, S.J.; Park, J.Y.; Choi, S.; Lee, J.B.; Jung, H.; Kim, T.D.; Yoon, S.R.; Choi, I.; Shim, S.; Park, Y.J. Ginsenoside Rg3 regulates S-nitrosylation of the NLRP3 inflammasome via suppression of iNOS. Biochem. Biophys. Res. Commun., 2015, 463(4), 1184-1189.
[http://dx.doi.org/10.1016/j.bbrc.2015.06.080] [PMID: 26086107]
[21]
Chang, K.H.; Jee, H.S.; Lee, N.K.; Park, S.H.; Lee, N.W.; Paik, H.D. Optimization of the enzymatic production of 20(S)-ginsenoside Rg3 from white ginseng extract using response surface methodology. N. Biotechnol., 2009, 26(3-4), 181-186.
[http://dx.doi.org/10.1016/j.nbt.2009.08.011] [PMID: 19735748]
[22]
Sun, C.; Gao, W.; Zhao, B.; Cheng, L. Optimization of the selective preparation of 20(R)-ginsenoside Rg3 catalyzed by d, l-tartaric acid using response surface methodology. Fitoterapia, 2013, 84, 213-221.
[http://dx.doi.org/10.1016/j.fitote.2012.11.011] [PMID: 23219978]
[23]
Anufriev, V.P.; Malinovskaya, G.V.; Denisenko, V.A.; Uvaròva, N.I.; Elyakov, G.B.; Kim, S.I.; Baek, N.I. Synthesis of ginsenoside Rg3, a minor constituent of Ginseng Radix. Carbohydr. Res., 1997, 304(2), 179-182.
[http://dx.doi.org/10.1016/S0008-6215(97)00217-6] [PMID: 9527441]
[24]
Lu, P.; Su, W.; Miao, Z.; Niu, H.; Liu, J.; Hua, Q. Effect and mechanism of ginsenoside Rg3 on postoperative life span of patients with non-small cell lung cancer. Chin. J. Integr. Med., 2008, 14(1), 33-36.
[http://dx.doi.org/10.1007/s11655-007-9002-6] [PMID: 18219455]
[25]
Kang, D.I.; Lee, J.Y.; Yang, J.Y.; Jeong, S.M.; Lee, J.H.; Nah, S.Y.; Kim, Y. Evidence that the tertiary structure of 20(S)-ginsenoside Rg3 with tight hydrophobic packing near the chiral center is important for Na+ channel regulation. Biochem. Biophys. Res. Commun., 2005, 333(4), 1194-1201.
[http://dx.doi.org/10.1016/j.bbrc.2005.06.026] [PMID: 15979567]
[26]
Kim, J.H.; Lee, J.H.; Jeong, S.M.; Lee, B.H.; Yoon, I.S.; Lee, J.H.; Choi, S.H.; Kim, D.H.; Park, T.K.; Kim, B.K.; Nah, S.Y. Stereospecific effects of ginsenoside Rg3 epimers on swine coronary artery contractions. Biol. Pharm. Bull., 2006, 29(2), 365-370.
[http://dx.doi.org/10.1248/bpb.29.365] [PMID: 16462047]
[27]
Lee, B.H.; Lee, J.H.; Yoon, I.S.; Lee, J.H.; Choi, S.H.; Shin, T.J.; Pyo, M.K.; Choi, W.S.; Lee, S.M.; Lim, Y.; Rhim, H.; Nah, S.Y. Mutations of arginine 222 in pre-transmembrane domain I of mouse 5-HT(3A) receptor abolish 20(R)- but not 20(S)-ginsenoside Rg(3) inhibition of 5-HT-mediated ion currents. Biol. Pharm. Bull., 2007, 30(9), 1721-1726.
[http://dx.doi.org/10.1248/bpb.30.1721] [PMID: 17827728]
[28]
Kwok, H.H.; Guo, G.L.; Lau, J.K.C.; Cheng, Y.K.; Wang, J.R.; Jiang, Z.H.; Keung, M.H.; Mak, N.K.; Yue, P.Y.K.; Wong, R.N.S. Stereoisomers ginsenosides-20(S)-Rg3 and -20(R)-Rg3 differentially induce angiogenesis through peroxisome proliferator-activated receptor-gamma. Biochem. Pharmacol., 2012, 83(7), 893-902.
[http://dx.doi.org/10.1016/j.bcp.2011.12.039] [PMID: 22234331]
[29]
Li, G.; Zhang, X.; Lin, L.; Liu, X.; Ma, C.; Li, J.; Wang, C. Preparation of ginsenoside Rg3 and protection against H 2 O 2 -Induced oxidative stress in human neuroblastoma SK-N-SH cells. J. Chem., 2014, 2014, 848571, 1-. http://dx.doi.org/10.1155/2014/848571
[30]
Park, M.W.; Ha, J.; Chung, S.H. 20(S)-ginsenoside Rg3 enhances glucose-stimulated insulin secretion and activates AMPK. Biol. Pharm. Bull., 2008, 31(4), 748-751.
[http://dx.doi.org/10.1248/bpb.31.748] [PMID: 18379076]
[31]
Lim, C.J.; Choi, W.Y.; Jung, H.J. Stereoselective skin anti-photoaging properties of ginsenoside Rg3 in UV-B-irradiated keratinocytes. Biol. Pharm. Bull., 2014, 37(10), 1583-1590.
[http://dx.doi.org/10.1248/bpb.b14-00167] [PMID: 25056231]
[32]
Kim, Y.J.; Choi, W.I.; Jeon, B.N.; Choi, K.C.; Kim, K.; Kim, T.J.; Ham, J.; Jang, H.J.; Kang, K.S.; Ko, H. Stereospecific effects of ginsenoside 20-Rg3 inhibits TGF-β1-induced epithelial–mesenchymal transition and suppresses lung cancer migration, invasion and anoikis resistance. Toxicology, 2014, 322, 23-33.
[http://dx.doi.org/10.1016/j.tox.2014.04.002] [PMID: 24793912]
[33]
Park, E.H.; Kim, Y.J.; Yamabe, N.; Park, S.H.; Kim, H.; Jang, H.J.; Kim, J.H.; Cheon, G.J.; Ham, J.; Kang, K.S. Stereospecific anticancer effects of ginsenoside Rg3 epimers isolated from heat-processed American ginseng on human gastric cancer cell. J. Ginseng Res., 2014, 38(1), 22-27.
[http://dx.doi.org/10.1016/j.jgr.2013.11.007] [PMID: 24558306]
[34]
Wu, R.; Ru, Q.; Chen, L.; Ma, B.; Li, C. Stereospecificity of ginsenoside Rg3 in the promotion of cellular immunity in hepatoma H22-bearing mice. J. Food Sci., 2014, 79(7), H1430-H1435.
[http://dx.doi.org/10.1111/1750-3841.12518] [PMID: 25041540]
[35]
Cheong, J.H.; Kim, H.; Hong, M.J.; Yang, M.H.; Kim, J.W.; Yoo, H.; Yang, H.; Park, J.H.; Sung, S.H.; Kim, H.P.; Kim, J. Stereoisomer-specific anticancer activities of ginsenoside Rg3 and Rh2 in HepG2 cells: Disparity in cytotoxicity and autophagy-inducing effects due to 20(S)-epimers. Biol. Pharm. Bull., 2015, 38(1), 102-108.
[http://dx.doi.org/10.1248/bpb.b14-00603] [PMID: 25744465]
[36]
Huang, W.; Sun, L.; Wang, B.; Ma, Y.; Yao, D.; Han, W.; Wang, L. Ginsenosides, potent inhibitors of sialyltransferase. Z. Naturforsch. C J. Biosci., 2020, 75(1-2), 41-49.
[http://dx.doi.org/10.1515/znc-2019-0150] [PMID: 32031984]
[37]
Nakhjavani, M.; Palethorpe, H.M.; Tomita, Y.; Smith, E.; Price, T.J.; Yool, A.J.; Pei, J.V.; Townsend, A.R.; Hardingham, J.E. Stereoselective Anti-Cancer Activities of Ginsenoside Rg3 on Triple Negative Breast Cancer Cell Models. Pharmaceuticals, 2019, 12(3), 117.
[http://dx.doi.org/10.3390/ph12030117]
[38]
Lu, J.; Zhou, Y.; Zheng, X.; Chen, L.; Tuo, X.; Chen, H.; Xue, M.; Chen, Q.; Chen, W.; Li, X.; Zhao, L. 20(S)-Rg3 upregulates FDFT1 via reducing miR-4425 to inhibit ovarian cancer progression. Arch. Biochem. Biophys., 2020, 693, 108569.
[http://dx.doi.org/10.1016/j.abb.2020.108569] [PMID: 32877662]
[39]
Jiang, M.; Zhu, Y.; Yu, H. Ginsenoside 20(S)-Rg3 suppresses cell viability in esophageal squamous cell carcinoma via modulating miR-324-5p-targeted PSME3. Hum. Exp. Toxicol., 2021, 40(11), 1974-1984.
[http://dx.doi.org/10.1177/09603271211017311] [PMID: 34002647]
[40]
Phi, L.T.H.; Wijaya, Y.T.; Sari, I.N.; Kim, K.S.; Yang, Y.G.; Lee, M.W.; Kwon, H.Y. 20(R)-Ginsenoside Rg3 influences cancer stem cell properties and the epithelial-mesenchymal transition in colorectal cancer via the snail signaling axis. OncoTargets Ther., 2019, 12, 10885-10895.
[http://dx.doi.org/10.2147/OTT.S219063] [PMID: 31849492]
[41]
Nakhjavani, M.; Smith, E.; Townsend, A.R.; Price, T.J.; Hardingham, J.E. Anti-angiogenic properties of ginsenoside Rg3. Molecules, 2020, 25(21), 4905.
[http://dx.doi.org/10.3390/molecules25214905] [PMID: 33113992]
[42]
Nakhjavani, M.; Smith, E.; Yeo, K.; Palethorpe, H.M.; Tomita, Y.; Price, T.J.; Townsend, A.R.; Hardingham, J.E. Anti-angiogenic properties of ginsenoside Rg3 epimers: In vitro assessment of single and combination treatments. Cancers, 2021, 13(9), 2223.
[http://dx.doi.org/10.3390/cancers13092223] [PMID: 34066403]
[43]
Changizi, V.; Gharekhani, V.; Motavaseli, E. Co-treatment with ginsenoside 20(S)-Rg3 and curcumin increases radiosensitivity of MDA-MB-231 cancer cell line Iran. J. Med. Sci., 2021, 46(4), 291-297.
[44]
Zhou, T.; Sun, L.; Yang, S.; Lv, Y.; Cao, Y.; Gang, X.; Wang, G. 20(S)-Ginsenoside Rg3 protects kidney from diabetic kidney disease via renal inflammation depression in diabetic rats. J. Diabetes Res., 2020, 2020, 7152176. 1-8. http://dx.doi.org/10.1155/2020/7152176 PMID: 32258169
[45]
Ahn, J.W.; Jang, S.K.; Jo, B.R.; Kim, H.S.; Park, J.Y.; Park, H.Y.; Yoo, Y-M.; Joo, S.S. A therapeutic intervention for Alzheimer’s disease using ginsenoside Rg3: Its role in M2 microglial activation and non-amyloidogenesis J. Physiol. Pharmacol., 2021, 72(2), 185-193.
[PMID: 34374655]
[46]
Kang, S.; Song, M.J.; Min, H. Antiviral activity of ginsenoside Rg3 isomers against gammaherpesvirus through inhibition of p38- and JNK-associated pathways. J. Funct. Foods, 2018, 40, 219-228.
[http://dx.doi.org/10.1016/j.jff.2017.11.011]
[47]
Wei, X.; Su, F.; Su, X.; Hu, T.; Hu, S. Stereospecific antioxidant effects of ginsenoside Rg3 on oxidative stress induced by cyclophosphamide in mice. Fitoterapia, 2012, 83(4), 636-642.
[http://dx.doi.org/10.1016/j.fitote.2012.01.006] [PMID: 22310172]
[48]
Li, W.; Wang, J.Q.; Zhou, Y.D.; Hou, J.G.; Liu, Y.; Wang, Y.P.; Gong, X.J.; Lin, X.H.; Jiang, S.; Wang, Z. Rare ginsenoside 20(R)-Rg3 inhibits d-galactose-induced liver and kidney injury by regulating oxidative stress-induced apoptosis. Am. J. Chin. Med., 2020, 48(5), 1141-1157.
[http://dx.doi.org/10.1142/S0192415X20500561] [PMID: 32668974]
[49]
Liu, W.; Zhang, S.X.; Ai, B.; Pan, H.F.; Zhang, D.; Jiang, Y.; Hu, L.H.; Sun, L.L.; Chen, Z.S.; Lin, L.Z. Ginsenoside Rg3 promotes cell growth through activation of mTORC1. Front. Cell Dev. Biol., 2021, 9, 730309.
[http://dx.doi.org/10.3389/fcell.2021.730309] [PMID: 34589493]
[50]
Kang, K.S.; Kim, H.Y.; Yamabe, N.; Yokozawa, T. Stereospecificity in hydroxyl radical scavenging activities of four ginsenosides produced by heat processing. Bioorg. Med. Chem. Lett., 2006, 16(19), 5028-5031.
[http://dx.doi.org/10.1016/j.bmcl.2006.07.071] [PMID: 16901695]
[51]
Wang, M.; Ren, J.; Chen, X.; Liu, J.; Xu, X.; Li, X.; Zhao, D.; Sun, L. 20(S)-ginsenoside Rg3 promotes myoblast differentiation and protects against myotube atrophy via regulation of the Akt/mTOR/FoxO3 pathway. Biochem. Pharmacol., 2020, 180, 114145.
[http://dx.doi.org/10.1016/j.bcp.2020.114145] [PMID: 32653593]
[52]
Yang, L.; Zou, H.; Gao, Y.; Luo, J.; Xie, X.; Meng, W.; Zhou, H.; Tan, Z. Insights into gastrointestinal microbiota-generated ginsenoside metabolites and their bioactivities. Drug Metab. Rev., 2020, 52(1), 125-138.
[http://dx.doi.org/10.1080/03602532.2020.1714645] [PMID: 31984805]
[53]
Bae, E.A.; Han, M.J.; Choo, M.K.; Park, S.Y.; Kim, D.H. Metabolism of 20(S)- and 20(R)-ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities. Biol. Pharm. Bull., 2002, 25(1), 58-63.
[http://dx.doi.org/10.1248/bpb.25.58] [PMID: 11824558]
[54]
Peng, M.; Li, X.; Zhang, T.; Ding, Y.; Yi, Y.; Le, J.; Yang, Y.; Chen, X. Stereoselective pharmacokinetic and metabolism studies of 20(S)- and 20(R)-ginsenoside Rg3 epimers in rat plasma by liquid chromatography-electrospray ionization mass spectrometry. J. Pharm. Biomed. Anal., 2016, 121, 215-224.
[http://dx.doi.org/10.1016/j.jpba.2016.01.020] [PMID: 26826673]
[55]
Cheng, Y.J.; Su, S.X.; Ma, Q.F.; Pei, Y.P.; Xie, H.; Yao, X.S. Studies on new minor saponins isolated from leaves of Panax ginseng C. A. Meyer Yao Xue Xue Bao, 1987, 22(9), 685-689.
[PMID: 3445760]
[56]
Liu, J.; Shimizu, K.; Yu, H.; Zhang, C.; Jin, F.; Kondo, R. Stereospecificity of hydroxyl group at C-20 in antiproliferative action of ginsenoside Rh2 on prostate cancer cells. Fitoterapia, 2010, 81(7), 902-905.
[http://dx.doi.org/10.1016/j.fitote.2010.05.020] [PMID: 20554003]
[57]
Han, S.; Jeong, A.J.; Yang, H.; Bin, Kang K.; Lee, H.; Yi, E.H.; Kim, B.H.; Cho, C.H.; Chung, J.W.; Sung, S.H.; Ye, S.K. Ginsenoside 20(S)-Rh2 exerts anti-cancer activity through targeting IL-6-induced JAK2/STAT3 pathway in human colorectal cancer cells. J. Ethnopharmacol., 2016, 194, 83-90.
[http://dx.doi.org/10.1016/j.jep.2016.08.039] [PMID: 27566200]
[58]
Jeong, Y.; Ku, S.; You, H.J.; Ji, G.E. A stereo-selective growth inhibition profile of ginsenoside Rh2 on human colon cancer cells. CYTA J. Food, 2019, 17(1), 488-493.
[http://dx.doi.org/10.1080/19476337.2019.1607562]
[59]
Zeng, Y.; Mao, J.; Wang, X.; Yin, B.; Shen, Z.; Di, C.; Gu, W.; Wu, M. Mechanism for ginsenoside Rh2-induced apoptosis of triple-negative breast cancer MDA-MB-231 cells. Clin. Exp. Obstet. Gynecol., 2020, 47(1), 99.
[http://dx.doi.org/10.31083/j.ceog.2020.01.5019]
[60]
Liu, Y.; Yu, S.; Xing, X.; Qiao, J.; Yin, Y.; Wang, J.; Liu, M.; Zhang, W. Ginsenoside Rh2 stimulates the production of mitochondrial reactive oxygen species and induces apoptosis of cervical cancer cells by inhibiting mitochondrial electron transfer chain complex. Mol. Med. Rep., 2021, 24(6), 873.
[http://dx.doi.org/10.3892/mmr.2021.12513] [PMID: 34713297]
[61]
Shi, X.; Yang, J.; Wei, G. Ginsenoside 20(S)-Rh2 exerts anti-cancer activity through the Akt/GSK3β signaling pathway in human cervical cancer cells. Mol. Med. Rep., 2018, 17(3), 4811-4816.
[http://dx.doi.org/10.3892/mmr.2018.8454] [PMID: 29363731]
[62]
Tung, N.H.; Song, G.Y.; Minh, C.V.; Kiem, P.V.; Jin, L.G.; Boo, H.J.; Kang, H.K.; Kim, Y.H. Steamed ginseng-leaf components enhance cytotoxic effects on human leukemia HL-60 cells. Chem. Pharm. Bull. (Tokyo), 2010, 58(8), 1111-1115.
[http://dx.doi.org/10.1248/cpb.58.1111] [PMID: 20686271]
[63]
Silva, A.; Yunes, J.A.; Cardoso, B.A.; Martins, L.R.; Jotta, P.Y.; Abecasis, M.; Nowill, A.E.; Leslie, N.R.; Cardoso, A.A.; Barata, J.T. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J. Clin. Invest., 2008, 118(11), 3762-3774.
[http://dx.doi.org/10.1172/JCI34616] [PMID: 18830414]
[64]
Xia, T.; Zhang, J.; Zhou, C.; Li, Y.; Duan, W.; Zhang, B.; Wang, M.; Fang, J. 20(S)-Ginsenoside Rh2 displays efficacy against T-cell acute lymphoblastic leukemia through the PI3K/Akt/mTOR signal pathway. J. Ginseng Res., 2020, 44(5), 725-737.
[http://dx.doi.org/10.1016/j.jgr.2019.07.003] [PMID: 32913402]
[65]
Xia, T.; Zhang, B.; Li, Y.; Fang, B.; Zhu, X.; Xu, B.; Zhang, J.; Wang, M.; Fang, J. New insight into 20(S)-ginsenoside Rh2 against T-cell acute lymphoblastic leukemia associated with the gut microbiota and the immune system. Eur. J. Med. Chem., 2020, 203, 112582.
[http://dx.doi.org/10.1016/j.ejmech.2020.112582] [PMID: 32682197]
[66]
Liu, J.; Shiono, J.; Shimizu, K.; Yu, H.; Zhang, C.; Jin, F.; Kondo, R. 20(R)-Ginsenoside Rh2, not 20(S), is a selective osteoclastgenesis inhibitor without any cytotoxicity. Bioorg. Med. Chem. Lett., 2009, 19(12), 3320-3323.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.054] [PMID: 19428246]
[67]
Fatmawati, S.; Ersam, T.; Yu, H.; Zhang, C.; Jin, F.; Shimizu, K. 20(S)-Ginsenoside Rh2 as aldose reductase inhibitor from Panax ginseng. Bioorg. Med. Chem. Lett., 2014, 24(18), 4407-4409.
[http://dx.doi.org/10.1016/j.bmcl.2014.08.009] [PMID: 25152999]
[68]
Lv, Q.; Rong, N.; Liu, L.J.; Xu, X.L.; Liu, J.T.; Jin, F.X.; Wang, C.M. Antitumoral activity of (20R)- and (20S)-ginsenoside Rh2 on transplanted hepatocellular carcinoma in mice. Planta Med., 2016, 82(8), 705-711.
[http://dx.doi.org/10.1055/s-0042-101764] [PMID: 27163230]
[69]
Qi, X.D.; Hou, J.C.; Yu, H.T.; Zhang, C.J. 20 (S)-Ginsenoside-Rh2 and 20 (R)-ginsenoside-Rh2 activate IkappaB phosphorylation expression in human lung adenocarcinoma A549 cells. Adv. Mat. Res., 2011, 268-270, 1205-1210.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.268-270.1205]
[70]
Yang, Q.; Wang, N.; Zhang, J.; Chen, G.; Xu, H.; Meng, Q.; Du, Y.; Yang, X.; Fan, H. In vitro and in silico evaluation of stereoselective effect of ginsenoside isomers on platelet P2Y12 receptor. Phytomedicine, 2019, 64, 152899.
[http://dx.doi.org/10.1016/j.phymed.2019.152899] [PMID: 31454649]
[71]
Kim, A.R.; Kim, S.W.; Lee, B.W.; Kim, K.H.; Kim, W.H.; Seok, H.; Lee, J.H.; Um, J.; Yim, S.H.; Ahn, Y.; Jin, S.W.; Jung, D.W.; Oh, W.K.; Williams, D.R. Screening ginseng saponins in progenitor cells identifies 20(R)-ginsenoside Rh2 as an enhancer of skeletal and cardiac muscle regeneration. Sci. Rep., 2020, 10(1), 4967.
[http://dx.doi.org/10.1038/s41598-020-61491-4] [PMID: 32188912]
[72]
Xiang, W.J.; Guo, C.Y.; Ma, L.; Hu, L.H. Dammarane-type glycosides and long chain sesquiterpene glycosides from Gynostemma yixingense. Fitoterapia, 2010, 81(4), 248-252.
[http://dx.doi.org/10.1016/j.fitote.2009.09.009] [PMID: 19781603]
[73]
Qu, H.; Wang, Y.; Shan, W.; Zhang, Y.; Feng, H.; Sai, J.; Wang, Q.; Zhao, Y. Development of ELISA for detection of Rh1 and Rg2 and potential method of immunoaffinity chromatography for separation of epimers. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 985, 197-205.
[http://dx.doi.org/10.1016/j.jchromb.2015.01.037] [PMID: 25706410]
[74]
Li, X.F.; Lui, C.N.P.; Jiang, Z.H.; Ken, Y.K.L. Neuroprotective effects of ginsenosides Rh1 and Rg2 on neuronal cells. Chin. Med., 2011, 6(1), 19.
[http://dx.doi.org/10.1186/1749-8546-6-19] [PMID: 21592408]
[75]
Kang, H.J.; Huang, Y.H.; Lim, H.W.; Shin, D.; Jang, K.; Lee, Y.; Kim, K.; Lim, C.J. Stereospecificity of ginsenoside Rg2 epimers in the protective response against UV-B radiation-induced oxidative stress in human epidermal keratinocytes. J. Photochem. Photobiol. B, 2016, 165, 232-239.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.10.034] [PMID: 27816645]
[76]
Wang, Q.; Fu, W.; Yu, X.; Xu, H.; Sui, D.; Wang, Y. Ginsenoside Rg2 alleviates myocardial fibrosis by regulating TGF-β1/Smad signalling pathway. Pharm. Biol., 2021, 59(1), 104-111.
[http://dx.doi.org/10.1080/13880209.2020.1867197] [PMID: 33535854]
[77]
Fu, W.; Xu, H.; Yu, X.; Lyu, C.; Tian, Y.; Guo, M.; Sun, J.; Sui, D. 20( S )-Ginsenoside Rg2 attenuates myocardial ischemia/reperfusion injury by reducing oxidative stress and inflammation: Role of SIRT1. RSC Advances, 2018, 8(42), 23947-23962.
[http://dx.doi.org/10.1039/C8RA02316F] [PMID: 35540288]
[78]
Hou, J.; Li, W.; Zheng, Y. Determination and enzymolysis preparation of ginsenoside Rh1 China J. Chinese Materia Medica, 2009, 34(23), 3030-3033.
[PMID: 20222417]
[79]
Yang, J.; Yu, X.; Cai, X.; Chen, Y.; Zang, H.; Li, X.; Jin, Y. Semisynthesis and cytotoxicity evaluation of a series of ocotillol type saponins and aglycones from 20(S)-ginsenoside Rg2, Rh1, protopanaxatriol and their 20(R)-epimers. Chem. Res. Chin. Univ., 2016, 32(1), 35-40.
[http://dx.doi.org/10.1007/s40242-016-5324-2]
[80]
Zhang, J.; Zhang, Q.; Xu, Y.; Li, H.; Zhao, F.; Wang, C.; Liu, Z.; Liu, P.; Liu, Y.; Meng, Q.; Zhao, F. Synthesis and in vitro anti-inflammatory activity of C20 epimeric ocotillol-type triterpenes and protopanaxadiol. Planta Med., 2019, 85(4), 292-301.
[http://dx.doi.org/10.1055/a-0770-0994] [PMID: 30380571]
[81]
Tanaka, O.; Yahara, S. Dammarane saponins of leaves of Panax pseudo-ginseng subsp. himalaicus. Phytochemistry, 1978, 17(8), 1353-1358.
[http://dx.doi.org/10.1016/S0031-9422(00)94588-6]
[82]
Xu, Y.; Wang, W.; Yang, J.; Li, X.; Meng, Q. Advances in the synthesis and biological activities of ocotillol-type saponins. Youji Huaxue, 2016, 36(4), 724.
[http://dx.doi.org/10.6023/cjoc201510022]
[83]
Wang, W.Z.; Xu, Y.R.; Li, X.L.; Yang, J.J.; Meng, Q.G. Synthesis and formation mechanism of ocotillol and its epimer J. Chin. Pharm. Univ., 2016, 47, 282-287.
[84]
Yang, J.J.; Xu, Y.R.; Wang, W.Z.; Li, X.L.; Meng, Q.G. Formation mechanism of C24 epimeric ocotillol-type ginsenosides driven from 20(S)- and 20(R)-protopanaxadiol J. Yantai Univ. Nat. Sci. Eng. Edition., 2016, 29, 181-186.
[85]
Han, B.; Meng, Q.; Li, Q.; Zhang, J.; Bi, Y.; Jiang, N. Effect of 20 (S)-protopanaxatriol and its epimeric derivatives on myocardial injury induced by isoproterenol. Arzneimittelforschung, 2011, 61(3), 148-152.
[http://dx.doi.org/10.1055/s-0031-1296181] [PMID: 21528638]
[86]
Fujita, S.; Kasai, R.; Ohtani, K.; Yamasaki, K.; Chiu, M.H.; Nie, R.L.; Tanaka, O. Dammarane glycosides from aerial part of Neoalsomitra integrifoliola. Phytochemistry, 1995, 39(3), 591-602.
[http://dx.doi.org/10.1016/0031-9422(95)00020-8] [PMID: 7576452]
[87]
Bi, Y.; Tian, J.W.; Wang, L.; Zhao, F.L.; Zhang, J.F.; Wang, N.; Sun, H.J.; Meng, Q.G. Synthesis, structure determination and protective effects on cultured anoxia/reoxygen injury myocardiocytes of ocotillol-type derivatives J. Med. Plants Res., 2011, 5, 2424-2429.
[88]
Bi, Y.; Ma, C.; Zhang, H.; Zhou, Z.; Yang, J.; Zhang, Z.; Meng, Q.; Lewis, P.J.; Xu, J. Novel 3-substituted ocotillol-type triterpenoid derivatives as antibacterial candidates. Chem. Biol. Drug Des., 2014, 84(4), 489-496.
[http://dx.doi.org/10.1111/cbdd.12337] [PMID: 24811479]
[89]
Bi, Y.; Yang, X.; Zhang, T.; Liu, Z.; Zhang, X.; Lu, J.; Cheng, K.; Xu, J.; Wang, H.; Lv, G.; Lewis, P.J.; Meng, Q.; Ma, C. Design, synthesis, nitric oxide release and antibacterial evaluation of novel nitrated ocotillol-type derivatives. Eur. J. Med. Chem., 2015, 101, 71-80.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.021] [PMID: 26114813]
[90]
Wang, T.; Meng, Q.; Zhang, J.; Bi, Y.; Jiang, N. Study on the structure–function relationship of 20(S)-panaxadiol and its epimeric derivatives in myocardial injury induced by isoproterenol. Fitoterapia, 2010, 81(7), 783-787.
[http://dx.doi.org/10.1016/j.fitote.2010.04.005] [PMID: 20398743]
[91]
Wang, W.; Shao, Y.; Ma, S.; Wu, X.; Meng, Q. Determination of 20(S)-protopanaxadiol ocotillol type epimers in rat plasma by liquid chromatography tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 887-888, 19-24.
[http://dx.doi.org/10.1016/j.jchromb.2011.12.032] [PMID: 22305018]
[92]
Wu, X.M.; Wang, L.; Ni, Y.Y.; Wang, H.; Wang, W.Y.; Meng, Q.G. Study on excretion of 20 (S) -protopanaxadiolocotillol type epimers in rats Zhongguo Zhongyao Zazhi, 2014, 39(7), 1306-1310.
[PMID: 25011273]
[93]
Wang, W.; Wu, X.; Wang, L.; Meng, Q.; Liu, W. Stereoselective property of 20(S)-protopanaxadiol ocotillol type epimers affects its absorption and also the inhibition of P-glycoprotein. PLoS One, 2014, 9(6), e98887.
[http://dx.doi.org/10.1371/journal.pone.0098887] [PMID: 24887182]
[94]
Zhou, B.; Jian, F.B.; Zhang, J.; Hong, W.X.; Liu, Y.Q.; Wang, M.; Zhang, F.C.; Li, L.H. Safety review of chloroquine in the treatment of COVID-19. (In Chinese) Pharm. Today, 2021, 31(3), 5.
[95]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[96]
Hall, D.C., Jr; Ji, H.F. A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Med. Infect. Dis., 2020, 35, 101646.
[http://dx.doi.org/10.1016/j.tmaid.2020.101646] [PMID: 32294562]
[97]
Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; Hu, Y.; Luo, G.; Wang, K.; Lu, Y.; Li, H.; Wang, S.; Ruan, S.; Yang, C.; Mei, C.; Wang, Y.; Ding, D.; Wu, F.; Tang, X.; Ye, X.; Ye, Y.; Liu, B.; Yang, J.; Yin, W.; Wang, A.; Fan, G.; Zhou, F.; Liu, Z.; Gu, X.; Xu, J.; Shang, L.; Zhang, Y.; Cao, L.; Guo, T.; Wan, Y.; Qin, H.; Jiang, Y.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Cao, B.; Wang, C. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020, 395(10236), 1569-1578.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[98]
Lee, S.O.; Lee, S.; Kim, S.J.; Rhee, D.K. Korean Red Ginseng enhances pneumococcal Δpep27 vaccine efficacy by inhibiting reactive oxygen species production. J. Ginseng Res., 2019, 43(2), 218-225.
[http://dx.doi.org/10.1016/j.jgr.2017.11.007] [PMID: 30962736]
[99]
Park, H.H.; Kim, H.; Lee, H.S.; Seo, E.U.; Kim, J.E.; Lee, J.H.; Mun, Y.H.; Yoo, S.Y.; An, J.; Yun, M.Y.; Kang, N.W.; Kim, D.D.; Na, D.H.; Hong, K.S.; Jang, J.G.; Ahn, J.H.; Bae, J.S.; Song, G.Y.; Lee, J.Y.; Kim, H.N.; Lee, W. PEGylated nanoparticle albumin-bound steroidal ginsenoside derivatives ameliorate SARS-CoV-2-mediated hyper-inflammatory responses. Biomaterials, 2021, 273, 120827.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120827] [PMID: 33910079]
[100]
Garg, S.; Anand, A.; Lamba, Y.; Roy, A. Molecular docking analysis of selected phytochemicals against SARS-CoV-2 Mpro receptor. Vegetos, 2020, 33(4), 766-781.
[http://dx.doi.org/10.1007/s42535-020-00162-1] [PMID: 33100613]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy