Research Article

亲环蛋白D通过线粒体通透性过渡孔调节急性非结石性胆囊炎的氧化应激和细胞凋亡

卷 23, 期 9, 2023

发表于: 12 October, 2022

页: [971 - 980] 页: 10

弟呕挨: 10.2174/1566524023666220908112922

价格: $65

conference banner
摘要

目的:急性非结石性胆囊炎(AAC)具有起病急、进展快、病死率高、并发症多等特点。亲环蛋白D(CypD)调节线粒体通透性转换孔(MPTP),参与缺血再灌注损伤和炎症的发生;然而,CypD 在 AAC 中的作用仍不清楚。 方法:将300~350 g豚鼠随机分为3组,即假手术组、胆总管结扎24h组(CBDL-24h组)、CBDL-48h组。采用Western blot和qRT-PCR分析各组CypD的差异表达,并采用透射电镜检测线粒体结构的变化。通过环孢素A(CsA)抑制CypD的活性,我们利用线粒体肿胀、活性氧(ROS)检测和线粒体膜电位来评估线粒体的差异。 结果:与假手术组相比,CBDL-24h和CBDL-48h组梗阻时间延长,胆囊炎症加重,CypD表达上调。 CBDL-24h和48h组线粒体肿胀程度增加,MPTP开放时间延长。减少 CypD 的表达可以抑制 MPTP 的开放,防止线粒体膜电位的操纵,并最终降低细胞内 ROS 和细胞凋亡的水平。 结论:CypD通过调节MPTP的开放在AAC的发生发展中发挥促炎作用。抑制CypD的活性可以降低ROS水平和细胞凋亡,挽救线粒体功能,最终缓解AAC。因此,CypD可能作为ACC的潜在治疗靶点。

关键词: 亲环蛋白D,线粒体通透性过渡孔,环孢菌素A,急性非结石性胆囊炎,氧化应激,细胞凋亡。

[1]
Huffman JL, Schenker S. Acute acalculous cholecystitis: A review. Clin Gastroenterol Hepatol 2010; 8(1): 15-22.
[http://dx.doi.org/10.1016/j.cgh.2009.08.034] [PMID: 19747982]
[2]
Poddighe D, Sazonov V. Acute acalculous cholecystitis in children. World J Gastroenterol 2018; 24(43): 4870-9.
[http://dx.doi.org/10.3748/wjg.v24.i43.4870] [PMID: 30487697]
[3]
Barie P S, Eachempati S R. Acute acalculous cholecystitis. Gastroenterol Clin North Am 2010; 39M(2): 343-57.
[http://dx.doi.org/10.1016/j.gtc.2010.02.012]
[4]
McChesney JA, Northup PG, Bickston SJ. Acute acalculous cholecystitis associated with systemic sepsis and visceral arterial hypoperfusion: a case series and review of pathophysiology. Dig Dis Sci 2003; 48(10): 1960-7.
[http://dx.doi.org/10.1023/A:1026118320460] [PMID: 14627341]
[5]
Lin MJ, Chen L, Huang ZP, Qiu H, Yu BP. Neutrophils injure gallbladder interstitial Cajal‐like cells in a guinea pig model of acute cholecystitis. J Cell Physiol 2019; 234(4): 4291-301.
[http://dx.doi.org/10.1002/jcp.27197] [PMID: 30146704]
[6]
Du H, Guo L, Wu X, et al. Cyclophilin D deficiency rescues Aβ-impaired PKA/CREB signaling and alleviates synaptic degeneration. Biochim Biophys Acta Mol Basis Dis 2014; 1842(12): 2517-27.
[http://dx.doi.org/10.1016/j.bbadis.2013.03.004] [PMID: 23507145]
[7]
Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P. Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 2005; 280(19): 18558-61.
[http://dx.doi.org/10.1074/jbc.C500089200] [PMID: 15792954]
[8]
Giorgio V, Soriano ME, Basso E, et al. Cyclophilin D in mitochondrial pathophysiology. Biochim Biophys Acta Bioenerg 2010; 1797(6-7): 1113-8.
[http://dx.doi.org/10.1016/j.bbabio.2009.12.006] [PMID: 20026006]
[9]
Ye F, Li X, Liu Y, et al. CypD deficiency confers neuroprotection against mitochondrial abnormality caused by lead in SH-SY5Y cell. Toxicol Lett 2020; 323: 25-34.
[http://dx.doi.org/10.1016/j.toxlet.2019.12.025] [PMID: 31874198]
[10]
Cao S, Sun Y, Wang W, et al. Poly (ADP‐ribose) polymerase inhibition protects against myocardial ischaemia/reperfusion injury via suppressing mitophagy. J Cell Mol Med 2019; 23(10): 6897-906.
[http://dx.doi.org/10.1111/jcmm.14573] [PMID: 31379115]
[11]
Lindblom RSJ, Higgins GC, Nguyen TV, et al. Delineating a role for the mitochondrial permeability transition pore in diabetic kidney disease by targeting cyclophilin D. Clin Sci 2020; 134(2): 239-59.
[http://dx.doi.org/10.1042/CS20190787] [PMID: 31943002]
[12]
Gan X, Zhang L, Liu B, et al. CypD-mPTP axis regulates mitochondrial functions contributing to osteogenic dysfunction of MC3T3-E1 cells in inflammation. J Physiol Biochem 2018; 74(3): 395-402.
[http://dx.doi.org/10.1007/s13105-018-0627-z] [PMID: 29679227]
[13]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25(4): 402-8.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[14]
Karch J, Bround MJ, Khalil H, et al. Inhibition of mitochondrial permeability transition by deletion of the ANT family and CypD. Sci Adv 2019; 5(8): eaaw4597.
[http://dx.doi.org/10.1126/sciadv.aaw4597] [PMID: 31489369]
[15]
Mohamad N, Gutierrez A, Nunez M, et al. Mitochondrial apoptotic pathways. Biocell 2005; 29(2): 149-61.
[16]
Kimura Y, Takada T, Kawarada Y, et al. Definitions, pathophysiology, and epidemiology of acute cholangitis and cholecystitis: Tokyo Guidelines. J Hepatobiliary Pancreat Surg 2007; 14(1): 15-26.
[http://dx.doi.org/10.1007/s00534-006-1152-y] [PMID: 17252293]
[17]
Orlando R III, Gleason E, Drezner AD. Acute acalculous cholecystitis in the critically ill patient. Am J Surg 1983; 145(4): 472-6.
[http://dx.doi.org/10.1016/0002-9610(83)90042-9] [PMID: 6188383]
[18]
Cao AM, Eslick GD, Cox MR. Early laparoscopic cholecystectomy is superior to delayed acute cholecystitis: A meta-analysis of case–control studies. Surg Endosc 2016; 30(3): 1172-82.
[http://dx.doi.org/10.1007/s00464-015-4325-4] [PMID: 26139487]
[19]
Mnatsakanyan N, Beutner G, Porter GA, Alavian KN, Jonas EA. Physiological roles of the mitochondrial permeability transition pore. J Bioenerg Biomembr 2017; 49(1): 13-25.
[http://dx.doi.org/10.1007/s10863-016-9652-1] [PMID: 26868013]
[20]
Nighoghossian N, Ovize M, Mewton N, Ong E, Cho TH. Cyclosporine a, a potential therapy of ischemic reperfusion injury. A common history for heart and brain. Cerebrovasc Dis 2016; 42(5-6): 309-18.
[http://dx.doi.org/10.1159/000446850] [PMID: 27245840]
[21]
Wang X, Du H, Shao S, et al. Cyclophilin D deficiency attenuates mitochondrial perturbation and ameliorates hepatic steatosis. Hepatology 2018; 68(1): 62-77.
[http://dx.doi.org/10.1002/hep.29788] [PMID: 29356058]
[22]
Duan Y, Wang H, Mitchell-silbaugh K, et al. Heat shock protein 60 regulates yolk sac erythropoiesis in mice. Cell Death Dis 2019; 10(10): 766.
[http://dx.doi.org/10.1038/s41419-019-2014-2] [PMID: 31601784]
[23]
Perez M J, Ponce D P, Aranguiz A, et al. Mitochondrial permeability transition pore contributes to mitochondrial dysfunction in fibroblasts of patients with sporadic Alzheimer's disease. Redox Biol 2018; 19: 290-300.
[http://dx.doi.org/10.1016/j.redox.2018.09.001]
[24]
Amanakis G, Murphy E, Cyclophilin D. Cyclophilin D: An integrator of mitochondrial function. Front Physiol 2020; 11: 595.
[http://dx.doi.org/10.3389/fphys.2020.00595] [PMID: 32625108]
[25]
Porter GA, Beutner G, Cyclophilin D. Cyclophilin D, somehow a master regulator of mitochondrial function. Biomolecules 2018; 8(4): 176.
[http://dx.doi.org/10.3390/biom8040176] [PMID: 30558250]
[26]
Han JH, Park J, Myung SH, et al. Noxa mitochondrial targeting domain induces necrosis via VDAC2 and mitochondrial catastrophe. Cell Death Dis 2019; 10(7): 519.
[http://dx.doi.org/10.1038/s41419-019-1753-4] [PMID: 31285435]
[27]
Parks RJ, Menazza S, Holmström KM, et al. Cyclophilin D-mediated regulation of the permeability transition pore is altered in mice lacking the mitochondrial calcium uniporter. Cardiovasc Res 2019; 115(2): 385-94.
[http://dx.doi.org/10.1093/cvr/cvy218] [PMID: 30165576]
[28]
Gan I, Jiang J, Lian D, et al. Mitochondrial permeability regulates cardiac endothelial cell necroptosis and cardiac allograft rejection. Am J Transplant 2019; 19(3): 686-98.
[http://dx.doi.org/10.1111/ajt.15112] [PMID: 30203531]
[29]
Elrod JW, Molkentin JD. Physiologic functions of cyclophilin D and the mitochondrial permeability transition pore. Circ J 2013; 77(5): 1111-22.
[http://dx.doi.org/10.1253/circj.CJ-13-0321] [PMID: 23538482]
[30]
Dube H, Selwood D, Malouitre S, Capano M, Simone MI, Crompton M. A mitochondrial-targeted cyclosporin A with high binding affinity for cyclophilin D yields improved cytoprotection of cardiomyocytes. Biochem J 2012; 441(3): 901-7.
[http://dx.doi.org/10.1042/BJ20111301] [PMID: 22035570]
[31]
Estaquier J, Vallette F, Vayssiere JL, Mignotte B. The mitochondrial pathways of apoptosis. Adv Exp Med Biol 2012; 942: 157-83.
[http://dx.doi.org/10.1007/978-94-007-2869-1_7] [PMID: 22399422]
[32]
Wu HY, Huang CH, Lin YH, Wang CC, Jan TR. Cannabidiol induced apoptosis in human monocytes through mitochondrial permeability transition pore-mediated ROS production. Free Radic Biol Med 2018; 124: 311-8.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.06.023] [PMID: 29940353]
[33]
Sun Q, Shen X, Wang P, Ma J, Sha W. Targeting cyclophilin-D by miR-1281 protects human macrophages from Mycobacterium tuberculosis-induced programmed necrosis and apoptosis. Aging 2019; 11(24): 12661-73.
[http://dx.doi.org/10.18632/aging.102593] [PMID: 31884421]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy