Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Emerging Aspects of Triazole in Organic Synthesis: Exploring its Potential as a Gelator

Author(s): Rabecca Jenifer Vasanthan, Sheersha Pradhan and Mohan Das Thangamuthu*

Volume 21, Issue 4, 2024

Published on: 29 December, 2022

Page: [456 - 512] Pages: 57

DOI: 10.2174/1570179420666221010094531

Price: $65

Abstract

Cu(I)-catalyzed azide−alkyne 1,3-dipolar cycloaddition (CuAAC) - commonly known as the “click reaction” - serves as the most effective and highly reliable tool for facile construction of simple to complex designs at the molecular level. It relates to the formation of carbon heteroatomic systems by joining or clicking small molecular pieces together with the help of various organic reactions such as cycloaddition, conjugate addition, ring-opening, etc. Such dynamic strategy results in the generation of triazole and its derivatives from azides and alkynes with three nitrogen atoms in the five-membered aromatic azole ring that often forms gel-assembled structures having gelating properties. These scaffolds have led to prominent applications in designing advanced soft materials, 3D printing, ion sensing, drug delivery, photonics, separation, and purification. In this review, we mainly emphasize the different mechanistic aspects of triazole formation, which includes the synthesis of sugar-based and non-sugar-based triazoles, and their gel applications reported in the literature for the past ten years, as well as the upcoming scope in different branches of applied sciences.

Keywords: Triazole, sugar-triazole, click chemistry, gelators, self-assembly, pyrrodiazoles.

Graphical Abstract
[1]
Ramezanzadeh, B.; Mehdipour, M.; Arman, S.Y. Application of electrochemical noise to investigate corrosion inhibition properties of some azole compounds on aluminum in 0.25 M HCl. Prog. Color Color. Coat., 2014, 8(1), 69-86.
[2]
Chinnam, A.K.; Yu, Q.; Imler, G.H.; Parrish, D.A.; Shreeve, J.M. Azo- and methylene-bridged mixed azoles for stable and insensitive energetic applications. Dalton Trans., 2020, 49(33), 11498-11503.
[http://dx.doi.org/10.1039/D0DT02223C] [PMID: 32797135]
[3]
Ibrahimi, B.E.; Guo, L. Azole-Based Compounds as Corrosion Inhibitors for Metallic Materials. In: Azoles- Synthesis, Properties, Applications and Perspectives; Kuznetsov, A., Ed.; IntechOpen: London, 2020.
[4]
Vessally, E.; Didehban, K.; Babazadeh, M.; Hosseinian, A.; Edjlali, L. hemical fixation of CO2 with aniline derivatives: A new avenue to the synthesis of functionalized azole compounds (A review). J. CO2 Util., 2017, 21, 480-490.
[5]
Godamudunage, M.P.; Grech, A.M.; Scott, E.E. Comparison of antifungal azole interactions with adult cytochrome P450 3A4 versus neonatal cytochrome P450 3A7. Drug Metab. Dispos., 2018, 46(9), 1329-1337.
[http://dx.doi.org/10.1124/dmd.118.082032] [PMID: 29991575]
[6]
Caldona, E.B.; Zhang, M.; Liang, G.; Hollis, T.K.; Webster, C.E.; Smith, D.W., Jr; Wipf, D.O. Corrosion inhibition of mild steel in acidic medium by simple azole-based aromatic compounds. J. Electroanal. Chem., 2021, 880, 114858.
[http://dx.doi.org/10.1016/j.jelechem.2020.114858]
[7]
Zhang, H.Z.; He, S.C.; Peng, Y.J.; Zhang, H.J.; Gopala, L.; Tangadanchu, V.K.R.; Gan, L.L.; Zhou, C.H. Design, synthesis and antimicrobial evaluation of novel benzimidazole-incorporated sulfonamide analogues. Eur. J. Med. Chem., 2017, 136, 165-183.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.077] [PMID: 28494254]
[8]
Abdallah, M.; Gad, E.A.M.; Al-Fahemi, J.H.; Sobhi, M. Experimental and theoretical investigation by DFT on the some azole antifungal drugs as green corrosion inhibitors for aluminum in 1.0 M HCl. Prot. Met. Phys. Chem. Surf., 2018, 54(3), 503-512.
[http://dx.doi.org/10.1134/S207020511803022X]
[9]
Azevedo, M.M.; Faria, R.I.; Cruz, L.C.; Pina, V.C.; Gonçalves, R.A. Genesis of azole antifungal resistance from agriculture to clinical settings. J. Agric. Food Chem., 2015, 63(34), 7463-7468.
[http://dx.doi.org/10.1021/acs.jafc.5b02728] [PMID: 26289797]
[10]
Shafiei, M.; Peyton, L.; Hashemzadeh, M.; Foroumadi, A. History of the development of antifungal azoles: A review on structures, SAR, and mechanism of action. Bioorg. Chem., 2020, 104, 104240.
[http://dx.doi.org/10.1016/j.bioorg.2020.104240] [PMID: 32906036]
[11]
De, B.; Adhikari, I.; Nandy, A.; Saha, A.; Goswami, B.B. In silico modelling of azole derivatives with tyrosinase inhibition ability: Application of the models for activity prediction of new compounds. Comput. Biol. Chem., 2018, 74, 105-114.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.03.007] [PMID: 29574329]
[12]
Wei, C.X.; Bian, M.; Gong, G.H. Tetrazolium compounds: Synthesis and applications in medicine. Molecules, 2015, 20(4), 5528-5553.
[http://dx.doi.org/10.3390/molecules20045528] [PMID: 25826789]
[13]
Rahman, M.N.; Vukomanovic, D.; Vlahakis, J.Z.; Szarek, W.A.; Nakatsu, K.; Jia, Z. Structural insights into azole-based inhibitors of heme oxygenase-1: Development of selective compounds for therapeutic applications. Curr. Med. Chem., 2019, 25(42), 5803-5821.
[http://dx.doi.org/10.2174/0929867325666180606082512] [PMID: 30674243]
[14]
Monod, M.; Feuermann, M.; Yamada, T. Terbinafine and Itraconazole Resistance in Dermatophytes. In: Dermatophytes and Dermatophytoses; Bouchara, J.P.; Nenoff, P.; Gupta, A.K.; Chaturvedi, V., Eds.; Springer: Germany, 2021; pp. 415-429.
[http://dx.doi.org/10.1007/978-3-030-67421-2_20]
[15]
De Oliveira, V.J.; Monteiro, A.F.M.; Filho, J.M.B.; Scotti, L.; Scotti, M.T. The azoles in pharmacochemistry: Perspectives on the synthesis of new compounds and chemoinformatic contributions. Curr. Pharm. Des., 2020, 25(44), 4702-4716.
[http://dx.doi.org/10.2174/1381612825666191125090700] [PMID: 31763967]
[16]
Peyton, L.R.; Gallagher, S.; Hashemzadeh, M. Triazole antifungals: A review. Drugs Today, 2015, 51(12), 705-718.
[PMID: 26798851]
[17]
Kashyap, A.; Silakari, O. Triazoles: Multidimensional 5-Membered Nucleus for Designing Multitargeting Agents. In: Key Heterocycle Cores for Designing Multitargeting Molecules; Silakari, O., Ed.; Elsevier Science B. V: Amsterdam, 2018; pp. 323-342.
[http://dx.doi.org/10.1016/B978-0-08-102083-8.00009-1]
[18]
Juríček, M.; Kouwer, P.H.J.; Rowan, A.E. Triazole: A unique building block for the construction of functional materials. Chem. Commun., 2011, 47(31), 8740-8749.
[http://dx.doi.org/10.1039/c1cc10685f] [PMID: 21556388]
[19]
Xu, Z. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against Methicillin-Resistant Staphylococcus Aureus (MRSA). Eur. J. Med. Chem., 2020, 206, 112686.
[http://dx.doi.org/10.1016/j.ejmech.2020.112686] [PMID: 32795773]
[20]
Ge, X.; Xu, Z. 1,2,4-Triazole hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus. Arch. Pharm., 2021, 354(1), 2000223.
[http://dx.doi.org/10.1002/ardp.202000223] [PMID: 32985011]
[21]
Gao, F.; Wang, T.; Xiao, J.; Huang, G. Antibacterial activity study of 1,2,4-triazole derivatives. Eur. J. Med. Chem., 2019, 173, 274-281.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.043] [PMID: 31009913]
[22]
Mohamed, A.L.; Hassabo, A.G.; Shaarawy, S.; Hebeish, A. Benign development of cotton with antibacterial activity and metal sorpability through introduction amino triazole moieties and AgNPs in cotton structure pre-treated with periodate. Carbohydr. Polym., 2017, 178, 251-259.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.024] [PMID: 29050591]
[23]
Sumrra, S.H.; Zafar, W.; Asghar, M.L.; Mushtaq, F.; Raza, M.A.; Nazar, M.F.; Nadeem, M.A.; Imran, M.; Mumtaz, S. Computational investigation of molecular structures, spectroscopic properties, cholinesterase inhibition and antibacterial activities of triazole Schiff bases endowed metal chelates. J. Mol. Struct., 2021, 1238, 130382.
[http://dx.doi.org/10.1016/j.molstruc.2021.130382]
[24]
Sapijanskaitė, B.B.; Palskys, V.; Vaickelionienė, R.; Šiugždaitė, J.; Kavaliauskas, P.; Grybaitė, B.; Mickevičius, V. Synthesis and antibacterial activity of new azole, diazole and triazole derivatives based on p-aminobenzoic acid. Molecules, 2021, 26(9), 2597.
[http://dx.doi.org/10.3390/molecules26092597] [PMID: 33946936]
[25]
Santosh, R.; Selvam, M.K.; Kanekar, S.U.; Nagaraja, G.K. Synthesis, characterization, antibacterial and antioxidant studies of some heterocyclic compounds from triazole-linked chalcone derivatives. Chem. Select., 2018, 3(23), 6338-6343.
[http://dx.doi.org/10.1002/slct.201800905]
[26]
Djemoui, A.; Naouri, A.; Ouahrani, M.R.; Djemoui, D.; Lahcene, S.; Lahrech, M.B.; Boukenna, L.; Albuquerque, H.M.T.; Saher, L.; Rocha, D.H.A.; Monteiro, F.L.; Helguero, L.A.; Bachari, K.; Talhi, O.; Silva, A.M.S. A step-by-step synthesis of triazole-benzimidazole-chalcone hybrids: Anticancer activity in human cells+. J. Mol. Struct., 2020, 1204, 127487.
[http://dx.doi.org/10.1016/j.molstruc.2019.127487]
[27]
Murthy, I.S.; Sreenivasulu, R.; Alluraiah, G.; Ramesh, R.R. Design, synthesis, and anticancer activity of 1,2,3-triazole linked 1,2-isoxazole-imidazo[4,5-b]pyridine derivatives. Russ. J. Gen. Chem., 2019, 89(8), 1718-1723.
[http://dx.doi.org/10.1134/S1070363219080279]
[28]
Luo, L.; Jia, J.J.; Zhong, Q.; Zhong, X.; Zheng, S.; Wang, G.; He, L. Synthesis and anticancer activity evaluation of naphthalene-substituted triazole spirodienones. Eur. J. Med. Chem., 2021, 213, 113039.
[http://dx.doi.org/10.1016/j.ejmech.2020.113039] [PMID: 33261898]
[29]
Banerji, B.; Chandrasekhar, K.; Sreenath, K.; Roy, S.; Nag, S.; Saha, K.D. Synthesis of triazole-substituted quinazoline hybrids for anticancer activity and a lead compound as the EGFR blocker and ROS inducer agent. ACS Omega, 2018, 3(11), 16134-16142.
[http://dx.doi.org/10.1021/acsomega.8b01960] [PMID: 30556027]
[30]
El-Sherief, H.A.M.; Youssif, B.G.M.; Abbas, B.S.N.; Abdelazeem, A.H.; Abdel, A.M.; Abdel, R.H.M. Synthesis, anticancer activity and molecular modeling studies of 1,2,4-triazole derivatives as EGFR inhibitors. Eur. J. Med. Chem., 2018, 156, 774-789.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.024] [PMID: 30055463]
[31]
Şahin, İ.; Özgeriş, F.B.; Köse, M.; Bakan, E.; Tümer, F. Synthesis, characterization, and antioxidant and anticancer activity of 1, 4-disubstituted 1, 2, 3-triazoles. J. Mol. Struct., 2021, 1232, 130042.
[http://dx.doi.org/10.1016/j.molstruc.2021.130042]
[32]
Han, M.İ.; Bekçi, H.; Uba, A.I.; Yıldırım, Y.; Karasulu, E.; Cumaoğlu, A.; Karasulu, H.Y.; Yelekçi, K.; Yılmaz, Ö.; Küçükgüzel, Ş.G. Synthesis, molecular modeling, in vivo study, and anticancer activity of 1,2,4‐triazole containing hydrazide–hydrazones derived from ( S )‐naproxen. Arch. Pharm., 2019, 352(6), 1800365.
[http://dx.doi.org/10.1002/ardp.201800365] [PMID: 31115928]
[33]
Montes, Á.J.; Sarmiento, S.J.I.; Delgado, V.F.; Rivero, I.A.; Díaz, C.S.P.; Uribe, B.M. Antioxidant activity and antimicrobial evaluation of 1-benzyl-1,2,3-triazole. Acta Univ., 2016, 26(3), 63-67.
[http://dx.doi.org/10.15174/au.2016.937]
[34]
Vieira, V.R.; Shamim, A.; Lamarrey, Y.; Stefani, H.A.; Mozer, S.J. Antioxidant and anti-sickling activity of glucal-based triazoles compounds – An in vitro and in silico study. Bioorg. Chem., 2021, 109, 104709.
[http://dx.doi.org/10.1016/j.bioorg.2021.104709] [PMID: 33636439]
[35]
Ünver, Y.; Deniz, S.; Çelik, F.; Akar, Z.; Küçük, M.; Sancak, K. Synthesis of new 1, 2, 4-triazole compounds containing schiff and mannich bases (morpholine) with antioxidant and antimicrobial activities. J. Enzyme Inhib. Med. Chem., 2016, 31(sup3), 89-95.
[36]
Sumrra, S.H.; Kausar, S.; Raza, M.A.; Zubair, M.; Zafar, M.N.; Nadeem, M.A.; Mughal, E.U.; Chohan, Z.H.; Mushtaq, F.; Rashid, U. Metal based triazole compounds: Their synthesis, computational, antioxidant, enzyme inhibition and antimicrobial properties. J. Mol. Struct., 2018, 1168, 202-211.
[http://dx.doi.org/10.1016/j.molstruc.2018.05.036]
[37]
Yılmaz, F.; Menteşe, E.; Baltaş, N. Synthesis and antioxidant evaluation of some novel benzimidazole derivatives containing a triazole nucleus. Lett. Drug Des. Discov., 2016, 14(2), 201-208.
[http://dx.doi.org/10.2174/1570180813666160609082633]
[38]
Saraei, M.; Ghasemi, Z.; Dehghan, G.; Hormati, M.; Ojaghi, K. Synthesis of some novel 1,2,3-triazole derivatives containing kojic acid moiety and evaluation for their antioxidant activity. Monatsh. Chem., 2017, 148(5), 917-923.
[http://dx.doi.org/10.1007/s00706-016-1844-1]
[39]
Karrouchi, K.; Fettach, S.; Radi, S.; Yousfi, E.; Taoufik, J.; Mabkhot, Y.N.; Alterary, S.; Faouzi, M.E.A.; Ansar, M. Synthesis, characterization, free-radical scavenging capacity and antioxidant activity of novel series of hydrazone, 1, 3, 4-oxadiazole and 1, 2, 4-triazole derived from 3, 5-dimethyl-1H-pyrazole. Lett. Drug Des. Discov., 2019, 16(7), 712-720.
[http://dx.doi.org/10.2174/1570180815666180516103050]
[40]
Tawfik, S.S.; Liu, M.; Farahat, A.A. Antiviral activity of thiadiazoles, oxadiazoles, triazoles and thiazoles. ARKIVOC, 2020, 2020(1), 180-218.
[http://dx.doi.org/10.24820/ark.5550190.p011.308]
[41]
Dixit, D.; Verma, P.K.; Marwaha, R.K. A review on ‘triazoles’: Their chemistry, synthesis and pharmacological potentials. J. Indian Chem. Soc., 2021, 18(10), 2535-2565.
[http://dx.doi.org/10.1007/s13738-021-02231-x]
[42]
Cao, X.; Wang, W.; Wang, S.; Bao, L. Asymmetric synthesis of novel triazole derivatives and their in vitro antiviral activity and mechanism of action. Eur. J. Med. Chem., 2017, 139, 718-725.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.057] [PMID: 28858766]
[43]
El-Sebaey, S.A. Recent advances in 1,2,4-triazole scaffolds as antiviral agents. Chem. Select, 2020, 5(37), 11654-11680.
[http://dx.doi.org/10.1002/slct.202002830]
[44]
Chen, Y.; Li, P.; Su, S.; Chen, M.; He, J.; Liu, L.; He, M.; Wang, H.; Xue, W. Synthesis and antibacterial and antiviral activities of myricetin derivatives containing a 1,2,4-triazole Schiff base. RSC Advances, 2019, 9(40), 23045-23052.
[http://dx.doi.org/10.1039/C9RA05139B] [PMID: 35514467]
[45]
El-Sayed, W.A.; Khalaf, H.S.; Mohamed, S.F.; Hussien, H.A.; Kutkat, O.M.; Amr, A.E. Synthesis and antiviral activity of 1,2,3-triazole glycosides based substituted pyridine via click cycloaddition. Russ. J. Gen. Chem., 2017, 87(10), 2444-2453.
[http://dx.doi.org/10.1134/S1070363217100279]
[46]
Elkanzi, N.A.A.; El-Sofany, W.I.; Gaballah, S.T.; Mohamed, A.M.; Kutkat, O.; El-Sayed, W.A. Synthesis, molecular modeling, and antiviral activity of novel triazole nucleosides and their analogs. Russ. J. Gen. Chem., 2019, 89(9), 1896-1904.
[http://dx.doi.org/10.1134/S1070363219090263]
[47]
Torabi, S.; Mohammadi, M.; Shirvani, M. Antidiabetic, antioxidant, antibacterial, and antifungal activities of vanadyl Schiff base complexes. Trends Pharmacol. Sci., 2018, 4(2), 56569704.
[48]
Channa, B.V.; Hamse, K.V.; Kumara, K.; Achutha, D.K.; Neratur, K.L.; Kariyappa, A.K. Design and synthesis of coumarin-triazole hybrids: Biocompatible anti-diabetic agents, in silico molecular docking and ADME screening. Heliyon, 2020, 6(10), e05290.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05290] [PMID: 33102875]
[49]
Asgari, M.S.; Mohammadi, K.M.; Sharafi, Z.; Faramarzi, M.A.; Rastegar, H.; Nasli Esfahani, E.; Bandarian, F.; Ranjbar, R.P.; Rahimi, R.; Biglar, M.; Mahdavi, M.; Larijani, B. Design and synthesis of 4,5-diphenyl-imidazol-1,2,3-triazole hybrids as new anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic and docking studies. Mol. Divers., 2021, 25(2), 877-888.
[http://dx.doi.org/10.1007/s11030-020-10072-8] [PMID: 32189236]
[50]
Ye, G.J.; Lan, T.; Huang, Z.X.; Cheng, X.N.; Cai, C.Y.; Ding, S.M.; Xie, M.L.; Wang, B. Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-Glucosidase inhibition and glucose uptake promotion. Eur. J. Med. Chem., 2019, 177, 362-373.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.045] [PMID: 31158750]
[51]
Dastjerdi, H.F.; Naderi, N.; Nematpour, M.; Rezaee, E.; Mahboubi, R.M.; Ebrahimi, M.; Hosseinipoor, S.; Hosseini, O.; Tabatabai, S.A. Design, synthesis and anti-diabetic activity of novel 1, 2, 3-triazole-5-carboximidamide derivatives as dipeptidyl peptidase-4 inhibitors. J. Mol. Struct., 2020, 1221, 128745.
[http://dx.doi.org/10.1016/j.molstruc.2020.128745]
[52]
Mohamed, M.A.A.; Abd Allah, O.A.; Bekhit, A.A.; Kadry, A.M.; El-Saghier, A.M.M. Synthesis and antidiabetic activity of novel triazole derivatives containing amino acids. J. Heterocycl. Chem., 2020, 57(6), 2365-2378.
[http://dx.doi.org/10.1002/jhet.3951]
[53]
Deswal, L.; Verma, V.; Kumar, D.; Kaushik, C.P.; Kumar, A.; Deswal, Y.; Punia, S. Synthesis and antidiabetic evaluation of benzimidazole-tethered 1,2,3-triazoles. Arch. Pharm., 2020, 353(9), 2000090.
[http://dx.doi.org/10.1002/ardp.202000090] [PMID: 32567729]
[54]
Gondru, R.; Kanugala, S.; Raj, S.; Ganesh Kumar, C.; Pasupuleti, M.; Banothu, J.; Bavantula, R. 1,2,3-triazole-thiazole hybrids: Synthesis, in vitro antimicrobial activity and antibiofilm studies. Bioorg. Med. Chem. Lett., 2021, 33, 127746.
[http://dx.doi.org/10.1016/j.bmcl.2020.127746] [PMID: 33333162]
[55]
Ruddarraju, R.R.; Murugulla, A.C.; Kotla, R.; Chandra, B.T.M.; Wudayagiri, R.; Donthabakthuni, S.; Maroju, R.; Baburao, K.; Parasa, L.S. Design, synthesis, anticancer, antimicrobial activities and molecular docking studies of theophylline containing acetylenes and theophylline containing 1,2,3-triazoles with variant nucleoside derivatives. Eur. J. Med. Chem., 2016, 123, 379-396.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.024] [PMID: 27487568]
[56]
El Malah, T.; Nour, H.F.; Satti, A.A.E.; Hemdan, B.A.; El-Sayed, W.A. Design, synthesis, and antimicrobial activities of 1, 2, 3-triazole glycoside clickamers. Molecules, 2020, 25(4), 790.
[http://dx.doi.org/10.3390/molecules25040790] [PMID: 32059480]
[57]
López, R.P.; Janeczko, M. Kubiński, K.; Amesty, Á.; Masłyk, M.; Estévez, B.A. Synthesis and antimicrobial activity of 4-substituted 1,2,3-triazole-coumarin derivatives. Molecules, 2018, 23(1), 199.
[http://dx.doi.org/10.3390/molecules23010199] [PMID: 29346325]
[58]
Patil, P.S.; Kasare, S.L.; Haval, N.B.; Khedkar, V.M.; Dixit, P.P.; Rekha, E.M.; Sriram, D.; Haval, K.P. Novel isoniazid embedded triazole derivatives: Synthesis, antitubercular and antimicrobial activity evaluation. Bioorg. Med. Chem. Lett., 2020, 30(19), 127434.
[http://dx.doi.org/10.1016/j.bmcl.2020.127434] [PMID: 32717369]
[59]
Valério, L.F.; Fazza, S.P.H.; Marinho, J.A.; Reis, S.R.; De Azevedo, A.L.; Capriles, G.P.V.Z.; Abramo, C.; Da Silva, D.A. 1,2,3-Triazole derivatives: Synthesis, docking, cytotoxicity analysis and in vivo antimalarial activity. Chem. Biol. Interact., 2021, 350, 109688.
[http://dx.doi.org/10.1016/j.cbi.2021.109688] [PMID: 34627786]
[60]
Chugh, A.; Kumar, A.; Verma, A.; Kumar, S.; Kumar, P. A review of antimalarial activity of two or three nitrogen atoms containing heterocyclic compounds. Med. Chem. Res., 2020, 29(10), 1723-1750.
[http://dx.doi.org/10.1007/s00044-020-02604-6]
[61]
Prakash, A.; Gogoi, K.; Baishya, G.; Saikia, B.; Barua, N.C.; Dohutia, C.; Verma, A.K. Antimalarial activity of a novel series of artemisinin-derived 1, 2, 3-triazole dimers. Asian Pac. J. Trop. Med., 2019, 12(5), 195.
[http://dx.doi.org/10.4103/1995-7645.259240]
[62]
Brandão, G.C.; Rocha, M.F.C.; Arantes, L.M.; Soares, L.F.; Roy, K.K.; Doerksen, R.J.; De Oliveira, B.A.; Pereira, G.R. Antimalarial naphthoquinones. Synthesis via click chemistry, in vitro activity, docking to Pf DHODH and SAR of lapachol-based compounds. Eur. J. Med. Chem., 2018, 145, 191-205.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.051] [PMID: 29324340]
[63]
Santos, B.; Gonzaga, D.; Da Silva, F.; Ferreira, V.; Garcia, C. Plasmodium falciparum knockout for the GPCR-like PfSR25 receptor displays greater susceptibility to 1, 2, 3-triazole compounds that block malaria parasite development. Biomolecules, 2020, 10(8), 1197.
[http://dx.doi.org/10.3390/biom10081197] [PMID: 32824696]
[64]
Tarawneh, A.H.; Al-Momani, L.A.; León, F.; Jain, S.K.; Gadetskaya, A.V.; Abu-Orabi, S.T.; Tekwani, B.L.; Cutler, S.J. Evaluation of triazole and isoxazole derivatives as potential anti-infective agents. Med. Chem. Res., 2018, 27(4), 1269-1275.
[http://dx.doi.org/10.1007/s00044-018-2146-4] [PMID: 30374214]
[65]
Santos, J.D.O.; Pereira, G.R.; Brandão, G.C.; Borgati, T.F.; Arantes, L.M.; Paula, R.C.D.; Soares, L.F.; Do Nascimento, M.F.; Ferreira, M.R.; Taranto, A.G.; Varotti, F.P. Synthesis, in vitro antimalarial activity and in silico studies of hybrid kauranoid 1, 2, 3-triazoles derived from naturally occurring diterpenes. J. Braz. Chem. Soc., 2016, 27, 551-565.
[66]
Batra, N.; Rajendran, V.; Agarwal, D.; Wadi, I.; Ghosh, P.C.; Gupta, R.D.; Nath, M. Synthesis and antimalarial evaluation of [1, 2, 3]-triazole-tethered sulfonamide-berberine hybrids. Chem. Select, 2018, 3(34), 9790-9793.
[http://dx.doi.org/10.1002/slct.201801905]
[67]
Kumar, S.; Khokra, S.L.; Yadav, A. Triazole analogues as potential pharmacological agents: A brief review. Fut. J. Pharm. Sci., 2021, 7(1), 106.
[http://dx.doi.org/10.1186/s43094-021-00241-3] [PMID: 34056014]
[68]
Chu, X.M.; Wang, C.; Wang, W.L.; Liang, L.L.; Liu, W.; Gong, K.K.; Sun, K.L. Triazole derivatives and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2019, 166, 206-223.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.047] [PMID: 30711831]
[69]
Yadav, N.; Agarwal, D.; Kumar, S.; Dixit, A.K.; Gupta, R.D.; Awasthi, S.K. In vitro antiplasmodial efficacy of synthetic coumarin-triazole analogs. Eur. J. Med. Chem., 2018, 145, 735-745.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.017] [PMID: 29366931]
[70]
Devender, N.; Gunjan, S.; Tripathi, R.; Tripathi, R.P. Synthesis and antiplasmodial activity of novel indoleamide derivatives bearing sulfonamide and triazole pharmacophores. Eur. J. Med. Chem., 2017, 131, 171-184.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.010] [PMID: 28319782]
[71]
Howieson, V.M.; Tran, E.; Hoegl, A.; Fam, H.L.; Fu, J.; Sivonen, K.; Li, X.X.; Auclair, K.; Saliba, K.J. Triazole substitution of a labile amide bond stabilizes pantothenamides and improves their antiplasmodial potency. Antimicrob. Agents Chemother., 2016, 60(12), 7146-7152.
[http://dx.doi.org/10.1128/AAC.01436-16] [PMID: 27645235]
[72]
Peroković, V.P.; Car, Ž.; Draženović, J.; Stojković, R.; Milković, L.; Antica, M.; Škalamera, Đ.; Tomić, S.; Ribić, R. Design, synthesis, and biological evaluation of desmuramyl dipeptides modified by adamantyl-1, 2, 3-triazole. Molecules, 2021, 26(21), 6352.
[http://dx.doi.org/10.3390/molecules26216352] [PMID: 34770761]
[73]
Paprocka, R.; Wiese, M.; Eljaszewicz, A.; Helmin, B.A.; Gzella, A.; Modzelewska, B.B.; Michalkiewicz, J. Synthesis and anti-inflammatory activity of new 1,2,4-triazole derivatives. Bioorg. Med. Chem. Lett., 2015, 25(13), 2664-2667.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.079] [PMID: 25978961]
[74]
Chirke, S.S.; Krishna, J.S.; Rathod, B.B.; Bonam, S.R.; Khedkar, V.M.; Rao, B.V.; Sampath, K.H.M.; Shetty, P.R. Synthesis of triazole derivatives of 9-ethyl-9H-carbazole and dibenzo[b, d] furan and evaluation of their antimycobacterial and immunomodulatory activity. Chem. Select, 2017, 2(24), 7309-7318.
[http://dx.doi.org/10.1002/slct.201701377]
[75]
Zaheer, M.; Zia, U.R.M.; Munir, R.; Jamil, N.; Ishtiaq, S.; Zaib, S.R.S.; Elsegood, M.R.J. (Benzylideneamino) triazole–thione derivatives of flurbiprofen: An efficient microwave-assisted synthesis and in vivo analgesic potential. ACS Omega, 2021, 6(46), 31348-31357.
[http://dx.doi.org/10.1021/acsomega.1c05222] [PMID: 34841178]
[76]
Khan, S.A.; Imam, S.M.; Ahmad, A.; Basha, S.H.; Husain, A. Synthesis, molecular docking with COX 1& II enzyme, ADMET screening and in vivo anti-inflammatory activity of oxadiazole, thiadiazole and triazole analogs of felbinac. J. Saudi Chem. Soc., 2018, 22(4), 469-484.
[http://dx.doi.org/10.1016/j.jscs.2017.05.006]
[77]
Abdelazeem, A.H.; El-Din, A.G.S.; Arab, H.H.; El-Saadi, M.T.; El-Moghazy, S.M.; Amin, N.H. Design, synthesis and anti-inflammatory/analgesic evaluation of novel di-substituted urea derivatives bearing diaryl-1,2,4-triazole with dual COX-2/sEH inhibitory activities. J. Mol. Struct., 2021, 1240, 130565.
[http://dx.doi.org/10.1016/j.molstruc.2021.130565]
[78]
Abdelazeem, A.H.; El-Din, A.G.S.; El-Saadi, M.T.; El-Moghazy, S.M.; Amin, N.H. Design, synthesis and biological evaluation of diarylpyrazole/triazole bearing 1,3,4- oxadiazole moiety as coxs inhibitors endowed with potential anti-inflammatory and analgesic activities. Res. J. Pharm. Technol., 2020, 13(9), 4255-4262.
[http://dx.doi.org/10.5958/0974-360X.2020.00751.9]
[79]
Sarigol, D.; Uzgoren, B.A.; Tel, B.C.; Somuncuoglu, E.I.; Kazkayasi, I.; Ozadal, S.K.; Unsal, T.O.; Okay, G.; Ertan, M.; Tozkoparan, B. Novel thiazolo[3,2-b]-1,2,4-triazoles derived from naproxen with analgesic/anti-inflammatory properties: Synthesis, biological evaluation and molecular modeling studies. Bioorg. Med. Chem., 2015, 23(10), 2518-2528.
[http://dx.doi.org/10.1016/j.bmc.2015.03.049] [PMID: 25868745]
[80]
Gharehnaghadeh, S.; Salehi, P.; Bararjanian, M. Pecio, Ł; Babanezhad, H.K.; Khoramjouy, M.; Shahhosseini, S.; Faizi, M. Novel triazole-tethered derivatives of nor-codeine: Synthesis, radioligand binding assay, docking study and evaluation of their analgesic properties. Chem. Select, 2020, 5(46), 14753-14758.
[http://dx.doi.org/10.1002/slct.202003684]
[81]
Gajanan, K.S.; Raju, A.; Baban, M.P.; Bhanudas, P.R. Analgesic activity of some 1,2,4-triazole heterocycles clubbed with pyrazole, tetrazole, isoxazole and pyrimidine. Adv. Pharm. Bull., 2013, 3(1), 13-18.
[PMID: 24312806]
[82]
Ahmadi, F.; Ghayahbashi, M.; Sharifzadeh, M.; Alipoiur, E.; Ostad, S.; Vosooghi, M. khademi, H.; Amini, M. Synthesis and evaluation of anti-inflammatory and analgesic activities of new 1,2,4-triazole derivatives. Med. Chem., 2014, 11(1), 69-76.
[http://dx.doi.org/10.2174/1573406410666140613154507] [PMID: 23638926]
[83]
Karrouchi, K.; Chemlal, L.; Taoufik, J.; Cherrah, Y.; Radi, S.; El Abbes, F.M.; Ansar, M. Synthesis, antioxidant and analgesic activities of Schiff bases of 4-amino-1,2,4-triazole derivatives containing a pyrazole moiety. Ann. Pharm. Fr., 2016, 74(6), 431-438.
[http://dx.doi.org/10.1016/j.pharma.2016.03.005] [PMID: 27107461]
[84]
Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 1-21.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
[85]
Zhou, C.H.; Wang, Y. Recent researches in triazole compounds as medicinal drugs. Curr. Med. Chem., 2012, 19(2), 239-280.
[http://dx.doi.org/10.2174/092986712803414213] [PMID: 22320301]
[86]
(a) Agrahari, A.K.; Bose, P.; Jaiswal, M.K.; Rajkhowa, S.; Singh, A.S.; Hotha, S.; Mishra, N.; Tiwari, V.K. Cu (I)-catalyzed click chemistry in glycoscience and their diverse applications. Chem. Rev., 2021, 121(13), 7638-7956.
[http://dx.doi.org/10.1021/acs.chemrev.0c00920] [PMID: 34165284];
(b) Bonandi, E.; Christodoulou, M.S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov. Today, 2017, 22(10), 1572-1581.
[http://dx.doi.org/10.1016/j.drudis.2017.05.014] [PMID: 23832715];
(c) Bachl, J.; Mayr, J.; Sayago, F.J.; Cativiela, C.; Díaz, D.D. Amide–triazole isosteric substitution for tuning self-assembly and incorporating new functions into soft supramolecular materials. Chem. Commun., 2015, 51(25), 5294-5297.
[http://dx.doi.org/10.1039/C4CC08593K] [PMID: 25502929]
[87]
Imkan; Ali, I.; Ullah, S.; Imran, M.; Saifullah, S.; Hussain, K.; Kanwal, T.; Nisar, J.; Raza Shah, M. Synthesis of biocompatible triazole based non-ionic surfactant and its vesicular drug delivery investigation. Chem. Phys. Lipids, 2020, 228, 104894.
[http://dx.doi.org/10.1016/j.chemphyslip.2020.104894] [PMID: 32126217]
[88]
Hemamalini, A.; Azhagiya, S.E.R.; Mudedla, S.K.; Subramanian, V.; Mohan, D.T. Design and synthesis of sugar-triazole based uracil appended sugar-imine derivatives – an application in DNA binding studies. New J. Chem., 2015, 39(6), 4575-4582.
[http://dx.doi.org/10.1039/C4NJ02221A]
[89]
Nahlé, A.; Salim, R.; El Hajjaji, F.; Aouad, M.R.; Messali, M.; Ech, C.E.; Hammouti, B.; Taleb, M. Novel triazole derivatives as ecological corrosion inhibitors for mild steel in 1.0 M HCl: Experimental & theoretical approach. RSC Advances, 2021, 11(7), 4147-4162.
[http://dx.doi.org/10.1039/D0RA09679B] [PMID: 35424362]
[90]
Queiroz, T.M.; Orozco, E.V.M.; Silva, V.R.; Santos, L.S.; Soares, M.B.P.; Bezerra, D.P.; Porto, A.L.M. Semi-synthesis of β-keto-1,2,3-triazole derivatives from ethinylestradiol and evaluation of the cytotoxic activity. Heliyon, 2019, 5(9), e02408.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02408] [PMID: 31517128]
[91]
Zhang, Y.; Yang, H.; Ma, H.; Bian, G.; Zang, Q.; Sun, J.; Zhang, C.; An, Z.; Wong, W.Y. Excitation wavelength dependent fluorescence of an ESIPT triazole derivative for amine sensing and anti-counterfeiting applications. Angew. Chem. Int. Ed., 2019, 58(26), 8773-8778.
[http://dx.doi.org/10.1002/anie.201902890] [PMID: 30900323]
[92]
Okafor, I.S.; Wang, G. Synthesis and gelation property of a series of disaccharide triazole derivatives. Carbohydr. Res., 2017, 451, 81-94.
[http://dx.doi.org/10.1016/j.carres.2017.09.008] [PMID: 28987928]
[93]
Hozien, Z.A. EL-Mahdy, A.F.M.; Ali, L.S.A.; Markeb, A.A.; El-Sherief, H.A.H. One-pot synthesis of some new s-triazole derivatives and their potential application for water decontamination. ACS Omega, 2021, 6(39), 25574-25584.
[http://dx.doi.org/10.1021/acsomega.1c03675] [PMID: 34632214]
[94]
Joshi, S.; Kumari, S.; Bhattacharjee, R.; Sarmah, A.; Sakhuja, R.; Pant, D.D. Experimental and theoretical study: Determination of dipole moment of synthesized coumarin–triazole derivatives and application as turn off fluorescence sensor: High sensitivity for iron(III) ions. Sens. Actuators B Chem., 2015, 220, 1266-1278.
[http://dx.doi.org/10.1016/j.snb.2015.07.053]
[95]
Sathyanarayana, R.; Poojary, B. Exploring recent developments on 1,2,4-triazole: Synthesis and biological applications. J. Chin. Chem. Soc., 2020, 67(4), 459-477.
[http://dx.doi.org/10.1002/jccs.201900304]
[96]
Faisal, M.; Saeed, A.; Shahzad, D.; Abbas, N.; Ali, L.F.; Ali, C.P.; Abdul, F.T.; Muhammad, K.D.; Aaliya, S.S. General properties and comparison of the corrosion inhibition efficiencies of the triazole derivatives for mild steel. Corros. Rev., 2018, 36(6), 507-545.
[http://dx.doi.org/10.1515/corrrev-2018-0006]
[97]
Aljamali, N.M.; Mahmood, R.M.U.; Baqi, R.A. Review on preparation and application fields of triazole & tetrazole derivatives. IJAAC, 2020, 6(1), 50-60.
[98]
Dawood, K.M.; Abdel, W.B.F.; Raslan, M.A. Synthesis and applications of bi- and bis-triazole systems. ARKIVOC, 2018, 2018(1), 179-215.
[http://dx.doi.org/10.24820/ark.5550190.p010.522]
[99]
Hozien, Z.A. EL-Mahdy, A.F.M.; Abo, M.A.; Ali, L.S.A.; El-Sherief, H.A.H. Synthesis of schiff and mannich bases of new s -triazole derivatives and their potential applications for removal of heavy metals from aqueous solution and as antimicrobial agents. RSC Advances, 2020, 10(34), 20184-20194.
[http://dx.doi.org/10.1039/D0RA02872J] [PMID: 35520399]
[100]
Khan, G.; Sreenivasa, S.; Govindaiah, S.; Chandramohan, V.; Shetty, P.R. Synthesis, biological screening, in silico study and fingerprint applications of novel 1, 2, 4-triazole derivatives. J. Heterocycl. Chem., 2020, 57(4), 2010-2023.
[http://dx.doi.org/10.1002/jhet.3929]
[101]
(a) Gangaprasad, D.; Raj, J.P.; Kiranmye, T.; Sadik, S.S.; Elangovan, J. A new paradigm of copper oxide nanoparticles catalyzed reactions: Synthesis of 1,2,3-triazoles through oxidative azide-olefin cycloaddition. RSC Advances, 2015, 5(78), 63473-63477.
[http://dx.doi.org/10.1039/C5RA08693K];
(b) Sletten, E.M.; Bertozzi, C.R. A hydrophilic azacyclooctyne for Cu-free click chemistry. Org. Lett., 2008, 10(14), 3097-3099.
[http://dx.doi.org/10.1021/ol801141k] [PMID: 18549231];
(c) Jewett, J.C.; Sletten, E.M.; Bertozzi, C.R. Rapid Cu-free click chemistry with readily synthesized biarylazacyclooctynones. J. Am. Chem. Soc., 2010, 132(11), 3688-3690.
[http://dx.doi.org/10.1021/ja100014q] [PMID: 20187640];
(d) Arigela, R.K.; Mandadapu, A.K.; Sharma, S.K.; Kumar, B.; Kundu, B. Cascade intermolecular Michael addition-intramolecular azide/internal alkyne 1,3-dipolar cycloaddition reaction in one pot. Org. Lett., 2012, 14(7), 1804-1807.
[http://dx.doi.org/10.1021/ol300399y] [PMID: 22440058];
(e) Gold, B.; Dudley, G.B.; Alabugin, I.V. Moderating strain without sacrificing reactivity: design of fast and tunable noncatalyzed alkyne–azide cycloadditions via stereoelectronically controlled transition state stabilization. J. Am. Chem. Soc., 2013, 135(4), 1558-1569.
[http://dx.doi.org/10.1021/ja3114196] [PMID: 23272641];
(f) Zhang, H.; Tanimoto, H.; Morimoto, T.; Nishiyama, Y.; Kakiuchi, K. Regioselective rapid synthesis of fully substituted 1,2,3-triazoles mediated by propargyl cations. Org. Lett., 2013, 15(20), 5222-5225.
[http://dx.doi.org/10.1021/ol402387w] [PMID: 24087927];
(g) Ding, S.; Jia, G.; Sun, J. Iridium-catalyzed intermolecular azide-alkyne cycloaddition of internal thioalkynes under mild conditions. Angew. Chem. Int. Ed., 2014, 53(7), 1877-1880.
[http://dx.doi.org/10.1002/anie.201309855] [PMID: 24474668]
[102]
(a) Huisgen, R. 1.3-Dipolare cycloadditionen rückschau und ausblick. Angew. Chem., 1963, 75(13), 604-637.
[http://dx.doi.org/10.1002/ange.19630751304];
(b) Huisgen, R. Kinetik und mechanismus 1.3-dipolarer cycloadditionen. Angew. Chem., 1963, 75(16-17), 742-754.
[http://dx.doi.org/10.1002/ange.19630751603]
[103]
Nasrollahzadeh, M.; Sajadi, S.M.; Mirzaei, Y. An efficient one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles at room temperature by green synthesized Cu NPs using Otostegia persica leaf extract. J. Colloid Interface Sci., 2016, 468, 156-162.
[http://dx.doi.org/10.1016/j.jcis.2016.01.050] [PMID: 26835585]
[104]
Moghaddam, F.M.; Ayati, S.E. Copper immobilized onto a triazole functionalized magnetic nanoparticle: A robust magnetically recoverable catalyst for “click” reactions. RSC Advances, 2015, 5(5), 3894-3902.
[http://dx.doi.org/10.1039/C4RA13330G]
[105]
Rezaei, F.; Ali, A.M.; Khalifeh, R. Design and synthesis of Fe3O4@SiO2/aza-crown ether-Cu(II) as a novel and highly efficient magnetic nanocomposite catalyst for the synthesis of 1,2,3-triazoles, 1-substituted 1H-tetrazoles and 5-substituted 1H-tetrazoles in green solvents. Inorg. Chim. Acta, 2019, 489, 8-18.
[http://dx.doi.org/10.1016/j.ica.2019.01.039]
[106]
Gangu, K.K.; Maddila, S.; Maddila, S.N.; Jonnalagadda, S.B. Efficient synthetic route for thio-triazole derivatives catalyzed by iron doped fluorapatite. Res. Chem. Intermed., 2017, 43(3), 1793-1811.
[http://dx.doi.org/10.1007/s11164-016-2730-5]
[107]
Lima, C.G.S.; Ali, A.; Van Berkel, S.S.; Westermann, B.; Paixão, M.W. Correction: Emerging approaches for the synthesis of triazoles: Beyond metal-catalyzed and strain-promoted azide-alkyne cycloaddition. Chem. Commun., 2015, 51(60), 12139-12139.
[http://dx.doi.org/10.1039/C5CC90314A] [PMID: 26151928]
[108]
Chen, Z.; Li, H.; Dong, W.; Miao, M.; Ren, H. 2-Catalyzed oxidative coupling reactions of hydrazones and amines and the application in the synthesis of 1, 3, 5-trisubstituted 1, 2, 4-triazoles. Org. Lett., 2016, 18(6), 1334-1337.
[http://dx.doi.org/10.1021/acs.orglett.6b00277] [PMID: 26914527]
[109]
Bechara, W.S.; Khazhieva, I.S.; Rodriguez, E.; Charette, A.B. One-pot synthesis of 3,4,5-trisubstituted 1,2,4-triazoles via the addition of hydrazides to activated secondary amides. Org. Lett., 2015, 17(5), 1184-1187.
[http://dx.doi.org/10.1021/acs.orglett.5b00128] [PMID: 25700199]
[110]
Khalil, K.D.; Riyadh, S.M.; Gomha, S.M.; Ali, I. Synthesis, characterization and application of copper oxide chitosan nanocomposite for green regioselective synthesis of [1,2,3]triazoles. Int. J. Biol. Macromol., 2019, 130, 928-937.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.019] [PMID: 30844456]
[111]
Slagbrand, T.; Volkov, A.; Trillo, P.; Tinnis, F.; Adolfsson, H. Transformation of amides into highly functionalized triazolines. ACS Catal., 2017, 7(3), 1771-1775.
[http://dx.doi.org/10.1021/acscatal.7b00095]
[112]
(a) Clark, P.R.; Williams, G.D.; Hayes, J.F.; Tomkinson, N.C.O. A scalable metal‐,azide‐,and halogen‐ree method for the preparation of triazoles. Angew. Chem. Int. Ed., 2020, 59(17), 6740-6744.
[http://dx.doi.org/10.1002/anie.201915944] [PMID: 31943599];
(b) Kantheti, S.; Narayan, R.; Raju, K.V.S.N. The impact of 1,2,3-triazoles in the design of functional coatings. RSC Advances, 2015, 5(5), 3687-3708.
[http://dx.doi.org/10.1039/C4RA12739];
(c) Huo, J.; Hu, H.; Zhang, M.; Hu, X.; Chen, M.; Chen, D.; Liu, J.; Xiao, G.; Wang, Y.; Wen, Z. A mini review of the synthesis of poly-1,2,3-triazole-based functional materials. RSC Advances, 2017, 7(4), 2281-2287.
[http://dx.doi.org/10.1039/C6RA27012CK];
(d) Kukwikila, M.; Gale, N.; El-Sagheer, A.H.; Brown, T.; Tavassoli, A. Assembly of a biocompatible triazole-linked gene by one-pot click-DNA ligation. Nat. Chem., 2017, 9(11), 1089-1098.
[http://dx.doi.org/10.1038/nchem.2850] [PMID: 29064492];
(e) Zhang, B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur. J. Med. Chem., 2019, 168, 357-372.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.055] [PMID: 30826511]
[113]
Yadav, S.K.; Yadav, R.K.; Yadava, U. Computational investigations and molecular dynamics simulations envisioned for potent antioxidant and anticancer drugs using indole-chalcone-triazole hybrids. DNA Repair , 2020, 86, 102765.
[http://dx.doi.org/10.1016/j.dnarep.2019.102765] [PMID: 31846836]
[114]
Alam, M.M. 1,2,3-Triazole hybrids as anticancer agents: A review. Arch. Pharm., 2022, 355(1), 2100158.
[http://dx.doi.org/10.1002/ardp.202100158] [PMID: 34559414]
[115]
Asif, M. Antiviral and antiparasitic activities of various substituted triazole derivatives: A mini. Chem. Int., 2015, 1(2), 71-80.
[116]
Kaproń, B.; Łuszczki, J.J.; Płazińska, A.; Siwek, A.; Karcz, T.; Gryboś, A.; Nowak, G.; Makuch, K.A.; Walczak, K.; Langner, E.; Szalast, K.; Marciniak, S.; Paczkowska, M.; Cielecka, P.J.; Ciesla, L.M.; Plech, T. Development of the 1,2,4-triazole-based anticonvulsant drug candidates acting on the voltage-gated sodium channels. Insights from in-vivo, in-vitro, and in-silico studies. Eur. J. Pharm. Sci., 2019, 129, 42-57.
[http://dx.doi.org/10.1016/j.ejps.2018.12.018] [PMID: 30594731]
[117]
(a) Lu, L.; Yuan, S.; Wang, J.; Shen, Y.; Deng, S.; Xie, L.; Yang, Q. The formation mechanism of hydrogels. Curr. Stem Cell Res. Ther., 2018, 13(7), 490-496.
[http://dx.doi.org/10.2174/1574888X12666170612102706] [PMID: 28606044];
(b) Abdallah, D.J.; Weiss, R.G. Organogels and low molecular mass organic gelators. Adv. Mater., 2000, 12(17), 1237-1247.
[http://dx.doi.org/10.1002/1521-4095(200009)12:17<1237:AID-ADMA1237>3.0.CO;2-B];
(c) Terech, P.; Weiss, R.G. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev., 1997, 97(8), 3133-3160.
[http://dx.doi.org/10.1021/cr9700282] [PMID: 11851487];
(d) Van Esch, J.H.; Feringa, B.L. New functional materials based on self-assembling organogels: From serendipity towards design. Angew. Chem. Int. Ed., 2000, 39(13), 2263-2266.
[http://dx.doi.org/10.1002/1521-3773(20000703)39:13<2263:AID-ANIE2263>3.0.CO;2-V] [PMID: 10941059]
[118]
(a) Moses, J.E.; Moorhouse, A.D. The growing applications of click chemistry. Chem. Soc. Rev., 2007, 36(8), 1249-1262.
[http://dx.doi.org/10.1039/B613014N] [PMID: 17619685];
(b) Díaz, D.D.; Rajagopal, K.; Strable, E.; Schneider, J.; Finn, M.G. “Click” chemistry in a supramolecular environment: Stabilization of organogels by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc., 2006, 128(18), 6056-6057.
[http://dx.doi.org/10.1021/ja061251w] [PMID: 16669673]
[119]
Hanabusa, K.; Suzuki, M. Development of low-molecular-weight gelators and polymer-based gelators. Polym. J., 2014, 46(11), 776-782.
[http://dx.doi.org/10.1038/pj.2014.64]
[120]
Vemula, P.K.; Campbell, N.R.; Zhao, F.; Xu, B.; John, G.; Karp, J.M. Self-Assembled Prodrugs. In: Comprehensive Biomaterials; Ducheyne, P., Ed.; Elsevier Science B. V: Amsterdam, 2011; Vol. 4, pp. 339-355.
[http://dx.doi.org/10.1016/B978-0-08-055294-1.00135-5]
[121]
Falcone, N.; Kraatz, H.B. Ferrocene Peptide-based Supramolecular Gels: Current Trends and Applications. In: Advances in Bioorganometallic Chemistry; Hirao, T.; Moriuchi, T., Eds.; Elsevier Science B. V: Amsterdam, 2019; pp. 57-74.
[http://dx.doi.org/10.1016/B978-0-12-814197-7.00003-0]
[122]
Bhavya, P.V.; Rabecca, J.V.; Muthuvel, P.; Mohan, D.T. Insights into a novel class of azobenzenes incorporating 4,6- O -protected sugars as photo-responsive organogelators. RSC Advances, 2019, 9(72), 42219-42227.
[http://dx.doi.org/10.1039/C9RA08033C] [PMID: 35542832]
[123]
Soundarajan, K.; Periyasamy, R.; Mohan, D.T. Design and synthesis of sugar-benzohydrazides: Low molecular weight organogelators. RSC Advances, 2016, 6(85), 81838-81846.
[http://dx.doi.org/10.1039/C6RA18715C]
[124]
Soundarajan, K.; Periyasamy, R.; Muthuvel, P.; Das, T.M. Synthesis and characterization of novel class of N2-/N3-(β-D-glucopyranosyl)-2-/3-aminoquinoline derivatives and studies on their solvent-controlled self-assembly. Trends Carbohydr. Res., 2017, 9(1), 44-51.
[125]
Soundarajan, K.; Rajasekar, M.; Das, T.M. Self-assembly of sugar based glyco-lipids: Gelation studies of partially protected d-glucose derivatives. Mater. Sci. Eng. C, 2018, 93, 776-781.
[http://dx.doi.org/10.1016/j.msec.2018.08.038] [PMID: 30274111]
[126]
(a) Soundarajan, K.; Mohan, D.T. Sugar-benzohydrazide based phase selective gelators for marine oil spill recovery and removal of dye from polluted water. Carbohydr. Res., 2019, 481, 60-66.
[http://dx.doi.org/10.1016/j.carres.2019.06.011] [PMID: 31252336];
(b) Chen, J.Y.; Yuan, B.; Li, Z.Y.; Tang, B.; Ankers, E.; Wang, X.G.; Li, J.L. Controlling the supramolecular architecture of molecular gels with surfactants. Langmuir, 2016, 32(4), 1171-1177.
[http://dx.doi.org/10.1021/acs.langmuir.5b04384] [PMID: 26752251];
(c) Mehdi, H.; Pang, H.; Gong, W.; Dhinakaran, M.K.; Wajahat, A.; Kuang, X.; Ning, G. A novel smart supramolecular organic gelator exhibiting dual-channel responsive sensing behaviours towards fluoride ion via gel-gel states. Org. Biomol. Chem., 2016, 14(25), 5956-5964.
[http://dx.doi.org/10.1039/C6OB00600K] [PMID: 27193611];
(d) Kuksenok, O.; Dayal, P.; Bhattacharya, A.; Yashin, V.V.; Deb, D.; Chen, I.C.; Van Vliet, K.J.; Balazs, A.C. Chemo-responsive, self-oscillating gels that undergo biomimetic communication. Chem. Soc. Rev., 2013, 42(17), 7257-7277.
[http://dx.doi.org/10.1039/c3cs35497k] [PMID: 23370524]
[127]
Babu, S.S.; Praveen, V.K.; Ajayaghosh, A. Functional π-gelators and their applications. Chem. Rev., 2014, 114(4), 1973-2129.
[http://dx.doi.org/10.1021/cr400195e] [PMID: 24400783]
[128]
(a) Morris, J.; Bietsch, J.; Bashaw, K.; Wang, G. Recently developed carbohydrate based gelators and their applications. Gels, 2021, 7(1), 24.
[http://dx.doi.org/10.3390/gels7010024] [PMID: 33652820];
(b) Datta, S.; Bhattacharya, S. Multifarious facets of sugar-derived molecular gels: Molecular features, mechanisms of self-assembly and emerging applications. Chem. Soc. Rev., 2015, 44(15), 5596-5637.
[http://dx.doi.org/10.1039/C5CS00093A] [PMID: 26023922]
[129]
Hemamalini, A.; Mohan, D.T. Design and synthesis of sugar-triazole low molecular weight gels as mercury ion sensor. New J. Chem., 2013, 37(8), 2419-2425.
[http://dx.doi.org/10.1039/c3nj00072a]
[130]
Periyasamy, R.; Soundarajan, K.; Mohan, D.T. Simple perspectives of sugar based gel chemistry. SMC Bull., 2017, 8(1), 25-32.
[131]
Rajasekar, M.; Das, T.M. New class of rhodamine-based α-C-glycosides and their applications. Trends Carbohydr. Res., 2016, 8(1), 26-35.
[132]
Michael, A. Ueber die einwirkung von diazobenzolimid auf acetylendicarbonsäuremethylester. J. Prakt. Chem., 1893, 48(1), 94-95.
[http://dx.doi.org/10.1002/prac.18930480114]
[133]
(a) Huisgen, R. 1,3-Dipolar cycloadditions. Past and future. Angew. Chem. Int. Ed. Engl., 1963, 2(10), 565-598.
[http://dx.doi.org/10.1002/anie.196305651];
(b) Huisgen, R. Kinetics and mechanism of 1,3-dipolar cycloadditions. Angew. Chem. Int. Ed. Engl., 1963, 2(11), 633-645.
[http://dx.doi.org/10.1002/anie.196306331]
[134]
(a) Huisgen, R. Kinetics and reaction mechanisms: Selected examples from the experience of forty years. Pure Appl. Chem., 1989, 61(4), 613-628.
[http://dx.doi.org/10.1351/pac198961040613];
(b) Huisgen, R.; Szeimies, G.; Möbius, L. 1.3-Dipolare cycloadditionen, XXXII. Kinetik der additionen organischer azide an CC-mehrfachbindungen. Chem. Ber., 1967, 100(8), 2494-2507.
[http://dx.doi.org/10.1002/cber.19671000806]
[135]
Huisgen, R. 1,3-Dipolar cycloadditions-introduction, survey, mechanism. In: 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984, pp. 1-176.
[136]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[137]
Tornoe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase:1,2,3-Triazoles by regiospecific copper(I)-catalyzed 1,3- dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67, 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[138]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed., 2002, 41(14), 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[139]
Huisgen, R. 1,3-Dipolar cycloadditions. Proc. Chem. Soc., 1961, 79, 357-396.
[140]
(a) Agrofoglio, L.A.; Gillaizeau, I.; Saito, Y. Palladium-assisted routes to nucleosides. Chem. Rev., 2003, 103(5), 1875-1916.
[http://dx.doi.org/10.1021/cr010374q] [PMID: 12744695];
(b) Pathak, T. Azidonucleosides: Synthesis, reactions, and biological properties. Chem. Rev., 2002, 102(5), 1623-1668.
[http://dx.doi.org/10.1021/cr0104532] [PMID: 11996546]
[141]
Amblard, F.; Cho, J.H.; Schinazi, R.F. Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem. Rev., 2009, 109(9), 4207-4220.
[http://dx.doi.org/10.1021/cr9001462] [PMID: 19737023]
[142]
Zhang, L.; Chen, X.; Xue, P.; Sun, H.H.Y.; Williams, I.D.; Sharpless, K.B.; Fokin, V.V.; Jia, G. Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J. Am. Chem. Soc., 2005, 127(46), 15998-15999.
[http://dx.doi.org/10.1021/ja054114s] [PMID: 16287266]
[143]
(a) Baskin, J.M.; Prescher, J.A.; Laughlin, S.T.; Agard, N.J.; Chang, P.V.; Miller, I.A.; Lo, A.; Codelli, J.A.; Bertozzi, C.R. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. USA, 2007, 104(43), 16793-16797.
[http://dx.doi.org/10.1073/pnas.0707090104] [PMID: 17942682];
(b) Sletten, E.M.; Bertozzi, C.R. Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed., 2009, 48(38), 6974-6998.
[http://dx.doi.org/10.1002/anie.200900942] [PMID: 19714693];
(c) Plass, T.; Milles, S.; Koehler, C.; Schultz, C.; Lemke, E.A. Genetically encoded copper-free click chemistry. Angew. Chem. Int. Ed., 2011, 50(17), 3878-3881.
[http://dx.doi.org/10.1002/anie.201008178] [PMID: 21433234]
[144]
van Berkel, S.S.; Brauch, S.; Gabriel, L.; Henze, M.; Stark, S.; Vasilev, D.; Wessjohann, L.A.; Abbas, M.; Westermann, B. Traceless tosylhydrazone-based triazole formation: A metal-free alternative to strain-promoted azide-alkyne cycloaddition. Angew. Chem. Int. Ed., 2012, 51(22), 5343-5346.
[http://dx.doi.org/10.1002/anie.201108850] [PMID: 22514135]
[145]
Stork, G.; Dowd, S.R. A new method for the alkylation of ketones and aldehydes: The C-alkylation of the magnesium salts of N-substituted imines. J. Am. Chem. Soc., 1963, 85(14), 2178-2180.
[http://dx.doi.org/10.1021/ja00897a040]
[146]
Wan, J.P.; Hu, D.; Liu, Y.; Sheng, S. Azide-free synthesis of 1,2,3-triazoles: New opportunity for sustainable synthesis. ChemCatChem, 2015, 7(6), 901-903.
[http://dx.doi.org/10.1002/cctc.201500001]
[147]
Ahmed, M.; Razaq, H.; Faisal, M.; Siyal, A.N.; Haider, A. Metal-free and azide-free synthesis of 1,2,3-triazoles derivatives. Synth. Commun., 2017, 47(13), 1193-1200.
[http://dx.doi.org/10.1080/00397911.2017.1303511]
[148]
Rodionov, V.O.; Fokin, V.V.; Finn, M.G. Mechanism of the ligand-free CuI-catalyzed azide-alkyne cycloaddition reaction. Angew. Chem. Int. Ed., 2005, 44(15), 2210-2215.
[http://dx.doi.org/10.1002/anie.200461496] [PMID: 15693051]
[149]
Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc., 2005, 127(1), 210-216.
[http://dx.doi.org/10.1021/ja0471525] [PMID: 15631470]
[150]
Straub, B.F. µ-Acetylide and µ-alkenylidene ligands in “click” triazole syntheses. Chem. Commun., 2007, 37(37), 3868-3870.
[http://dx.doi.org/10.1039/b706926j] [PMID: 18219789]
[151]
(a) Zhu, L.; Brassard, C.J.; Zhang, X.; Guha, P.M.; Clark, R.J. On the Mechanism of copper(I)-catalyzed azide-alkyne cycloaddition. Chem. Rec., 2016, 16(3), 1501-1517.
[http://dx.doi.org/10.1002/tcr.201600002] [PMID: 27216993];
(b) Castillo, J.C.; Bravo, N.F.; Tamayo, L.V.; Mestizo, P.D.; Hurtado, J.; Macías, M.; Portilla, J. Water-compatible synthesis of 1,2,3-triazoles under ultrasonic conditions by a Cu(I) complex-mediated click reaction. ACS Omega, 2020, 5(46), 30148-30159.
[http://dx.doi.org/10.1021/acsomega.0c04592] [PMID: 33251449]
[152]
Hein, J.E.; Fokin, V.V. Copper-Catalyzed Azide–Alkyne Cycloaddition (CuAAC) and beyond: New reactivity of copper(i) acetylides. Chem. Soc. Rev., 2010, 39(4), 1302-1315.
[http://dx.doi.org/10.1039/b904091a] [PMID: 20309487]
[153]
Presolski, S.I.; Hong, V.; Cho, S.H.; Finn, M.G. Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: Practical and mechanistic implications. J. Am. Chem. Soc., 2010, 132(41), 14570-14576.
[http://dx.doi.org/10.1021/ja105743g] [PMID: 20863116]
[154]
Jalani, H.B.; Karagöz, A.Ç.; Tsogoeva, S.B. Synthesis of substituted 1,2,3-triazoles via metal-free click cycloaddition reactions and alternative cyclization methods. Synth, 2017, 49(1), 29-41.
[155]
Opsomer, T.; Dehaen, W. Metal-free syntheses of N -functionalized and NH -1,2,3-triazoles: An update on recent developments. Chem. Commun., 2021, 57(13), 1568-1590.
[http://dx.doi.org/10.1039/D0CC06654K] [PMID: 33491711]
[156]
Escorihuela, J.; Marcelis, A.T.M.; Zuilhof, H. Metal-free click chemistry reactions on surfaces. Adv. Mater. Interfaces, 2015, 2(13), 1500135.
[http://dx.doi.org/10.1002/admi.201500135]
[157]
Ramachary, D.B.; Ramakumar, K.; Narayana, V.V. Amino acid-catalyzed cascade [3+2]-cycloaddition/hydrolysis reactions based on the push-pull dienamine platform: Synthesis of highly functionalized NH-1,2,3-triazoles. Chemistry, 2008, 14(30), 9143-9147.
[http://dx.doi.org/10.1002/chem.200801325] [PMID: 18767077]
[158]
Belkheira, M.; El Abed, D.; Pons, J.M.; Bressy, C. Organocatalytic synthesis of 1,2,3-triazoles from unactivated ketones and arylazides. Chemistry, 2011, 17(46), 12917-12921.
[http://dx.doi.org/10.1002/chem.201102046] [PMID: 21984230]
[159]
Wang, L.; Peng, S.; Danence, L.J.T.; Gao, Y.; Wang, J. Amine-catalyzed [3+2] Huisgen cycloaddition strategy for the efficient assembly of highly substituted 1,2,3-triazoles. Chemistry, 2012, 18(19), 6088-6093.
[http://dx.doi.org/10.1002/chem.201103393] [PMID: 22461307]
[160]
Ramachary, D.B.; Shashank, A.B. Organocatalytic triazole formation, followed by oxidative aromatization: Regioselective metal-free synthesis of benzotriazoles. Chemistry, 2013, 19(39), 13175-13181.
[http://dx.doi.org/10.1002/chem.201301412] [PMID: 24038664]
[161]
Li, W.; Wang, J. Lewis base catalyzed aerobic oxidative intermolecular azide-zwitterion cycloaddition. Angew. Chem. Int. Ed., 2014, 53(51), 14186-14190.
[http://dx.doi.org/10.1002/anie.201408265] [PMID: 25319520]
[162]
Ramasastry, S.S.V. Enamine/enolate-mediated organocatalytic azide-carbonyl [3+2] cycloaddition reactions for the synthesis of densely functionalized 1,2,3-triazoles. Angew. Chem. Int. Ed., 2014, 53(52), 14310-14312.
[http://dx.doi.org/10.1002/anie.201409410] [PMID: 25404559]
[163]
Wan, J.P.; Cao, S.; Liu, Y. Base-promoted synthesis of N-substituted 1,2,3-triazoles via enaminone-azide cycloaddition involving regitz diazo transfer. Org. Lett., 2016, 18(23), 6034-6037.
[http://dx.doi.org/10.1021/acs.orglett.6b02975] [PMID: 27934360]
[164]
Thomas, J.; Jana, S.; John, J.; Liekens, S.; Dehaen, W. A general metal-free route towards the synthesis of 1,2,3-triazoles from readily available primary amines and ketones. Chem. Commun., 2016, 52(14), 2885-2888.
[http://dx.doi.org/10.1039/C5CC08347H] [PMID: 26744743]
[165]
Cheng, G.; Zeng, X.; Shen, J.; Wang, X.; Cui, X. A metal-free multicomponent cascade reaction for the regiospecific synthesis of 1,5-disubstituted 1,2,3-triazoles. Angew. Chem. Int. Ed., 2013, 52(50), 13265-13268.
[http://dx.doi.org/10.1002/anie.201307499] [PMID: 24227395]
[166]
Ahsanullah; Schmieder, P.; Kühne, R.; Rademann, J. Metal-free, regioselective triazole ligations that deliver locked cis peptide mimetics. Angew. Chem. Int. Ed., 2009, 48(27), 5042-5045.
[http://dx.doi.org/10.1002/anie.200806390]
[167]
Gangaprasad, D.; Paul Raj, J.; Karthikeyan, K.; Rengasamy, R.; Kesavan, M.; Vajjiravel, M.; Elangovan, J. A new route to 1,2,3-triazole fused benzooxazepine and benzodiazepine analogues through metal-free intramolecular azide-olefin oxidative cycloaddition. Tetrahedron Lett., 2019, 60(43), 151164.
[http://dx.doi.org/10.1016/j.tetlet.2019.151164]
[168]
Kumar, B.S.; Gadakh, S.; Sudalai, A. “Metal-free” synthesis of 1,2,3-triazoles via tandem azidation, intramolecular [3+2]-cycloaddition and aromatization of ethyl acrylate derivatives. Tetrahedron Lett., 2018, 59(24), 2365-2367.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.020]
[169]
Pokhodylo, N.T.; Shyyka, O.Y.; Goreshnik, E.A.; Obushak, M.D. 4-Phosphonated or 4-free 1,2,3-triazoles: What controls the dimroth reaction of arylazides with 2-oxopropylphosphonates? Chem. Select, 2020, 5(1), 260-264.
[http://dx.doi.org/10.1002/slct.201904688]
[170]
Pokhodylo, N.T.; Tupychak, M.A.; Palchykov, V.A. Dihydro-2 H -thiopyran-3(4 H)-one-1,1-dioxide – a new cyclic ketomethylenic reagent for the Dimroth-type 1,2,3-triazole synthesis. Synth. Commun., 2020, 50(12), 1835-1844.
[http://dx.doi.org/10.1080/00397911.2020.1757113]
[171]
Mishra, K.B.; Tiwari, V.K. One-pot facile synthesis of 1,5-disubstituted triazolyl glycoconjugates from nitrostyrenes. Chem. Select, 2016, 1(13), 3693-3698.
[http://dx.doi.org/10.1002/slct.201600994]
[172]
Jana, S.; Adhikari, S.; Cox, M.R.; Roy, S. Regioselective synthesis of 4-fluoro-1,5-disubstituted-1,2,3-triazoles from synthetic surrogates of α-fluoroalkynes. Chem. Commun., 2020, 56(12), 1871-1874.
[http://dx.doi.org/10.1039/C9CC09216A] [PMID: 31950943]
[173]
Shang, F.; Liu, J.; Zhou, P.; Zhang, C. Theoretical insights into the synthesis reaction mechanism of 1,2,3-triazole based on sakai reaction. Tetrahedron, 2021, 77, 131737.
[http://dx.doi.org/10.1016/j.tet.2020.131737]
[174]
Shang, F.; Liu, R.; Liu, J.; Zhou, P.; Zhang, C.; Yin, S.; Han, K. Unraveling the mechanism of cyclo-N5– production through selective C–N bond cleavage of arylpentazole with ferrous bisglycinate and m-chloroperbenzonic acid: A theoretical perspective. J. Phys. Chem. Lett., 2020, 11(3), 1030-1037.
[http://dx.doi.org/10.1021/acs.jpclett.9b03762] [PMID: 31967828]
[175]
Ren, G.; Liu, R.; Zhou, P.; Zhang, C.; Liu, J.; Han, K. Theoretical perspective on the reaction mechanism from arylpentazenes to arylpentazoles: New insights into the enhancement of cyclo -N 5 production. Chem. Commun., 2019, 55(18), 2628-2631.
[http://dx.doi.org/10.1039/C8CC10024A] [PMID: 30742165]
[176]
Lu, M.; Zhou, P.; Yang, Y.; Liu, J.; Jin, B.; Han, K. Thermochemistry and initial decomposition pathways of triazole energetic materials. J. Phys. Chem. A, 2020, 124(15), 2951-2960.
[http://dx.doi.org/10.1021/acs.jpca.9b11852] [PMID: 32223135]
[177]
Ali, A.; Corrêa, A.G.; Alves, D.; Zukerman, S.J.; Westermann, B.; Ferreira, M.A.B.; Paixão, M.W. An efficient one-pot strategy for the highly regioselective metal-free synthesis of 1,4-disubstituted-1,2,3-triazoles. Chem. Commun., 2014, 50(80), 11926-11929.
[http://dx.doi.org/10.1039/C4CC04678A] [PMID: 25157576]
[178]
Kundu, M.; Bhaumik, I.; Misra, A.K. Organocatalyzed preparation of 1,4,5-trisubstituted-glycosyl-1,2,3-triazole derivatives. Glycoconj. J., 2019, 36(5), 439-450.
[http://dx.doi.org/10.1007/s10719-019-09883-1] [PMID: 31278614]
[179]
Shu, M.; Ran, L.; Liu, K.; Yang, W.; Wang, Q. An efficient and regiospecific synthesis of 1,5-diaryl-4-benzothiazolyl-1,2,3-triazoles by organocatalytic 1,3-dipolar cycloaddition reactions. Synth. Commun., 2020, 50(12), 1863-1870.
[http://dx.doi.org/10.1080/00397911.2020.1758144]
[180]
Zehnder, L.R.; Hawkins, J.M.; Sutton, S.C. One-pot, metal- and azide-free synthesis of 1,2,3-triazoles from α-ketoacetals and amines. Synlett, 2020, 31(2), 175-178.
[http://dx.doi.org/10.1055/s-0039-1691526]
[181]
Wang, G.; Chen, A.; Mangunuru, H.P.R.; Yerabolu, J.R. Synthesis and characterization of amide linked triazolyl glycolipids as molecular hydrogelators and organogelators. RSC Advances, 2017, 7(65), 40887-40895.
[http://dx.doi.org/10.1039/C7RA06228A]
[182]
Mangunuru, H.P.R.; Yerabolu, J.R.; Liu, D.; Wang, G. Synthesis of a series of glucosyl triazole derivatives and their self-assembling properties. Tetrahedron Lett., 2015, 56(1), 82-85.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.013]
[183]
Mangunuru, H.P.R.; Yerabolu, J.R.; Wang, G. Synthesis and study of N-acetyl d-glucosamine triazole derivatives as effective low molecular weight gelators. Tetrahedron Lett., 2015, 56(23), 3361-3364.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.123]
[184]
Chen, A.; Okafor, I.S.; Garcia, C.; Wang, G. Synthesis and self-assembling properties of 4,6-O-benzylidene acetal protected D-glucose and D-glucosamine β−1,2,3-triazole derivatives. Carbohydr. Res., 2018, 461, 60-75.
[http://dx.doi.org/10.1016/j.carres.2018.02.011] [PMID: 29587137]
[185]
Sharma, P.; Chen, A.; Wang, D.; Wang, G. Synthesis and self-assembling properties of peracetylated β-1-triazolyl alkyl D-glucosides and D-galactosides. Chemistry, 2021, 3(3), 935-958.
[http://dx.doi.org/10.3390/chemistry3030068]
[186]
Krishnan, B.P.; Sureshan, K.M. A library of multipurpose supramolecular supergelators: Fabrication of structured silica, porous plastics, and fluorescent gels. Chem. Asian J., 2018, 13(2), 187-193.
[http://dx.doi.org/10.1002/asia.201701657] [PMID: 29195010]
[187]
Rajkamal, R.; Pathak, N.P.; Chatterjee, D.; Paul, A.; Yadav, S. Arabinose based gelators: Rheological characterization of the gels and phase selective organogelation of crude-oil. RSC Advances, 2016, 6(95), 92225-92234.
[http://dx.doi.org/10.1039/C6RA21109G]
[188]
Sharma, K.; Joseph, J.P.; Sahu, A.; Yadav, N.; Tyagi, M.; Singh, A.; Pal, A.; Kartha, K.P.R. Supramolecular gels from sugar-linked triazole amphiphiles for drug entrapment and release for topical application. RSC Advances, 2019, 9(34), 19819-19827.
[http://dx.doi.org/10.1039/C9RA02868D] [PMID: 35519397]
[189]
Narayana, C.; Kumari, P.; Tiwari, G.; Sagar, R. Triazole linked N-acetylglucosamine based gelators for crude oil separation and dye removal. Langmuir, 2019, 35(51), 16803-16812.
[http://dx.doi.org/10.1021/acs.langmuir.9b02704] [PMID: 31775505]
[190]
Clemente, M.J.; Tejedor, R.M.; Romero, P.; Fitremann, J.; Oriol, L. Maltose-based gelators having azobenzene as light-sensitive unit. RSC Advances, 2012, 2(30), 11419-11431.
[http://dx.doi.org/10.1039/c2ra21506c]
[191]
Clemente, M.J.; Tejedor, R.M.; Romero, P.; Fitremann, J.; Oriol, L. Photoresponsive supramolecular gels based on amphiphiles with azobenzene and maltose or polyethyleneglycol polar head. New J. Chem., 2015, 39(5), 4009-4019.
[http://dx.doi.org/10.1039/C4NJ02012J]
[192]
Clemente, M.J.; Romero, P.; Serrano, J.L.; Fitremann, J.; Oriol, L. Supramolecular hydrogels based on glycoamphiphiles: Effect of the disaccharide polar head. Chem. Mater., 2012, 24(20), 3847-3858.
[http://dx.doi.org/10.1021/cm301509v]
[193]
Cano, M.E.; Di Chenna, P.H.; Lesur, D.; Wolosiuk, A.; Kovensky, J.; Uhrig, M.L. Chirality inversion, supramolecular hydrogelation and lectin binding of two thiolactose amphiphiles constructed on a di-lauroyl- L -tartaric acid scaffold. New J. Chem., 2017, 41(23), 14754-14765.
[http://dx.doi.org/10.1039/C7NJ02941A]
[194]
Fitremann, J.; Lonetti, B.; Fratini, E.; Fabing, I.; Payré, B.; Boulé, C.; Loubinoux, I.; Vaysse, L.; Oriol, L. A shear-induced network of aligned wormlike micelles in a sugar-based molecular gel. From gelation to biocompatibility assays. J. Colloid Interface Sci., 2017, 504, 721-730.
[http://dx.doi.org/10.1016/j.jcis.2017.06.021] [PMID: 28622565]
[195]
Chen, A.; Wang, D.; Bietsch, J.; Wang, G. Synthesis and characterization of pentaerythritol derived glycoconjugates as supramolecular gelators. Org. Biomol. Chem., 2019, 17(24), 6043-6056.
[http://dx.doi.org/10.1039/C9OB00475K] [PMID: 31157348]
[196]
Wang, G.; Wang, D.; Bietsch, J.; Chen, A.; Sharma, P. Synthesis of dendritic glycoclusters and their applications for supramolecular gelation and catalysis. J. Org. Chem., 2020, 85(24), 16136-16156.
[http://dx.doi.org/10.1021/acs.joc.0c01978] [PMID: 33301322]
[197]
Ramin, M.A.; Baillet, J.; Benizri, S.; Latxague, L.; Barthélémy, P. Uracile based glycosyl-nucleoside-lipids as low molecular weight organogelators. New J. Chem., 2016, 40(12), 9903-9906.
[http://dx.doi.org/10.1039/C6NJ02675C]
[198]
Ramin, M.A.; Latxague, L.; Sindhu, K.R.; Chassande, O.; Barthélémy, P. Low molecular weight hydrogels derived from urea based-bolaamphiphiles as new injectable biomaterials. Biomaterials, 2017, 145, 72-80.
[http://dx.doi.org/10.1016/j.biomaterials.2017.08.034] [PMID: 28850933]
[199]
Bansode, N.D.; Sindhu, K.R.; Morel, C.; Rémy, M.; Verget, J.; Boiziau, C.; Barthélémy, P. A disulfide based low molecular weight gel for the selective sustained release of biomolecules. Biomater. Sci., 2020, 8(11), 3186-3192.
[http://dx.doi.org/10.1039/D0BM00508H] [PMID: 32369051]
[200]
Jain, D.; Karajic, A.; Murawska, M.; Goudeau, B.; Bichon, S.; Gounel, S.; Mano, N.; Kuhn, A.; Barthélémy, P. Low molecular weight hydrogels as new supramolecular materials for bioelectrochemical interfaces. ACS Appl. Mater. Interfaces, 2017, 9(1), 1093-1098.
[http://dx.doi.org/10.1021/acsami.6b12890] [PMID: 27997114]
[201]
Latxague, L.; Ramin, M.A.; Appavoo, A.; Berto, P.; Maisani, M.; Ehret, C.; Chassande, O.; Barthélémy, P. Control of stem-cell behavior by fine tuning the supramolecular assemblies of low-molecular-weight gelators. Angew. Chem. Int. Ed., 2015, 54(15), 4517-4521.
[http://dx.doi.org/10.1002/anie.201409134] [PMID: 25693962]
[202]
Latxague, L.; Gaubert, A.; Maleville, D.; Baillet, J.; Ramin, M.; Barthélémy, P. Carbamate-based bolaamphiphile as low-molecular-weight hydrogelators. Gels, 2016, 2(4), 25.
[http://dx.doi.org/10.3390/gels2040025] [PMID: 30674156]
[203]
Latxague, L.; Benizri, S.; Gaubert, A.; Tolchard, J.; Martinez, D.; Morvan, E.; Grélard, A.; Saad, A.; Habenstein, B.; Loquet, A.; Barthélémy, P. Bolaamphiphile-based supramolecular gels with drugs eliciting membrane effects. J. Colloid Interface Sci., 2021, 594, 857-863.
[http://dx.doi.org/10.1016/j.jcis.2021.03.026] [PMID: 33794407]
[204]
Mishra, K.B.; Mishra, R.C.; Tiwari, V.K. First noscapine glycoconjugates inspired by click chemistry. RSC Advances, 2015, 5(64), 51779-51789.
[http://dx.doi.org/10.1039/C5RA07321A]
[205]
Araújo, M.; Escuder, B. Transient catalytic activity of a triazole-based gelator regulated by molecular gel assembly/disassembly. Chem. Select, 2017, 2(3), 854-862.
[http://dx.doi.org/10.1002/slct.201601816]
[206]
Rodríguez, L.F.; Miravet, J.F.; Escuder, B. A supramolecular hydrogel as a reusable heterogeneous catalyst for the direct aldol reaction. Chem. Commun., 2009, (47), 7303-7305.
[http://dx.doi.org/10.1039/b916250j] [PMID: 20024209]
[207]
Sivakumar, K.; Xie, F.; Cash, B.M.; Long, S.; Barnhill, H.N.; Wang, Q. A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. Org. Lett., 2004, 6(24), 4603-4606.
[http://dx.doi.org/10.1021/ol047955x] [PMID: 15548086]
[208]
(a) Araújo, M.; Muñoz, C.I.; Díaz, O.S.; Escuder, B. Tandem catalysis of an aldol-‘Click’ reaction system within a molecular hydrogel. Molecules, 2016, 21(6), 744.
[http://dx.doi.org/10.3390/molecules21060744] [PMID: 27338313];
(b) Becerril, J.; Bolte, M.; Burguete, M.I.; Galindo, F.; García, E.E.; Luis, S.V.; Miravet, J.F. Efficient macrocyclization of U-turn preorganized peptidomimetics: The role of intramolecular H-bond and solvophobic effects. J. Am. Chem. Soc., 2003, 125(22), 6677-6686.
[http://dx.doi.org/10.1021/ja0284759] [PMID: 12769577]
[209]
Martínez, C.Á. Kędziora, K.; Lavandera, I.; Rodríguez, S.H.; Concellón, C.; del Amo, V. Highly enantioselective synthesis of α-azido-β-hydroxy methyl ketones catalyzed by a cooperative proline–guanidinium salt system. Chem. Commun. (Camb.), 2014, 50(20), 2598-2600.
[http://dx.doi.org/10.1039/c3cc49371g] [PMID: 24468918]
[210]
Hanabusa, K.; Yamada, M.; Kimura, M.; Shirai, H. Prominent gelation and chiral aggregation of alkylamides derived from trans-1, 2-diaminocyclohexane. Angew. Chem. Int. Ed. Engl., 1996, 35(17), 1949-1951.
[http://dx.doi.org/10.1002/anie.199619491]
[211]
Wang, H.Z.; Chow, H.F. A photo-responsive poly(amide–triazole) physical organogel bearing azobenzene residues in the main chain. Chem. Commun., 2018, 54(60), 8391-8394.
[http://dx.doi.org/10.1039/C8CC05096A] [PMID: 29998276]
[212]
Kuroiwa, K.; Shibata, T.; Takada, A.; Nemoto, N.; Kimizuka, N. Heat-set gel-like networks of lipophilic Co(II) triazole complexes in organic media and their thermochromic structural transitions. J. Am. Chem. Soc., 2004, 126(7), 2016-2021.
[http://dx.doi.org/10.1021/ja037847q] [PMID: 14971934]
[213]
Huang, Y.; Zhang, Y.; Yuan, Y.; Cao, W. Organogelators based on iodo 1,2,3-triazole functionalized with coumarin: Properties and gelator-solvent interaction. Tetrahedron, 2015, 71(14), 2124-2133.
[http://dx.doi.org/10.1016/j.tet.2015.02.044]
[214]
Li, Z.; Huang, Y.; Fan, D.; Li, H.; Liu, S.; Wang, L. Synthesis and properties of novel organogelators functionalized with 5-iodo-1,2,3-triazole and azobenzene groups. Front. Chem. Sci. Eng., 2016, 10(4), 552-561.
[http://dx.doi.org/10.1007/s11705-016-1589-8]
[215]
Huang, Y.; Li, H.; Li, Z.; Zhang, Y.; Cao, W.; Wang, L.; Liu, S. Unusual C–I···O Halogen bonding in triazole derivatives: Gelation solvents at two extremes of polarity and formation of superorganogels. Langmuir, 2017, 33(1), 311-321.
[http://dx.doi.org/10.1021/acs.langmuir.6b03691] [PMID: 27990822]
[216]
Huang, Y.; Liu, S.; Xie, Z.; Sun, Z.; Chai, W.; Jiang, W. Novel 1,2,3-triazole-based compounds: Iodo effect on their gelation behavior and cation response. Front. Chem. Sci. Eng., 2018, 12(2), 252-261.
[http://dx.doi.org/10.1007/s11705-017-1683-6]
[217]
Lai, L.L.; Wang, C.H.; Hsieh, W.P.; Lin, H.C. Synthesis and characterization of liquid crystalline molecules containing the ouinoline unit. Mol. Cryst. Liq. Cryst. Sci. Technol., 1996, 287(1), 177-181.
[http://dx.doi.org/10.1080/10587259608038754]
[218]
Bhalla, V.; Singh, H.; Kumar, M.; Prasad, S.K. Triazole-modified triphenylene derivative: Self-assembly and sensing applications. Langmuir, 2011, 27(24), 15275-15281.
[http://dx.doi.org/10.1021/la203774p] [PMID: 22077212]
[219]
De, J.; Devi, M.; Shah, A.; Gupta, S.P.; Bala, I.; Singh, D.P.; Douali, R.; Pal, S.K. Luminescent conductive columnar π-gelators for Fe(II) sensing and bio-imaging applications. J. Phys. Chem. B, 2020, 124(45), 10257-10265.
[http://dx.doi.org/10.1021/acs.jpcb.0c07052] [PMID: 33136408]
[220]
De, J.; Yang, W.Y.; Bala, I.; Gupta, S.P.; Yadav, R.A.K.; Dubey, D.K.; Chowdhury, A.; Jou, J.H.; Pal, S.K. Room-temperature columnar liquid crystals as efficient pure deep-blue emitters in organic light-emitting diodes with an external quantum efficiency of 4.0%. ACS Appl. Mater. Interfaces, 2019, 11(8), 8291-8300.
[http://dx.doi.org/10.1021/acsami.8b18749] [PMID: 30707013]
[221]
Häring, M.; Rodríguez, L.J.; Grijalvo, S.; Tautz, M.; Eritja, R.; Martín, V.S.; Díaz, D.D. Isosteric substitution of 4H-1, 2, 4-triazole by 1H-1,2,3-triazole in isophthalic derivative enabled hydrogel formation for controlled drug delivery. Mol. Pharm., 2018, 15(8), 2963-2972.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b01049] [PMID: 29446950]
[222]
Ghosh, K.; Sarkar, A.R.; Chattopadhyay, A.P. Anthracene-labeled 1, 2, 3-triazole-linked bispyridinium amide for selective sensing of H2PO4–by fluorescence and gel formation. Eur. J. Org. Chem., 2012, 2012(7), 1311-1317.
[http://dx.doi.org/10.1002/ejoc.201101240]
[223]
Xiao, Y.; Liu, X.; He, X.; He, Q.; Zeng, X. Synthesis and self-assembly of 1,8-naphthalene-based hexacatenar mesogens. Supramol. Chem., 2020, 32(7), 425-432.
[http://dx.doi.org/10.1080/10610278.2020.1769846]
[224]
Dai, B.N.; Cao, Q.Y.; Wang, L.; Wang, Z.C.; Yang, Z. A new naphthalene-containing triazolophane for fluorescence sensing of mercury(II) ion. Inorg. Chim. Acta, 2014, 423, 163-167.
[http://dx.doi.org/10.1016/j.ica.2014.08.015]
[225]
Tautz, M.; Torras, J.; Grijalvo, S.; Eritja, R.; Saldías, C.; Alemán, C.; Díaz, D.D. Expanding the limits of amide–triazole isosteric substitution in bisamide-based physical gels. RSC Advances, 2019, 9(36), 20841-20851.
[http://dx.doi.org/10.1039/C9RA03316E] [PMID: 35515547]
[226]
Tautz, M.; Saldías, C.; Lozano, G.A.D.; Díaz, D.D. Use of a bis-1,2,3-triazole gelator for the preparation of supramolecular metallogels and stabilization of gold nanoparticles. New J. Chem., 2019, 43(35), 13850-13856.
[http://dx.doi.org/10.1039/C9NJ03427G]
[227]
Zhang, D.; Liu, Y.; Gao, H.; Yan, Q.; Cheng, X. Self-assembly of bistriazole BDT based bolaamphiphiles into SmA phase and helical organogels. J. Mol. Liq., 2021, 325, 114521.
[http://dx.doi.org/10.1016/j.molliq.2020.114521]
[228]
Ye, L.; Wan, L.; Huang, F. A class of polytriazole metallogels via CuAAC polymerization: Preparation and properties. New J. Chem., 2017, 41(11), 4424-4430.
[http://dx.doi.org/10.1039/C7NJ00610A]
[229]
Cai, M.; Liang, Y.; Zhou, F.; Liu, W. Functional ionic gels formed by supramolecular assembly of a novel low molecular weight anticorrosive/antioxidative gelator. J. Mater. Chem., 2011, 21(35), 13399-13405.
[http://dx.doi.org/10.1039/c1jm12010g]
[230]
Torres, M.I.; Saikia, B.; Prieto, P.; Carrillo, J.R.; Steed, J.W. High thermal stability, pH responsive organogels of 2 H -benzo[ d]1,2,3-triazole derivatives as pharmaceutical crystallization media. CrystEngComm, 2019, 21(13), 2135-2143.
[http://dx.doi.org/10.1039/C8CE01742E]
[231]
Ghosh, K.; Panja, A.; Panja, S. Cholesterol appended bis-1,2,3-triazoles as simple supramolecular gelators for the naked eye detection of Ag +, Cu 2+ and Hg 2+ ions. New J. Chem., 2016, 40(4), 3476-3483.
[http://dx.doi.org/10.1039/C5NJ02771C]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy