Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

A Review on Modern Approaches to Benzimidazole Synthesis

Author(s): Sneha Venugopal, Balwinder Kaur, Anil Verma, Pankaj Wadhwa* and Sanjeev Kumar Sahu

Volume 20, Issue 6, 2023

Published on: 27 December, 2022

Page: [595 - 605] Pages: 11

DOI: 10.2174/1570179420666221010091157

Price: $65

Abstract

Cancer is the second most source of cessation of life globally, with 9.6 million expirations at each stage around the globe. The resistance to the current chemotherapies urges researchers to develop new drugs to be available in the market. Among the wide range of drugs synthesized, heterocyclic compounds play a major role due to the abundance of heterocyclic rings in biological substances. In medicinal chemistry, benzimidazole is an important pharmacophore and a privileged structure. This bicyclic compound is made up of the fusion of a six-membered benzene ring and a five-membered imidazole ring with two nitrogen atoms at 1,3-positions. The benzimidazole ring has a great deal of stability. Many strong acids and alkalis do not affect benzimidazoles. The benzene ring of benzimidazole cleaves only under extreme conditions. Except in certain circumstances, the benzimidazole ring is also quite resistant to reduction. It is the most popular nucleus to study because of its wide range of biological functions. The recently developed methods for preparing benzimidazoles, such as condensation of o-phenylene diamines (OPDs) with aldehydes and many others using a wide range of nano, metal-based catalysts under solventfree conditions, are discussed in detail in the current studies.

Keywords: Benzimidazoles, cancer, o-phenylene diamine, nanocatalysts, solvent-free techniques pharmacophore, malignant neoplasm.

Graphical Abstract
[1]
Pradhan, T.; Gupta, O.; Singh, G.; Monga, V. Aurora kinase inhibitors as potential anticancer agents: Recent advances. Eur. J. Med. Chem., 2021, 221, 113495.
[http://dx.doi.org/10.1016/j.ejmech.2021.113495] [PMID: 34020340]
[2]
Dhiman, N.; Kaur, K.; Jaitak, V. Tetrazoles as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Bioorg. Med. Chem., 2020, 28(15), 115599.
[http://dx.doi.org/10.1016/j.bmc.2020.115599] [PMID: 32631569]
[3]
Kanwal, A.; Saddique, F.A.; Aslam, S.; Ahmad, M.; Zahoor, A.F.; Mohsin, N.A. Benzimidazole ring system as a privileged template for anticancer agents. Pharm. Chem. J., 2018, 51(12), 1068-1077.
[http://dx.doi.org/10.1007/s11094-018-1742-4]
[4]
Bansal, Y.; Minhas, R.; Singhal, A.; Arora, R.K.; Bansal, G. Benzimidazole: A multifacted nucelus for anticancer agents. Curr. Org. Chem., 2021, 25(6), 669-694.
[http://dx.doi.org/10.2174/1385272825666210208141107]
[5]
Garudachari, B.; Satyanarayana, M.N.; Thippeswamy, B.; Shivakumar, C.K.; Shivananda, K.N.; Hegde, G.; Isloor, A.M. Synthesis, characterization and antimicrobial studies of some new quinoline incorporated benzimidazole derivatives. Eur. J. Med. Chem., 2012, 54, 900-906.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.027] [PMID: 22732060]
[6]
Shrivastava, N.; Naim, M.J.; Alam, M.J.; Nawaz, F.; Ahmed, S.; Alam, O. Benzimidazole scaffold as anticancer agent: Synthetic approaches and structure–activity relationship. Arch. Pharm., 2017, 350(6), e201700040.
[http://dx.doi.org/10.1002/ardp.201700040] [PMID: 28544162]
[7]
Tahlan, S.; Ramasamy, K.; Lim, S.M.; Shah, S.A.A.; Mani, V.; Narasimhan, B. 4-(2-(1H-Benzo[d]imidazol-2-ylthio)acetamido)-N-(substituted phenyl)benzamides: design, synthesis and biological evaluation. BMC Chem., 2019, 13(1), 12.
[http://dx.doi.org/10.1186/s13065-019-0533-7] [PMID: 31355363]
[8]
Satija, G.; Sharma, B.; Madan, A.; Iqubal, A.; Shaquiquzzaman, M.; Akhter, M.; Parvez, S.; Khan, M.A.; Alam, M.M. Benzimidazole based derivatives as anticancer agents: Structure activity relationship analysis for various targets. J. Heterocycl. Chem., 2022, 59(1), 22-66.
[http://dx.doi.org/10.1002/jhet.4355]
[9]
Tahlan, S.; Kumar, S.; Ramasamy, K.; Lim, S.M.; Shah, S.A.A.; Mani, V.; Narasimhan, B. In-silico molecular design of heterocyclic benzimidazole scaffolds as prospective anticancer agents. BMC Chem., 2019, 13(1), 90.
[http://dx.doi.org/10.1186/s13065-019-0608-5] [PMID: 31384837]
[10]
Goud, N.S.; Kumar, P.; Bharath, R.D. Recent developments of target-based benzimidazole derivatives as potential anticancer agents. In: Heterocycles-Synthesis and Biological Activities; IntechOpen: London, 2020.
[http://dx.doi.org/10.5772/intechopen.90758]
[11]
Sharma, P.; Reddy, T.S.; Kumar, N.P.; Senwar, K.R.; Bhargava, S.K.; Shankaraiah, N. Conventional and microwave-assisted synthesis of new 1 H -benzimidazole-thiazolidinedione derivatives: A potential anticancer scaffold. Eur. J. Med. Chem., 2017, 138, 234-245.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.035] [PMID: 28668476]
[12]
Haoran, W.; Akhtar, W.; Nainwal, L.M.; Kaushik, S.K.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Synthesis and biological evaluation of benzimidazole pendant cyanopyrimidine derivatives as anticancer agents. J. Heterocycl. Chem., 2020, 57(9), 3350-3360.
[http://dx.doi.org/10.1002/jhet.4052]
[13]
Schlögl, R. Heterogeneous catalysis. Angew. Chem. Int. Ed., 2015, 54(11), 3465-3520.
[http://dx.doi.org/10.1002/anie.201410738] [PMID: 25693734]
[14]
Vajtai, R. Springer handbook of nanomaterials; Springer Science & Business Media: Heidelberg, Germany, 2013.
[http://dx.doi.org/10.1007/978-3-642-20595-8]
[15]
Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.M. Magnetically recoverable nanocatalysts. Chem. Rev., 2011, 111(5), 3036-3075.
[http://dx.doi.org/10.1021/cr100230z] [PMID: 21401074]
[16]
Xu, Z.; Wang, D.S.; Yu, X.; Yang, Y.; Wang, D. Tunable triazolephosphine-copper catalysts for the synthesis of 2-Aryl-1 H -benzo[d]imidazoles from benzyl alcohols and diamines by acceptorless dehydrogenation and borrowing hydrogen reactions. Adv. Synth. Catal., 2017, 359(19), 3332-3340.
[http://dx.doi.org/10.1002/adsc.201700179]
[17]
Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and their applications. Chem. Rev., 2014, 114(21), 11060-11082.
[http://dx.doi.org/10.1021/cr300162p] [PMID: 25300631]
[18]
Di Gioia, M.L.; Cassano, R.; Costanzo, P.; Herrera, C.N.; Maiuolo, L.; Nardi, M.; Nicoletta, F.P.; Oliverio, M.; Procopio, A. Green synthesis of privileged benzimidazole scaffolds using active deep eutectic solvent. Molecules, 2019, 24(16), 2885.
[http://dx.doi.org/10.3390/molecules24162885] [PMID: 31398916]
[19]
Jawad, K.A.; Chazi, K.A. Synthesis and characterization of benzimidazole by using O-phenylenediamine with different aldehydes and carboxylic acids in the presence of ρ-tsOh as a catalyst. Orient. J. Chem., 2018, 34(4), 2131-2136.
[http://dx.doi.org/10.13005/ojc/3404054]
[20]
Mobinikhaledi, A.; Zendehdel, M.; Goudarzi, F.; Bardajee, G.R. Nano-Ni (II)/Y Zeolite catalyzed synthesis of 2-aryl-and 2-alkyl benzimidazoles under solvent-free conditions. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2016, 46(10), 1526-1531.
[http://dx.doi.org/10.1080/15533174.2015.1137020]
[21]
Bagheri, S.; Muhd Julkapli, N.; Bee Abd Hamid, S. Titanium dioxide as a catalyst support in heterogeneous catalysis. Sci. World J., 2014, 2014, 727496.
[http://dx.doi.org/10.1155/2014/727496]
[22]
Takale, B.S.; Bao, M.; Yamamoto, Y. Gold Nanoparticle (AuNPs) and Gold Nanopore (AuNPore) catalysts in organic synthesis. Org. Biomol. Chem., 2014, 12(13), 2005-2027.
[http://dx.doi.org/10.1039/c3ob42207k] [PMID: 24525525]
[23]
Tzani, M.A.; Gabriel, C.; Lykakis, I.N. Selective synthesis of benzimidazoles from o-phenylenediamine and aldehydes promoted by supported gold nanoparticles. Nanomaterials, 2020, 10(12), 2405.
[http://dx.doi.org/10.3390/nano10122405] [PMID: 33271922]
[24]
Ranganath, K.V.S.; Glorius, F. Superparamagnetic nanoparticles for asymmetric catalysis—A perfect match. Catal. Sci. Technol., 2011, 1(1), 13-22.
[http://dx.doi.org/10.1039/c0cy00069h]
[25]
Xu, H.J.; Wan, X.; Geng, Y.; Xu, X.L. The catalytic application of recoverable magnetic nanoparicles-supported organic compounds. Curr. Org. Chem., 2013, 17(10), 1034-1050.
[http://dx.doi.org/10.2174/1385272811317100006]
[26]
Sajjadi, A.; Mohammadi, R. Fe3O4 Magnetic Nanoparticles (Fe3O4 MNPs): A magnetically reusable catalyst for synthesis of Benzimidazole compounds. J. Med. Chem. Sci., 2019, 2(2), 55-58.
[27]
Faghih, Z.; Khabnadideh, S.; Zamani, L.; Zomorodian, K.; Mirjalili, B.B.F.; Jalilian, A. Nano-SnCl4. SiO2, an efficient catalyst for synthesis of benzimidazole drivatives as antifungal and cytotoxic agents. Res. Pharm. Sci., 2019, 14(6), 496-503.
[http://dx.doi.org/10.4103/1735-5362.272536] [PMID: 32038729]
[28]
Jithendra, K.K.S.; Krishnamurthy, G.; Sunil, K.N.; Naik, N.; Praveen, T.M. Sustainable synthesis of magnetically separable SiO2/Co@Fe2O4 nanocomposite and its catalytic applications for the benzimidazole synthesis. J. Magn. Magn. Mater., 2018, 451, 808-821.
[http://dx.doi.org/10.1016/j.jmmm.2017.10.125]
[29]
Rajabi, F.; Luque, R.; Clark, J.H.; Karimi, B.; Macquarrie, D.J. A silica supported cobalt (II) Salen complex as efficient and reusable catalyst for the selective aerobic oxidation of ethyl benzene derivatives. Catal. Commun., 2011, 12(6), 510-513.
[http://dx.doi.org/10.1016/j.catcom.2010.11.024]
[30]
Rajabi, F.; Raessi, M.; Arancon, R.A.D.; Saidi, M.R.; Luque, R. Supported cobalt oxide nanoparticles as efficient catalyst in esterification and amidation reactions. Catal. Commun., 2015, 59, 122-126.
[http://dx.doi.org/10.1016/j.catcom.2014.09.044]
[31]
Rajabi, F.; De, S.; Luque, R. An efficient and green synthesis of benzimidazole derivatives using SBA-15 supported cobalt nanocatalysts. Catal. Lett., 2015, 145(8), 1566-1570.
[http://dx.doi.org/10.1007/s10562-015-1546-z]
[32]
Belkharchach, S.; Ighachane, H.; Rochdi, A.; Ait, A.M.; Lazrek, H.B. One-pot synthesis of benzimidazoles using H2SO4 @HTC as catalyst. Org. Prep. Proced. Int., 2021, 53(3), 268-277.
[http://dx.doi.org/10.1080/00304948.2021.1873066]
[33]
Mahire, V.N.; Mahulikar, P.P. Facile one-pot clean synthesis of benzimidazole motifs: Exploration on bismuth nitrate accelerated subtle catalysis. Chin. Chem. Lett., 2015, 26(8), 983-987.
[http://dx.doi.org/10.1016/j.cclet.2015.04.012]
[34]
Maghsoodlou, M.T.; Hazeri, N.; Lashkari, M.; Shahrokhabadi, F.N.; Naghshbandi, B.; Kazemi, D.M.S.; Rashidi, M.; Mir, F.; Kangani, M.; Salahi, S. Saccharose as a new, natural, and highly efficient catalyst for the one-pot synthesis of 4,5-dihydropyrano[3,2-c]chromenes, 2-amino-3-cyano-4H-chromenes, 1,8-dioxodecahydroacridine, and 2-substituted benzimidazole derivatives. Res. Chem. Intermed., 2015, 41(10), 6985-6997.
[http://dx.doi.org/10.1007/s11164-014-1793-4]
[35]
Ghosh, P.; Mandal, A. Catalytic role of sodium dodecyl sulfate: Selective synthesis of 1, 2-disubstituted benzimidazoles in water. Catal. Commun., 2011, 12(8), 744-747.
[http://dx.doi.org/10.1016/j.catcom.2011.01.005]
[36]
Kaur, G.; Moudgil, R.; Shamim, M.; Gupta, V.K.; Banerjee, B. Camphor sulfonic acid catalyzed a simple, facile, and general method for the synthesis of 2-arylbenzothiazoles, 2-arylbenzimidazoles, and 3 H -spiro[benzo[ d ]thiazole-2,3′-indolin]-2′-ones at room temperature. Synth. Commun., 2021, 51(7), 1100-1120.
[http://dx.doi.org/10.1080/00397911.2020.1870043]
[37]
Sajjadifar, S.; Ahmad, M.S.; Javaherneshan, N.; Louie, O. SBSA as a new and efficient catalyst for the one-pot green synthesis of benzimidazole derivatives at room temperature. Am. J. Org. Chem., 2012, 2(2), 58893774.
[http://dx.doi.org/10.5923/j.ajoc.20120202.01]
[38]
Hamlich, M.; Harkati, S.; Riadi, Y.; Slimani, R.; Rajae, L.; Lazar, S.; Safi, M. Calcined mussel shells doped with metal halides as a novel catalyst for the synthesis of benzimidazoles, benzoxazoles and benzothiazoles. Int. J. Bioorg. Chem., 2017, 2(3), 153-158.
[39]
Azizian, J.; Torabi, P.; Noei, J. Synthesis of benzimidazoles and benzoxazoles using TiCl3OTf in ethanol at room temperature. Tetrahedron Lett., 2016, 57(2), 185-188.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.092]
[40]
Sajjadifar, S.; Arzehgar, Z.; Ghayuri, A. Zn 3 (BTC) 2 as a highly efficient reusable catalyst for the synthesis of 2-aryl-1 h -benzimidazole. J. Chin. Chem. Soc., 2018, 65(2), 205-211.
[http://dx.doi.org/10.1002/jccs.201700266]
[41]
Nozarie, A. Metal-organic framework MIL-53 (Fe) as a highly efficient reusable catalyst for the synthesis of 2-aryl-1H-benzimidazole. Chem. Methodol., 2019, 3(6), 704-712.
[42]
Srinivasulu, R.; Kumar, K.R.; Satyanarayana, P.V.V. Facile and efficient method for synthesis of benzimidazole derivatives catalyzed by zinc triflate. Green Sustain. Chem., 2014, 4(1), 33-37.
[43]
Li, W.H.; Li, C.Y.; Li, Y.; Tang, H.T.; Wang, H.S.; Pan, Y.M.; Ding, Y.J. Palladium-metalated porous organic polymers as recyclable catalysts for chemoselective decarbonylation of aldehydes. Chem. Commun., 2018, 54(61), 8446-8449.
[http://dx.doi.org/10.1039/C8CC03109F] [PMID: 29878031]
[44]
Tong, W.; Li, W.H.; He, Y.; Mo, Z.Y.; Tang, H.T.; Wang, H.S.; Pan, Y.M. Palladium-metalated porous organic polymers as recyclable catalysts for the chemioselective synthesis of thiazoles from thiobenzamides and isonitriles. Org. Lett., 2018, 20(8), 2494-2498.
[http://dx.doi.org/10.1021/acs.orglett.8b00886] [PMID: 29620903]
[45]
Shamsi, S.M.; Shirini, F.; Abedini, M.; Seddighi, M. Synthesis of benzimidazole and quinoxaline derivatives using reusable Sulfonated Rice Husk Ash (RHA-SO3H) as a green and efficient solid acid catalyst. Res. Chem. Intermed., 2016, 42(2), 1091-1099.
[http://dx.doi.org/10.1007/s11164-015-2075-5]
[46]
James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K.D.M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A.G.; Parkin, I.P.; Shearouse, W.C.; Steed, J.W.; Waddell, D.C. Mechanochemistry: Opportunities for new and cleaner synthesis. Chem. Soc. Rev., 2012, 41(1), 413-447.
[http://dx.doi.org/10.1039/C1CS15171A] [PMID: 21892512]
[47]
Wang, G.W. Mechanochemical organic synthesis. Chem. Soc. Rev., 2013, 42(18), 7668-7700.
[http://dx.doi.org/10.1039/c3cs35526h] [PMID: 23660585]
[48]
EL-Sayed, T.; Aboelnaga, A.; Hagar, M. Ball milling assisted solvent and catalyst free synthesis of benzimidazoles and their derivatives. Molecules, 2016, 21(9), 1111.
[http://dx.doi.org/10.3390/molecules21091111] [PMID: 27563861]
[49]
Bonacci, S.; Iriti, G.; Mancuso, S.; Novelli, P.; Paonessa, R.; Tallarico, S.; Nardi, M. Montmorillonite K10: An efficient organo-heterogeneous catalyst for synthesis of benzimidazole derivatives. Catalysts, 2020, 10(8), 845.
[http://dx.doi.org/10.3390/catal10080845]
[50]
Herrera, C.N.; Uranga, J.G.; Nardi, M.; Procopio, A.; Wunderlin, D.A.; Santiago, A.N. Selective and eco-friendly procedures for the synthesis of benzimidazole derivatives. The role of the Er(OTf) 3 catalyst in the reaction selectivity. Beilstein J. Org. Chem., 2016, 12(1), 2410-2419.
[http://dx.doi.org/10.3762/bjoc.12.235] [PMID: 28144309]
[51]
Zhang, L.J.; Xia, J.; Zhou, Y.Q.; Wang, H.; Wang, S.W. Rare-earth metal chlorides as efficient catalysts for the simple and green synthesis of 1, 2-disubstituted benzimidazoles and 2-substituted benzothiazoles under ultrasound irradiation. Synth. Commun., 2012, 42(3), 328-336.
[http://dx.doi.org/10.1080/00397911.2010.524337]
[52]
Borade, R.M.; Kale, S.B.; Tekale, S.U.; Jadhav, K.M.; Pawar, R.P. Cobalt ferrite magnetic nanoparticles as highly efficient catalyst for the mechanochemical synthesis of 2-aryl benzimidazoles. Catal. Commun., 2021, 159, 106349.
[http://dx.doi.org/10.1016/j.catcom.2021.106349]
[53]
Vasu, A.; Naresh, M.; Krishna, S.G.; Divya, R.Y.; Murali, B.; Ramulamma, M.; Ramunaidu, A.; Narender, N. A heterogeneous catalytic strategy for facile production of benzimidazoles and quinoxalines from primary amines using the Al-MCM-41 catalyst. Green Chem., 2021, 23(23), 9439-9446.
[http://dx.doi.org/10.1039/D1GC02627E]
[54]
Azeez, S.; Sureshbabu, P.; Chaudhary, P.; Sabiah, S.; Kandasamy, J. Tert-Butyl nitrite catalyzed synthesis of benzimidazoles from o-phenylenediamine and aldehydes at room temperature. Tetrahedron Lett., 2020, 61(14), 151735.
[http://dx.doi.org/10.1016/j.tetlet.2020.151735]
[55]
Dahiya, A.; Sahoo, A.K.; Alam, T.; Patel, B.K. tert ‐Butyl Nitrite (TBN), a multitasking reagent in organic synthesis. Chem. Asian J., 2019, 14(24), 4454-4492.
[http://dx.doi.org/10.1002/asia.201901072] [PMID: 31538411]
[56]
Miao, C.X.; Yu, B.; He, L.N. Tert-butyl nitrite: a metal-free radical initiator for aerobic cleavage of benzylic C [double bond, length as m-dash] C bonds in compressed carbon dioxide. Green Chem., 2011, 13(3), 541-544.
[http://dx.doi.org/10.1039/c0gc00676a]
[57]
Naeimi, H.; Babaei, Z. Microwave-assisted practical and simple method for heterocyclization of o -phenylenediamine and aldehydes using DDQ as oxidant agent. Green Chem. Lett. Rev., 2017, 10(3), 129-133.
[http://dx.doi.org/10.1080/17518253.2017.1314555]
[58]
Park, S.; Jung, J.; Cho, E.J. Visible light promoted synthesis of benzimidazoles. Eur. J. Org. Chem., 2014, 2014(19), 4148-4154.
[http://dx.doi.org/10.1002/ejoc.201402141]
[59]
Li, Z.; Song, H.; Guo, R.; Zuo, M.; Hou, C.; Sun, S.; He, X.; Sun, Z.; Chu, W. Visible light induced condensation cyclization to synthesize benzimidazoles using fluorescein as a photocatalyst. Green Chem., 2019, 21(13), 3602-3605.
[http://dx.doi.org/10.1039/C9GC01359H]
[60]
Martin, A.; Cheshmedzhieva, D.; Palermo, V.; Liéby, M.F.; Romanelli, G.P.; Gaudel, S.A.; Coquerel, Y.; Constantieux, T.; Rodriguez, J. On the regioselective molecular sieves-promoted oxidative three-component synthesis of fused-benzimidazoles from $\beta $-ketoesters. C. R. Chim., 2022, 25(G1), 19-29.
[61]
Zhu, J.; Zhang, Z.; Miao, C.; Liu, W.; Sun, W. Synthesis of benzimidazoles from o-phenylenediamines and DMF derivatives in the presence of PhSiH3. Tetrahedron, 2017, 73(25), 3458-3462.
[http://dx.doi.org/10.1016/j.tet.2017.05.018]
[62]
Gao, X.; Yu, B.; Mei, Q.; Yang, Z.; Zhao, Y.; Zhang, H.; Hao, L.; Liu, Z. Atmospheric CO 2 promoted synthesis of N-containing heterocycles over B(C6F5)3 catalyst. New J. Chem., 2016, 40(10), 8282-8287.
[http://dx.doi.org/10.1039/C6NJ01721E]
[63]
Daw, P.; Ben, D.Y.; Milstein, D. Direct synthesis of benzimidazoles by dehydrogenative coupling of aromatic diamines and alcohols cata-lyzed by cobalt. ACS Catal., 2017, 7(11), 7456-7460.
[http://dx.doi.org/10.1021/acscatal.7b02777]
[64]
Carvalho, L.C.R.; Fernandes, E.; Marques, M.M.B. Developments towards regioselective synthesis of 1,2-disubstituted benzimidazoles. Chemistry, 2011, 17(45), 12544-12555.
[http://dx.doi.org/10.1002/chem.201101508] [PMID: 21989969]
[65]
Hille, T.; Irrgang, T.; Kempe, R. The synthesis of benzimidazoles and quinoxalines from aromatic diamines and alcohols by iridium-catalyzed acceptorless dehydrogenative alkylation. Chemistry, 2014, 20(19), 5569-5572.
[http://dx.doi.org/10.1002/chem.201400400] [PMID: 24711248]
[66]
Yu, J.; Xia, Y.; Lu, M. Iron-catalyzed highly efficient aerobic oxidative synthesis of benzimidazoles, benzoxazoles, and benzothiazoles directly from aromatic primary amines under solvent-free conditions in the open air. Synth. Commun., 2014, 44(20), 3019-3026.
[http://dx.doi.org/10.1080/00397911.2014.914221]
[67]
Yu, J.; Xu, J.; Lu, M. Copper-catalyzed highly efficient aerobic oxidative synthesis of benzimidazoles, benzoxazoles and benzothiazoles from aromatic alcohols under solvent-free conditions in open air at room temperature. Appl. Organomet. Chem., 2013, 27(10), n/a.
[http://dx.doi.org/10.1002/aoc.3039]
[68]
Yu, J.; Lu, M. Oxidative coupling of o -phenylenediamine with arylmethylamines to synthesize aryl-substituted benzimidazoles under catalyst-free and solvent-free conditions. Synth. Commun., 2014, 44(17), 2520-2528.
[http://dx.doi.org/10.1080/00397911.2014.908310]
[69]
Basuri, P.; Gonzalez, L.E.; Morato, N.M.; Pradeep, T.; Cooks, R.G. Accelerated microdroplet synthesis of benzimidazoles by nucleophilic addition to protonated carboxylic acids. Chem. Sci., 2020, 11(47), 12686-12694.
[http://dx.doi.org/10.1039/D0SC02467H] [PMID: 34094463]
[70]
Phatake, V.V.; Bhanage, B.M. Cu@ Ug-C3N4 catalyzed cyclization of o-Phenylenediamines for the synthesis of benzimidazoles by using CO2 and dimethylamine borane as a hydrogen source. Catal. Lett., 2019, 149(1), 347-359.
[http://dx.doi.org/10.1007/s10562-018-2608-9]
[71]
Dong, G.; Zhang, Y.; Pan, Q.; Qiu, J. A fantastic graphitic Carbon Nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. Photochem. Rev., 2014, 20, 33-50.
[http://dx.doi.org/10.1016/j.jphotochemrev.2014.04.002]
[72]
Wen, X.; Bakali, J.E.; Deprez, P.R.; Deprez, B. Efficient propylphosphonic anhydride (®T3P) mediated synthesis of benzothiazoles, benzoxazoles and benzimidazoles. Tetrahedron Lett., 2012, 53(19), 2440-2443.
[http://dx.doi.org/10.1016/j.tetlet.2012.03.007]
[73]
Rasal, K.B.; Yadav, G.D. One-pot synthesis of benzimidazole using DMF as a multitasking reagent in presence CuFe2O4 as catalyst. Catal. Today, 2018, 309, 51-60.
[http://dx.doi.org/10.1016/j.cattod.2017.10.014]
[74]
Li, X.; Zhang, J.; Yang, Y.; Hong, H.; Han, L.; Zhu, N. Reductive cyclization of o-phenylenediamine with CO2 and BH3NH3 to synthesize 1H-benzoimidazole derivatives. J. Organomet. Chem., 2021, 954-955, 122079.
[http://dx.doi.org/10.1016/j.jorganchem.2021.122079]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy