Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

VX-765对化疗所致卵巢损伤小鼠有保护作用

卷 23, 期 4, 2023

发表于: 21 October, 2022

页: [307 - 318] 页: 12

弟呕挨: 10.2174/1568009622666220930110024

open access plus

摘要

背景:恶性肿瘤仍然是一个主要的全球公共卫生问题。近40年来,由于恶性肿瘤患者的多学科综合治疗方案,特别是化疗方案的进步,大大提高了恶性肿瘤患者的生存率。在恶性肿瘤治疗成功后,这组患者有望保持生育能力或恢复内分泌功能。因此,关注化疗对育龄妇女卵巢的损害对于保护她们的生育能力和提高她们的生活质量至关重要。 目的:本研究试图评价VX-765在小鼠模型化疗引起的卵巢损伤中是否具有卵巢保护作用。 方法:雌性C57BL/6J小鼠灌胃VX-765,每日1次,连续灌胃21 d。最后一次灌胃VX- 765一周后开始使用环磷酰胺(Cy)。然后对各组不同水平的卵泡进行详细分类。利用免疫组织化学和Western blot分析卵巢中关键蛋白(FOXO3a、mTOR、RPS6和AKT)的表达及其对PI3K / PTEN / AKT通路的磷酸化情况。ELISA法测定AMH浓度。 结果:各水平Cy处理小鼠卵泡数量均低于正常组(P < 0.05)。同时,在接受Cy治疗前接受VX-765治疗的小鼠比仅接受Cy治疗的小鼠有更多的原始卵泡(PMF) (P < 0.05)。在早期生长卵泡(EGF)和窦性卵泡(AF)中,各组间差异无统计学意义(P > 0.05),但均低于正常组(P < 0.05)。连续Cy处理小鼠中,联合VX-765 (C-Cy-Vx765)小鼠的总卵泡数(TF)高于未加VX-765的小鼠,而两组小鼠的TF均低于正常组(P < 0.05)。C-Cy-Vx765组PMF/TF显著高于其他3组,EGF/TF显著低于其他3组(P < 0.05)。免疫组化结果显示,在Cy处理的小鼠中,PI3K / PTEN / AKT通路主要蛋白的磷酸化形式更为阳性。Western blot分析表明,当Cy和VX-765联合处理时,这些磷酸化蛋白的增加水平与Cy单独处理时相比有所下降。Cy和VX-765联合治疗小鼠的AMH水平明显高于正常小鼠(P < 0.05)。小鼠性成熟后,Cy和VX- 765联合处理小鼠AMH水平仍高于Cy处理小鼠(P < 0.05),与正常小鼠无显著差异(P > 0.05)。 结论:VX-765能维持AMH水平,抑制PMF的募集,从而保护小鼠免受Cy诱导的促性腺毒性。因此,VX-765可能在化疗引起的卵巢损伤小鼠中发挥保护作用。

关键词: VX-765,环磷酰胺,卵巢损伤,卵巢保护,PI3K / PTEN / AKT通路,烧毁。

图形摘要
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
Coccia, P.F.; Pappo, A.S.; Beaupin, L.; Borges, V.F.; Borinstein, S.C.; Chugh, R.; Dinner, S.; Folbrecht, J.; Frazier, A.L.; Goldsby, R.; Gubin, A.; Hayashi, R.; Huang, M.S.; Link, M.P.; Livingston, J.A.; Matloub, Y.; Millard, F.; Oeffinger, K.C.; Puccetti, D.; Reed, D.; Robinson, S.; Rosenberg, A.R.; Sanft, T.; Spraker-Perlman, H.L.; von Mehren, M.; Wechsler, D.S.; Whelan, K.F.; Yeager, N.; Gurski, L.A.; Shead, D.A. Adolescent and young adult oncology, version 2.2018, NCCN clinical practice guidelines in Oncology. J. Natl. Compr. Canc. Netw., 2018, 16(1), 66-97.
[http://dx.doi.org/10.6004/jnccn.2018.0001] [PMID: 29295883]
[3]
Donnez, J.; Martinez-Madrid, B.; Jadoul, P.; Van Langendonckt, A.; Demylle, D.; Dolmans, M.M. Ovarian tissue cryopreservation and transplantation: A review. Hum. Reprod. Update, 2006, 12(5), 519-535.
[http://dx.doi.org/10.1093/humupd/dml032] [PMID: 16849817]
[4]
Morgan, S.; Anderson, R.A.; Gourley, C.; Wallace, W.H.; Spears, N. How do chemotherapeutic agents damage the ovary? Hum. Reprod. Update, 2012, 18(5), 525-535.
[http://dx.doi.org/10.1093/humupd/dms022] [PMID: 22647504]
[5]
Meirow, D. Reproduction post-chemotherapy in young cancer patients. Mol. Cell. Endocrinol., 2000, 169, 123-131.
[http://dx.doi.org/10.1016/S0303-7207(00)00365-8]
[6]
Levine, J.M.; Kelvin, J.F.; Quinn, G.P.; Gracia, C.R. Infertility in reproductive-age female cancer survivors. Cancer, 2015, 121(10), 1532-1539.
[http://dx.doi.org/10.1002/cncr.29181] [PMID: 25649243]
[7]
Bruning, P.F.; Pit, M.J.; de Jong-Bakker, M.; van den Ende, A.; Hart, A.; van Enk, A. Bone mineral density after adjuvant chemotherapy for premenopausal breast cancer. Br. J. Cancer, 1990, 61(2), 308-310.
[http://dx.doi.org/10.1038/bjc.1990.58] [PMID: 2310683]
[8]
Jeanes, H.; Newby, D.; Gray, G.A. Cardiovascular risk in women: The impact of hormone replacement therapy and prospects for new therapeutic approaches. Expert Opin. Pharmacother., 2007, 8(3), 279-288.
[http://dx.doi.org/10.1517/14656566.8.3.279] [PMID: 17266463]
[9]
Carter, J.; Rowland, K.; Chi, D.; Brown, C.; Abu-Rustum, N.; Castiel, M.; Barakat, R. Gynecologic cancer treatment and the impact of cancer-related infertility. Gynecol. Oncol., 2005, 97(1), 90-95.
[http://dx.doi.org/10.1016/j.ygyno.2004.12.019] [PMID: 15790443]
[10]
Medicine PCotASfR. Fertility preservation in patients undergoing gonadotoxic therapy or gonadectomy: A committee opinion. Fertil. Steril., 2019, 112(6), 1022-1033.
[http://dx.doi.org/10.1016/j.fertnstert.2019.09.013] [PMID: 31843073]
[11]
Blumenfeld, Z.; Eckman, A. Preservation of fertility and ovarian function and minimization of chemotherapy-induced gonadotoxicity in young women by GnRH-a. J. Natl. Cancer Inst. Monographs, 2005, 34, 40-43.
[http://dx.doi.org/10.1093/jncimonographs/lgi015]
[12]
Sonigo, C.; Beau, I.; Grynberg, M.; Binart, N. AMH prevents primordial ovarian follicle loss and fertility alteration in cyclophosphamide treated mice. FASEB J., 2019, 33(1), 1278-1287.
[http://dx.doi.org/10.1096/fj.201801089R] [PMID: 30113879]
[13]
Pariente, R.; Pariente, J.A.; Rodríguez, A.B.; Espino, J. Melatonin sensitizes human cervical cancer HeLa cells to cisplatin-induced cytotoxicity and apoptosis: Effects on oxidative stress and DNA fragmentation. J. Pineal Res., 2016, 60(1), 55-64.
[http://dx.doi.org/10.1111/jpi.12288] [PMID: 26462739]
[14]
Hsueh, A.; McGee, E.; Hayashi, M.; Hsu, S. Hormonal regulation of early follicle development in the rat ovary. Mol. Cell. Endocrinol., 2000, 163, 95-100.
[http://dx.doi.org/10.1016/S0303-7207(99)00245-2]
[15]
Li, Y.; Qiu, W.; Zhang, Z.; Han, X.; Bu, G.; Meng, F.; Kong, F.; Cao, X.; Huang, A.; Feng, Z.; Li, Y.; Zeng, X.; Du, X. Oral oyster polypeptides protect ovary against D -galactose-induced premature ovarian failure in C57BL/6 mice. J. Sci. Food Agric., 2020, 100(1), 92-101.
[http://dx.doi.org/10.1002/jsfa.9997] [PMID: 31435952]
[16]
Yan, Z.; Dai, Y.; Fu, H.; Zheng, Y.; Bao, D.; Yin, Y.; Chen, Q.; Nie, X.; Hao, Q.; Hou, D.; Cui, Y. Curcumin exerts a protective effect against premature ovarian failure in mice. J. Mol. Endocrinol., 2018, 60(3), 261-271.
[http://dx.doi.org/10.1530/JME-17-0214] [PMID: 29437881]
[17]
Teixeira, C.; Florencio-Silva, R.; Sasso, G.; Carbonel, A.; Simões, R.; Simões, M. Soy isoflavones protect against oxidative stress and diminish apoptosis in ovary of middle-aged female rats. Gynecol. Endocrinol., 2019, 35(7), 586-590.
[18]
Zhao, M.D.; Li, J.Q.; Chen, F.Y.; Dong, W.; Wen, L.J.; Fei, W.D.; Zhang, X.; Yang, P.L.; Zhang, X.M.; Zheng, C.H. Co-delivery of curcumin and paclitaxel by “core-shell” targeting amphiphilic copolymer to reverse resistance in the treatment of ovarian cancer. Int. J. Nanomedicine, 2019, 14(14), 9453-9467.
[http://dx.doi.org/10.2147/IJN.S224579] [PMID: 31819443]
[19]
Roness, H.; Gavish, Z.; Cohen, Y.; Meirow, D. Ovarian follicle burnout: A universal phenomenon? Cell Cycle, 2013, 12(20), 3245-3246.
[http://dx.doi.org/10.4161/cc.26358] [PMID: 24036538]
[20]
Meirow, D.; Biederman, H.; Anderson, R.A.; Wallace, W.H.B. Toxicity of chemotherapy and radiation on female reproduction. Clin. Obstet. Gynecol., 2010, 53(4), 727-739.
[http://dx.doi.org/10.1097/GRF.0b013e3181f96b54] [PMID: 21048440]
[21]
Kalich-Philosoph, L.; Roness, H.; Carmely, A.; Fishel-Bartal, M.; Ligumsky, H.; Paglin, S.; Wolf, I.; Kanety, H.; Sredni, B.; Meirow, D. Cyclophosphamide triggers follicle activation and “burnout”; AS101 prevents follicle loss and preserves fertility. Sci. Transl. Med., 2013, 5(185), 185ra62.
[http://dx.doi.org/10.1126/scitranslmed.3005402] [PMID: 23677591]
[22]
Wannamaker, W.; Davies, R.; Namchuk, M.; Pollard, J.; Ford, P.; Ku, G.; Decker, C.; Charifson, P.; Weber, P.; Germann, U.; Kuida, K.; Randle, J. (S)-1-((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoyl)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1beta and IL-18. J. Pharmacol. Exp. Ther., 2007, 321(2), 509-516.
[http://dx.doi.org/10.1124/jpet.106.111344] [PMID: 17289835]
[23]
Pedersen, T.; Peters, H. Proposal for a classification of oocytes and follicles in the mouse ovary. Reproduction, 1968, 17(3), 555-557.
[http://dx.doi.org/10.1530/jrf.0.0170555] [PMID: 5715685]
[24]
Meirow, D.; Lewis, H.; Nugent, D.; Epstein, M. Subclinical depletion of primordial follicular reserve in mice treated with cyclophosphamide: Clinical importance and proposed accurate investigative tool. Hum. Reprod., 1999, 14(7), 1903-1907.
[http://dx.doi.org/10.1093/humrep/14.7.1903] [PMID: 10402415]
[25]
Donnez, J.; Dolmans, M.M.; Demylle, D.; Jadoul, P.; Pirard, C.; Squifflet, J.; Martinez-Madrid, B.; Van Langendonckt, A. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet, 2004, 364(9443), 1405-1410.
[http://dx.doi.org/10.1016/S0140-6736(04)17222-X] [PMID: 15488215]
[26]
Turner, N.H.; Partridge, A.; Sanna, G.; Di Leo, A.; Biganzoli, L. Utility of gonadotropin-releasing hormone agonists for fertility preservation in young breast cancer patients: The benefit remains uncertain. Ann. Oncol., 2013, 24(9), 2224-2235.
[http://dx.doi.org/10.1093/annonc/mdt196] [PMID: 23709175]
[27]
Morita, Y.; Perez, G.I.; Paris, F.; Miranda, S.R.; Ehleiter, D.; Haimovitz-Friedman, A.; Fuks, Z.; Xie, Z.; Reed, J.C.; Schuchman, E.H.; Kolesnick, R.N.; Tilly, J.L. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine -1-phosphate therapy. Nat. Med., 2000, 6(10), 1109-1114.
[http://dx.doi.org/10.1038/80442] [PMID: 11017141]
[28]
Kim, S-Y.; Cordeiro, M.H.; Serna, V.A.; Ebbert, K.; Butler, L.M.; Sinha, S.; Mills, A.A.; Woodruff, T.K.; Kurita, T. Rescue of platinum-damaged oocytes from programmed cell death through inactivation of the p53 family signaling network. Cell Death Differ., 2013, 20(8), 987-997.
[http://dx.doi.org/10.1038/cdd.2013.31] [PMID: 23598363]
[29]
Li, F.; Turan, V.; Lierman, S.; Cuvelier, C.; De Sutter, P.; Oktay, K. Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death. Hum. Reprod., 2014, 29(1), 107-113.
[http://dx.doi.org/10.1093/humrep/det391] [PMID: 24221908]
[30]
Skaznik-Wikiel, M.E.; McGuire, M.M.; Sukhwani, M.; Donohue, J.; Chu, T.; Krivak, T.C.; Rajkovic, A.; Orwig, K.E. Granulocyte colony-stimulating factor with or without stem cell factor extends time to premature ovarian insufficiency in female mice treated with alkylating chemotherapy. Fertil. Steril., 2013, 99(7), 2045-2054.e3.
[http://dx.doi.org/10.1016/j.fertnstert.2013.01.135] [PMID: 23453120]
[31]
Roness, H.; Kalich-Philosoph, L.; Meirow, D. Prevention of chemotherapy-induced ovarian damage: Possible roles for hormonal and non-hormonal attenuating agents. Hum. Reprod. Update, 2014, 20(5), 759-774.
[http://dx.doi.org/10.1093/humupd/dmu019] [PMID: 24833728]
[32]
Chang, E.M.; Lim, E.; Yoon, S.; Jeong, K.; Bae, S.; Lee, D.R.; Yoon, T.K.; Choi, Y.; Lee, W.S. Cisplatin induces overactivation of the dormant primordial follicle through PTEN/AKT/FOXO3a pathway which leads to loss of ovarian reserve in mice. PLoS One, 2015, 10(12), e0144245.
[http://dx.doi.org/10.1371/journal.pone.0144245] [PMID: 26656301]
[33]
Zhou, L.; Xie, Y.; Li, S.; Liang, Y.; Qiu, Q.; Lin, H.; Zhang, Q. Rapamycin prevents cyclophosphamide-induced over-activation of primordial follicle pool through PI3K/Akt/mTOR signaling pathway in vivo. J. Ovarian Res., 2017, 10(1), 56.
[http://dx.doi.org/10.1186/s13048-017-0350-3] [PMID: 28814333]
[34]
Chen, X.Y.; Xia, H.X.; Guan, H.Y.; Li, B.; Zhang, W. Follicle loss and apoptosis in cyclophosphamide-treated mice: What’s the matter? Int. J. Mol. Sci., 2016, 17(6), 836.
[http://dx.doi.org/10.3390/ijms17060836] [PMID: 27248997]
[35]
Ravizza, T.; Noé, F.; Zardoni, D.; Vaghi, V.; Sifringer, M.; Vezzani, A. Interleukin converting enzyme inhibition impairs kindling epileptogenesis in rats by blocking astrocytic IL-1β production. Neurobiol. Dis., 2008, 31(3), 327-333.
[http://dx.doi.org/10.1016/j.nbd.2008.05.007] [PMID: 18632279]
[36]
Reddy, P.; Zheng, W.; Liu, K. Mechanisms maintaining the dormancy and survival of mammalian primordial follicles. Trends Endocrinol. Metab., 2010, 21(2), 96-103.
[http://dx.doi.org/10.1016/j.tem.2009.10.001] [PMID: 19913438]
[37]
Adhikari, D.; Liu, K. Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr. Rev., 2009, 30(5), 438-464.
[http://dx.doi.org/10.1210/er.2008-0048] [PMID: 19589950]
[38]
van Rooij, I.; Tonkelaar, I.; Broekmans, F.; Looman, C.; Scheffer, G.; de Jong, F.; Themmen, A.; te Velde, E. Anti-müllerian hormone is a promising predictor for the occurrence of the menopausal transition. Menopause, 2004, 11, 601-606.
[http://dx.doi.org/10.1097/01.GME.0000123642.76105.6E]
[39]
Bala, J.; Seth, S.; Dhankhar, R.; Ghalaut, V.S. Chemotherapy: Impact on anti- müllerian hormone levels in breast carcinoma. J. Clin. Diagn. Res., 2016, 10(2), BC19-BC21.
[http://dx.doi.org/10.7860/JCDR/2016/15933.7328] [PMID: 27042447]
[40]
Peigné, M.; Decanter, C. Serum AMH level as a marker of acute and long-term effects of chemotherapy on the ovarian follicular content: A systematic review. Reprod. Biol. Endocrinol., 2014, 12, 26.
[41]
Henry, N.L.; Xia, R.; Schott, A.F.; McConnell, D.; Banerjee, M.; Hayes, D.F. Prediction of postchemotherapy ovarian function using markers of ovarian reserve. Oncologist, 2014, 19(1), 68-74.
[http://dx.doi.org/10.1634/theoncologist.2013-0145] [PMID: 24319018]
[42]
Donnez, J.; Dolmans, M.M. Fertility preservation in women. N. Engl. J. Med., 2017, 377(17), 1657-1665.
[http://dx.doi.org/10.1056/NEJMra1614676] [PMID: 29069558]
[43]
Spears, N.; Lopes, F.; Stefansdottir, A.; Rossi, V.; De Felici, M.; Anderson, R.A.; Klinger, F.G. Ovarian damage from chemotherapy and current approaches to its protection. Hum. Reprod. Update, 2019, 25(6), 673-693.
[http://dx.doi.org/10.1093/humupd/dmz027] [PMID: 31600388]
[44]
Goldman, K.N.; Chenette, D.; Arju, R.; Duncan, F.E.; Keefe, D.L.; Grifo, J.A.; Schneider, R.J. mTORC1/2 inhibition preserves ovarian function and fertility during genotoxic chemotherapy. Proc. Natl. Acad. Sci. USA, 2017, 114(12), 3186-3191.
[http://dx.doi.org/10.1073/pnas.1617233114] [PMID: 28270607]
[45]
Jang, H.; Na, Y.; Hong, K.; Lee, S.; Moon, S.; Cho, M.; Park, M.; Lee, O.H.; Chang, E.M.; Lee, D.R.; Ko, J.J.; Lee, W.S.; Choi, Y. Synergistic effect of melatonin and ghrelin in preventing cisplatin-induced ovarian damage via regulation of FOXO3a phosphorylation and binding to the p27Kip1 promoter in primordial follicles. J. Pineal Res., 2017, 63(3), e12432.
[http://dx.doi.org/10.1111/jpi.12432] [PMID: 28658519]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy