Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Systematic Review Article

A Systematic Review of the Therapeutic Potential of Resveratrol During Colorectal Cancer Chemotherapy

Author(s): Xiao-Yu Wu, Jing Zhai, Xiang- Kun Huan, Wen-Wen Xu*, Jun Tian* and Bagher Farhood*

Volume 23, Issue 10, 2023

Published on: 20 October, 2022

Page: [1137 - 1152] Pages: 16

DOI: 10.2174/1389557522666220907145153

Price: $65

Abstract

Background: The chemotherapy modality is generally used for treating colorectal cancer. However, the clinical application of chemotherapeutic drugs may be limited due to their adverse effects on normal cells/tissues and the development of cancer resistance. Using the combined treatment of chemotherapy drugs and natural bioactive compounds (such as resveratrol) can alleviate adverse drug reactions and induce synergies between the drugs.

Objective: In the current review, the potential therapeutic impacts of resveratrol during colorectal cancer chemotherapy were studied.

Methods: Based on the PRISMA guideline, we performed a systematic search in different electronic databases up to May, 2021. Following the search, 321 papers were found and then screened for eligibility. Twenty-seven papers were finally included in the present study

Results: Compared to the control group, the growth inhibition of cancerous cells treated with chemotherapeutic drugs was considerably higher, and resveratrol co-administration synergistically increased chemotherapy-induced cytotoxicity. Moreover, a reduction in the tumor weight, volume and growth of mice was observed following chemotherapy administration compared to the untreated groups, and these reductions were predominant in animals treated with resveratrol plus chemotherapy. Other findings showed that chemotherapy alone and in combination with resveratrol modulated the cell cycle profile of cancerous cells. Furthermore, chemotherapy treatment induced a set of biochemical and histopathological alterations in cancer cells/tissues, and these changes were synergized following resveratrol co-treatment (in most of the cases), excluding inflammatory mediators.

Conclusion: In most cases, resveratrol co-administration could sensitize cancerous cells to chemotherapy drugs through its oxidant, apoptosis, anti-inflammatory activities, etc. Nevertheless, suggesting the use of resveratrol during chemotherapy of colorectal cancer patients requires further clinical studies.

Keywords: Colorectal cancer, chemotherapy, chemosensitizer, resveratrol, systemic review, chemotherapy drugs.

« Previous
Graphical Abstract
[1]
Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz. Gastroenterol., 2019, 14(2), 89-103.
[http://dx.doi.org/10.5114/pg.2018.81072] [PMID: 31616522]
[2]
Gonzalez-Angulo, A.M.; Morales-Vasquez, F.; Hortobagyi, G.N. Overview of resistance to systemic therapy in patients with breast cancer. Adv. Exp. Med. Biol., 2007, 608, 1-22.
[http://dx.doi.org/10.1007/978-0-387-74039-3_1] [PMID: 17993229]
[3]
Lisle, D.; Lee-Kong, S. Surgical management of complicated colon cancer. Clin. Colon Rectal Surg., 2015, 28(4), 228-233.
[http://dx.doi.org/10.1055/s-0035-1564621] [PMID: 26648793]
[4]
Chibaudel, B.; Tournigand, C.; André, T.; de Gramont, A. Therapeutic strategy in unresectable metastatic colorectal cancer. Ther. Adv. Med. Oncol., 2012, 4(2), 75-89.
[http://dx.doi.org/10.1177/1758834011431592] [PMID: 22423266]
[5]
Goldstein, D.A.; Zeichner, S.B.; Bartnik, C.M.; Neustadter, E.; Flowers, C.R. CRJCcc: Metastatic colorectal cancer: A systematic review of the value of current therapies. Clin. Colorectal Cancer, 2016, 15(1), 1-6.
[6]
Deng, Z.; Qin, Y.; Wang, J.; Wang, G.; Lang, X.; Jiang, J.; Xie, K.; Zhang, W.; Xu, H.; Shu, Y.; Zhang, Y. Prognostic and predictive role of DNA mismatch repair status in stage II‐III colorectal cancer: A systematic review and meta-analysis. Clin. Genet., 2020, 97(1), 25-38.
[7]
Moutabian, H.; Majdaeen, M.; Ghahramani-Asl, R.; Yadollahi, M.; Gharepapagh, E.; Ataei, G.; Falahatpour, Z.; Bagheri, H.; Farhood, B. A systematic review of the therapeutic effects of resveratrol in combination with 5-fluorouracil during colorectal cancer treatment: With a special focus on the oxidant, apoptotic, and anti-inflammatory activities. Cancer Cell Int., 2022, 22(1), 142.
[http://dx.doi.org/10.1186/s12935-022-02561-7] [PMID: 35366874]
[8]
Burness, C.B.; Duggan, S.T. Trifluridine/tipiracil: A review in metastatic colorectal cancer. Drugs, 2016, 76(14), 1393-1402.
[http://dx.doi.org/10.1007/s40265-016-0633-9] [PMID: 27568360]
[9]
Mármol, I.; Sánchez-de-Diego, C.; Pradilla Dieste, A.; Cerrada, E.; Yoldi, M.J.R. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int. J. Mol. Sci., 2017, 18(1), 197.
[10]
Van Cutsem, E.; Cervantes, A.; Nordlinger, B.; Arnold, D. Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2014, 25(Suppl. 3), iii1-iii9.
[http://dx.doi.org/10.1093/annonc/mdu260] [PMID: 25190710]
[11]
Van Cutsem, E.; Nordlinger, B.; Cervantes, A. Advanced colorectal cancer: ESMO Clinical Practice Guidelines for treatment. Ann. Oncol., 2010, 21(Suppl. 5), v93-v97.
[http://dx.doi.org/10.1093/annonc/mdq222] [PMID: 20555112]
[12]
Venook, A. Critical evaluation of current treatments in metastatic colorectal cancer. Oncologist, 2005, 10(4), 250-261.
[http://dx.doi.org/10.1634/theoncologist.10-4-250] [PMID: 15821245]
[13]
Boussios, S.; Pentheroudakis, G.; Katsanos, K.; Pavlidis, N. Systemic treatment-induced gastrointestinal toxicity: Incidence, clinical presentation and management. Ann. Gastroenterol., 2012, 25(2), 106-118.
[PMID: 24713845]
[14]
Redondo-Blanco, S.; Fernández, J.; Gutiérrez-del-Río, I.; Villar, C.J.; Lombó, F. New insights toward colorectal cancer chemotherapy using natural bioactive compounds. Front. Pharmacol., 2017, 8, 109.
[http://dx.doi.org/10.3389/fphar.2017.00109] [PMID: 28352231]
[15]
Najafi, M.; Mortezaee, K.; Rahimifard, M.; Farhood, B.; Haghi-Aminjan, H. The role of curcumin/curcuminoids during gastric cancer chemotherapy: A systematic review of non-clinical study. Life Sci., 2020, 257, 118051.
[http://dx.doi.org/10.1016/j.lfs.2020.118051] [PMID: 32634426]
[16]
Haghi-Aminjan, H.; Asghari, M.H.; Farhood, B.; Rahimifard, M.; Hashemi Goradel, N.; Abdollahi, M. The role of melatonin on chemotherapy-induced reproductive toxicity. J. Pharm. Pharmacol., 2018, 70(3), 291-306.
[http://dx.doi.org/10.1111/jphp.12855] [PMID: 29168173]
[17]
Perrone, D.; Fuggetta, M.P.; Ardito, F.; Cottarelli, A.; De Filippis, A.; Ravagnan, G.; De Maria, S.; Lo Muzio, L. Resveratrol (3,5,4′-trihydroxystilbene) and its properties in oral diseases. Exp. Ther. Med., 2017, 14(1), 3-9.
[http://dx.doi.org/10.3892/etm.2017.4472] [PMID: 28672886]
[18]
Gianchecchi, E.; Fierabracci, A. Insights on the effects of resveratrol and some of its derivatives in cancer and autoimmunity: A molecule with a dual activity. Antioxidants, 2020, 9(2), 91.
[http://dx.doi.org/10.3390/antiox9020091] [PMID: 31978952]
[19]
Soleas, G.J.; Grass, L.; Josephy, P.D.; Goldberg, D.M.; Diamandis, E.P. A comparison of the anticarcinogenic properties of four red wine polyphenols. Clin. Biochem., 2002, 35(2), 119-124.
[http://dx.doi.org/10.1016/S0009-9120(02)00275-8] [PMID: 11983346]
[20]
Afaq, F.; Adhami, V.M.; Ahmad, N. Prevention of short-term ultraviolet B radiation-mediated damages by resveratrol in SKH-1 hairless mice. Toxicol. Appl. Pharmacol., 2003, 186(1), 28-37.
[http://dx.doi.org/10.1016/S0041-008X(02)00014-5] [PMID: 12583990]
[21]
Reagan-Shaw, S.; Afaq, F.; Aziz, M.H.; Ahmad, N. Modulations of critical cell cycle regulatory events during chemoprevention of ultraviolet B-mediated responses by resveratrol in SKH-1 hairless mouse skin. Oncogene, 2004, 23(30), 5151-5160.
[http://dx.doi.org/10.1038/sj.onc.1207666] [PMID: 15122319]
[22]
Aziz, M.H.; Reagan-Shaw, S.; Wu, J.; Longley, B.J.; Ahmad, N. Chemoprevention of skin cancer by grape constituent resveratrol: Relevance to human disease? FASEB J., 2005, 19(9), 1193-1195.
[http://dx.doi.org/10.1096/fj.04-3582fje] [PMID: 15837718]
[23]
Banerjee, S.; Bueso-Ramos, C.; Aggarwal, B.B. Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: Role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9. Cancer Res., 2002, 62(17), 4945-4954.
[PMID: 12208745]
[24]
Whitsett, T.; Carpenter, M.; Lamartiniere, C.A. Resveratrol, but not EGCG, in the diet suppresses DMBA-induced mammary cancer in rats. J. Carcinog., 2006, 5(1), 15.
[http://dx.doi.org/10.1186/1477-3163-5-15] [PMID: 16700914]
[25]
Ganapathy, S.; Chen, Q.; Singh, K.P.; Shankar, S.; Srivastava, R.K. Resveratrol enhances antitumor activity of TRAIL in prostate cancer xenografts through activation of FOXO transcription factor. PLoS One, 2010, 5(12), e15627.
[http://dx.doi.org/10.1371/journal.pone.0015627] [PMID: 21209944]
[26]
Harper, C.E.; Patel, B.B.; Wang, J.; Arabshahi, A.; Eltoum, I.A.; Lamartiniere, C.A. Resveratrol suppresses prostate cancer progression in transgenic mice. Carcinogenesis, 2007, 28(9), 1946-1953.
[http://dx.doi.org/10.1093/carcin/bgm144] [PMID: 17675339]
[27]
Lee, E.O.; Lee, H.J.; Hwang, H.S.; Ahn, K.S.; Chae, C.; Kang, K.S.; Lu, J.; Kim, S.H. Potent inhibition of Lewis lung cancer growth by heyneanol A from the roots of Vitis amurensis through apoptotic and anti-angiogenic activities. Carcinogenesis, 2006, 27(10), 2059-2069.
[http://dx.doi.org/10.1093/carcin/bgl055] [PMID: 16675471]
[28]
Yu, L.; Sun, Z.J.; Wu, S.L.; Pan, C.E. Effect of resveratrol on cell cycle proteins in murine transplantable liver cancer. World J. Gastroenterol., 2003, 9(10), 2341-2343.
[http://dx.doi.org/10.3748/wjg.v9.i10.2341] [PMID: 14562407]
[29]
Yang, H.; Chen, W.; Cao, X.; Worschech, A.; Du, L.; Fang, W.; Xu, Y.; Stroncek, D.F.; Li, X.; Wang, E.; Marincola, F.M. Caveolin-1 enhances resveratrol-mediated cytotoxicity and transport in a hepatocellular carcinoma model. J. Transl. Med., 2009, 7(1), 22.
[http://dx.doi.org/10.1186/1479-5876-7-22] [PMID: 19321006]
[30]
Kweon, S.; Kim, Y.; Choi, H. Grape extracts suppress the formation of preneoplastic foci and activity of fatty acid synthase in rat liver. Exp. Mol. Med., 2003, 35(5), 371-378.
[http://dx.doi.org/10.1038/emm.2003.49] [PMID: 14646590]
[31]
Bishayee, A.; Dhir, N. Resveratrol-mediated chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis: Inhibition of cell proliferation and induction of apoptosis. Chem. Biol. Interact., 2009, 179(2-3), 131-144.
[http://dx.doi.org/10.1016/j.cbi.2008.11.015] [PMID: 19073162]
[32]
Li, W.; Ma, J.; Ma, Q.; Li, B.; Han, L.; Liu, J.; Xu, Q.; Duan, W.; Yu, S.; Wang, F.; Wu, E. Resveratrol inhibits the epithelial-mesenchymal transition of pancreatic cancer cells via suppression of the PI-3K/Akt/NF-κB pathway. Curr. Med. Chem., 2013, 20(33), 4185-4194.
[http://dx.doi.org/10.2174/09298673113209990251] [PMID: 23992306]
[33]
Chatterjee, B.; Ghosh, K.; Kanade, S.R. Resveratrol modulates epigenetic regulators of promoter histone methylation and acetylation that restores BRCA1, p53, p21 CIP1 in human breast cancer cell lines. Biofactors, 2019, 45(5), 818-829.
[http://dx.doi.org/10.1002/biof.1544] [PMID: 31317586]
[34]
Arabzadeh, A.; Mortezazadeh, T.; Aryafar, T.; Gharepapagh, E.; Majdaeen, M.; Farhood, B. Therapeutic potentials of resveratrol in combination with radiotherapy and chemotherapy during glioblastoma treatment: A mechanistic review. Cancer Cell Int., 2021, 21(1), 391.
[http://dx.doi.org/10.1186/s12935-021-02099-0] [PMID: 34289841]
[35]
Ren, M.; Zhou, X.; Gu, M.; Jiao, W.; Yu, M.; Wang, Y.; Liu, S.; Yang, J.; Ji, F. Resveratrol synergizes with cisplatin in antineoplastic effects against AGS gastric cancer cells by inducing endoplasmic reticulum stress mediated apoptosis and G2/M phase arrest. Oncol. Rep., 2020, 44(4), 1605-1615.
[http://dx.doi.org/10.3892/or.2020.7708] [PMID: 32945472]
[36]
Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Shabeeb, D. Resveratrol as an adjuvant for normal tissues protection and tumor sensitization. Curr. Cancer Drug Targets, 2020, 20(2), 130-145.
[37]
Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med., 2009, 151(4), 264-269, W64.
[http://dx.doi.org/10.7326/0003-4819-151-4-200908180-00135] [PMID: 19622511]
[38]
Hwang, J.T.; Kwak, D.W.; Lin, S.K.; Kim, H.M.; Kim, Y.M.; Park, O.J. Resveratrol induces apoptosis in chemoresistant cancer cells via modulation of AMPK signaling pathway. Ann. N. Y. Acad. Sci., 2007, 1095(1), 441-448.
[http://dx.doi.org/10.1196/annals.1397.047] [PMID: 17404056]
[39]
Colin, D.; Gimazane, A.; Lizard, G.; Izard, J.C.; Solary, E.; Latruffe, N.; Delmas, D. Effects of resveratrol analogs on cell cycle progression, cell cycle associated proteins and 5fluoro-uracil sensitivity in human derived colon cancer cells. Int. J. Cancer, 2009, 124(12), 2780-2788.
[http://dx.doi.org/10.1002/ijc.24264] [PMID: 19334045]
[40]
Lee, S.C.; Chan, J.Y.; Pervaiz, S. Spontaneous and 5-fluorouracil-induced centrosome amplification lowers the threshold to resveratrol-evoked apoptosis in colon cancer cells. Cancer Lett., 2010, 288(1), 36-41.
[http://dx.doi.org/10.1016/j.canlet.2009.06.020] [PMID: 19616374]
[41]
Mohapatra, P.; Preet, R.; Choudhuri, M.; Choudhuri, T.; Kundu, C.N. 5-Fluorouracil increases the chemopreventive potentials of resveratrol through DNA damage and MAPK signaling pathway in human colorectal cancer cells. Oncol. Res., 2011, 19(7), 311-321.
[http://dx.doi.org/10.3727/096504011X13079697132844] [PMID: 21936401]
[42]
Santandreu, F.M; Valle, A.; Oliver, J.; Roca, P. Resveratrol potentiates the cytotoxic oxidative stress induced by chemotherapy in human colon cancer cells. Cell. Physiol. Biochem., 2011, 28(2), 219-228.
[http://dx.doi.org/10.1159/000331733]
[43]
Yu, X.; Erzinger, M.M.; Pietsch, K.E.; Cervoni-Curet, F.N.; Whang, J.; Niederhuber, J.; Sturla, S.J. Up-regulation of human prostaglandin reductase 1 improves the efficacy of hydroxymethylacylfulvene, an antitumor chemotherapeutic agent. J. Pharmacol. Exp. Ther., 2012, 343(2), 426-433.
[http://dx.doi.org/10.1124/jpet.112.195768] [PMID: 22895897]
[44]
Amiri, F.; Zarnani, A.H.; Zand, H.; Koohdani, F.; Jeddi-Tehrani, M.; Vafa, M. Synergistic anti-proliferative effect of resveratrol and etoposide on human hepatocellular and colon cancer cell lines. Eur. J. Pharmacol., 2013, 718(1-3), 34-40.
[http://dx.doi.org/10.1016/j.ejphar.2013.09.020] [PMID: 24055188]
[45]
Das, D.; Preet, R.; Mohapatra, P.; Satapathy, S.R.; Kundu, C.N. 1,3-Bis(2-chloroethyl)-1-nitrosourea enhances the inhibitory effect of Resveratrol on 5-fluorouracil sensitive/resistant colon cancer cells. World J. Gastroenterol., 2013, 19(42), 7374-7388.
[http://dx.doi.org/10.3748/wjg.v19.i42.7374] [PMID: 24259968]
[46]
Hotnog, D. Mihăilă, M.; Lancu, I.V.; Matei, G.G.; Hotnog, C.; Anton, G.; Bostan, M.; Braşoveanu, L.I. Resveratrol modulates apoptosis in 5-fluorouracyl treated colon cancer cell lines. Roum. Arch. Microbiol. Immunol., 2013, 72(4), 255-264.
[PMID: 24923109]
[47]
Kumazaki, M.; Noguchi, S.; Yasui, Y.; Iwasaki, J.; Shinohara, H.; Yamada, N.; Akao, Y. Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells. J. Nutr. Biochem., 2013, 24(11), 1849-1858.
[http://dx.doi.org/10.1016/j.jnutbio.2013.04.006] [PMID: 23954321]
[48]
Ali, I.; Braun, D.P. Resveratrol enhances mitomycin C-mediated suppression of human colorectal cancer cell proliferation by up-regulation of p21WAF1/CIP1. Anticancer Res., 2014, 34(10), 5439-5446.
[PMID: 25275039]
[49]
Kaminski, B.M; Weigert, A; Scherzberg, MC; Ley, S; Gilbert, B; Brecht, K; Brüne, B; Steinhilber, D; Stein, J; Ulrich-Rückert, S Resveratrol-induced potentiation of the antitumor effects of oxaliplatin is accompanied by an altered cytokine profile of human monocyte-derived macrophages. Apoptosis, 2014, 19(7), 1136-1147.
[http://dx.doi.org/10.1007/s10495-014-0988-x]
[50]
Park, D.G. Antichemosensitizing effect of resveratrol in cotreatment with oxaliplatin in HCT116 colon cancer cell. Ann. Surg. Treat. Res., 2014, 86(2), 68-75.
[http://dx.doi.org/10.4174/astr.2014.86.2.68] [PMID: 24761411]
[51]
Schroeter, A.; Marko, D. Resveratrol modulates the topoisomerase inhibitory potential of doxorubicin in human colon carcinoma cells. Molecules, 2014, 19(12), 20054-20072.
[http://dx.doi.org/10.3390/molecules191220054] [PMID: 25470274]
[52]
Arif, I.S. Pioglitazone, amygdalin and resveratrol synergistically augment cytotoxicity of doxorubicin on Caco2 cell line. Pharm. Glob., 2015, 6(4), 1-5.
[53]
Buhrmann, C.; Shayan, P.; Kraehe, P.; Popper, B.; Goel, A.; Shakibaei, M. Resveratrol induces chemosensitization to 5-fluorouracil through up-regulation of intercellular junctions, Epithelial-to-mesenchymal transition and apoptosis in colorectal cancer. Biochem. Pharmacol., 2015, 98(1), 51-68.
[http://dx.doi.org/10.1016/j.bcp.2015.08.105] [PMID: 26310874]
[54]
Osman, A.M.M.; Al-Malki, H.S.; Al-Harthi, S.; El-Hanafy, A.A.; Elashmaoui, H.M.; Elshal, M.F. Modulatory role of resveratrol on cytotoxic activity of cisplatin, sensitization and modification of cisplatin resistance in colorectal cancer cells. Mol. Med. Rep., 2015, 12(1), 1368-1374.
[http://dx.doi.org/10.3892/mmr.2015.3513] [PMID: 25815689]
[55]
Wang, Z.; Zhang, L.; Ni, Z.; Sun, J.; Gao, H.; Cheng, Z.; Xu, J.; Yin, P. Resveratrol induces AMPK-dependent MDR1 inhibition in colorectal cancer HCT116/L-OHP cells by preventing activation of NF-κB signaling and suppressing cAMP-responsive element transcriptional activity. Tumour Biol., 2015, 36(12), 9499-9510.
[http://dx.doi.org/10.1007/s13277-015-3636-3] [PMID: 26124005]
[56]
Yang, S.; Li, W.; Sun, H.; Wu, B.; Ji, F.; Sun, T.; Chang, H.; Shen, P.; Wang, Y.; Zhou, D. Resveratrol elicits anti-colorectal cancer effect by activating miR-34c-KITLG in vitro and in vivo. BMC Cancer, 2015, 15(1), 969.
[http://dx.doi.org/10.1186/s12885-015-1958-6] [PMID: 26674205]
[57]
Khaleel, S.A.; Al-Abd, A.M.; Ali, A.A.; Abdel-Naim, A.B. Didox and resveratrol sensitize colorectal cancer cells to doxorubicin via activating apoptosis and ameliorating P-glycoprotein activity. Sci. Rep., 2016, 6(1), 36855.
[http://dx.doi.org/10.1038/srep36855] [PMID: 27841296]
[58]
Blanquer-Rosselló, M.M.; Hernández-López, R.; Roca, P.; Oliver, J.; Valle, A. Resveratrol induces mitochondrial respiration and apoptosis in SW620 colon cancer cells. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(2), 431-440.
[http://dx.doi.org/10.1016/j.bbagen.2016.10.009] [PMID: 27760368]
[59]
Buhrmann, C.; Yazdi, M.; Popper, B.; Shayan, P.; Goel, A.; Aggarwal, B.; Shakibaei, M. Resveratrol chemosensitizes TNF-β-induced survival of 5-FU-treated colorectal cancer cells. Nutrients, 2018, 10(7), 888.
[http://dx.doi.org/10.3390/nu10070888] [PMID: 30002278]
[60]
Chung, S.S.; Dutta, P.; Austin, D.; Wang, P.; Awad, A.; Vadgama, J.V. Combination of resveratrol and 5-flurouracil enhanced anti-telomerase activity and apoptosis by inhibiting STAT3 and Akt signaling pathways in human colorectal cancer cells. Oncotarget, 2018, 9(68), 32943-32957.
[http://dx.doi.org/10.18632/oncotarget.25993] [PMID: 30250641]
[61]
Abdel Latif, Y.; El-Bana, M.; Hussein, J.; El-Khayat, Z.; Farrag, A.R. Effects of resveratrol in combination with 5-fluorouracil on N-methylnitrosourea-induced colon cancer in rats. Comp. Clin. Pathol., 2019, 28(5), 1351-1362.
[http://dx.doi.org/10.1007/s00580-019-02967-2]
[62]
El-Readi, M.Z.; Eid, S.; Abdelghany, A.A.; Al-Amoudi, H.S.; Efferth, T.; Wink, M. Resveratrol mediated cancer cell apoptosis, and modulation of multidrug resistance proteins and metabolic enzymes. Phytomedicine, 2019, 55, 269-281.
[http://dx.doi.org/10.1016/j.phymed.2018.06.046] [PMID: 30668439]
[63]
Hu, W.H.; Chan, G.K.; Duan, R.; Wang, H.Y.; Kong, X.P.; Dong, T.T.; Tsim, K.W. Synergy of ginkgetin and resveratrol in suppressing VEGF-induced angiogenesis: A therapy in treating colorectal cancer. Cancers (Basel), 2019, 11(12), 1828.
[http://dx.doi.org/10.3390/cancers11121828] [PMID: 31757048]
[64]
Huang, L.; Zhang, S.; Zhou, J.; Li, X. Effect of resveratrol on drug resistance in colon cancer chemotherapy. RSC Adv, 2019, 9(5), 2572-2580.
[http://dx.doi.org/10.1039/C8RA08364A] [PMID: 35520503]
[65]
Zhang, N.; Yin, Y.; Xu, S.J.; Chen, W.S. 5-Fluorouracil: Mechanisms of resistance and reversal strategies. Molecules, 2008, 13(8), 1551-1569.
[http://dx.doi.org/10.3390/molecules13081551] [PMID: 18794772]
[66]
Liu, H.C.; Chen, G.G.; Vlantis, A.C.; Leung, B.C.S.; Tong, M.C.F.; van Hasselt, C.A. 5-fluorouracil mediates apoptosis and G1/S arrest in laryngeal squamous cell carcinoma via a p53-independent pathway. Cancer J., 2006, 12(6), 482-493.
[http://dx.doi.org/10.1097/00130404-200611000-00008] [PMID: 17207318]
[67]
Jung, I.D.; Lee, J.S.; Yun, S.Y.; Park, C.G.; Han, J.W.; Lee, H.W.; Lee, H.Y. Doxorubicin inhibits the production of nitric oxide by colorectal cancer cells. Arch. Pharm. Res., 2002, 25(5), 691-696.
[http://dx.doi.org/10.1007/BF02976946] [PMID: 12433207]
[68]
Hu, L.F.; Lan, H.R.; Li, X.M.; Jin, K.T. A systematic review of the potential chemoprotective effects of resveratrol on doxorubicin-induced cardiotoxicity: Focus on the antioxidant, antiapoptotic, and anti-inflammatory activities. Oxid. Med. Cell. Longev., 2021, 2021, 1-19.
[http://dx.doi.org/10.1155/2021/2951697] [PMID: 34471463]
[69]
Najafi, M.; Hooshangi Shayesteh, M.R.; Mortezaee, K.; Farhood, B.; Haghi-Aminjan, H. The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sci., 2020, 241, 117173.
[http://dx.doi.org/10.1016/j.lfs.2019.117173] [PMID: 31843530]
[70]
Montecucco, A.; Zanetta, F.; Biamonti, G. Molecular mechanisms of etoposide. EXCLI J., 2015, 14, 95-108.
[PMID: 26600742]
[71]
Wu, C.C.; Li, T.K.; Farh, L.; Lin, L.Y.; Lin, T.S.; Yu, Y.J.; Yen, T.J.; Chiang, C.W.; Chan, N.L. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science, 2011, 333(6041), 459-462.
[http://dx.doi.org/10.1126/science.1204117] [PMID: 21778401]
[72]
Moskowitz, A.J. Schöder, H.; Yahalom, J.; McCall, S.J.; Fox, S.Y.; Gerecitano, J.; Grewal, R.; Hamlin, P.A.; Horwitz, S.; Kobos, R.; Kumar, A.; Matasar, M.; Noy, A.; Palomba, M.L.; Perales, M.A.; Portlock, C.S.; Sauter, C.; Shukla, N.; Steinherz, P.; Straus, D.; Trippett, T.; Younes, A.; Zelenetz, A.; Moskowitz, C.H. PET-adapted sequential salvage therapy with brentuximab vedotin followed by augmented ifosamide, carboplatin, and etoposide for patients with relapsed and refractory Hodgkin’s lymphoma: A non-randomised, open-label, single-centre, phase 2 study. Lancet Oncol., 2015, 16(3), 284-292.
[http://dx.doi.org/10.1016/S1470-2045(15)70013-6] [PMID: 25683846]
[73]
Slevin, M.L. The clinical pharmacology of etoposide. Cancer, 1991, 67(S1), 319-329.
[http://dx.doi.org/10.1002/1097-0142(19910101)67:1+<319::AIDCNCR2820671319>3.0.CO;2-D] [PMID: 1984835]
[74]
Stein, A.; Arnold, D. Oxaliplatin: A review of approved uses. Expert Opin. Pharmacother., 2012, 13(1), 125-137.
[http://dx.doi.org/10.1517/14656566.2012.643870] [PMID: 22149372]
[75]
Alcindor, T.; Beauger, N. Oxaliplatin: A review in the era of molecularly targeted therapy. Curr. Oncol., 2011, 18(1), 18-25.
[http://dx.doi.org/10.3747/co.v18i1.708] [PMID: 21331278]
[76]
Tesniere, A.; Schlemmer, F.; Boige, V.; Kepp, O.; Martins, I.; Ghiringhelli, F.; Aymeric, L.; Michaud, M.; Apetoh, L.; Barault, L.; Mendiboure, J.; Pignon, J-P.; Jooste, V.; van Endert, P.; Ducreux, M.; Zitvogel, L.; Piard, F.; Kroemer, G. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene, 2010, 29(4), 482-491.
[http://dx.doi.org/10.1038/onc.2009.356] [PMID: 19881547]
[77]
Florea, A.M.; Büsselberg, D. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel), 2011, 3(1), 1351-1371.
[http://dx.doi.org/10.3390/cancers3011351] [PMID: 24212665]
[78]
Rezvanfar, M.A.; Rezvanfar, M.A.; Shahverdi, A.R.; Ahmadi, A.; Baeeri, M.; Mohammadirad, A.; Abdollahi, M. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles. Toxicol. Appl. Pharmacol., 2013, 266(3), 356-365.
[http://dx.doi.org/10.1016/j.taap.2012.11.025] [PMID: 23260366]
[79]
Haghi-Aminjan, H.; Farhood, B.; Rahimifard, M.; Didari, T.; Baeeri, M.; Hassani, S.; Hosseini, R.; Abdollahi, M. The protective role of melatonin in chemotherapy-induced nephrotoxicity: A systematic review of non-clinical studies. Expert Opin. Drug Metab. Toxicol., 2018, 14(9), 937-950.
[http://dx.doi.org/10.1080/17425255.2018.1513492] [PMID: 30118646]
[80]
Galluzzi, L.; Senovilla, L.; Vitale, I.; Michels, J.; Martins, I.; Kepp, O.; Castedo, M.; Kroemer, G. Molecular mechanisms of cisplatin resistance. Oncogene, 2012, 31(15), 1869-1883.
[http://dx.doi.org/10.1038/onc.2011.384] [PMID: 21892204]
[81]
Yang, Q.; Deng, Z.; Wang, D.; He, J.; Zhang, D.; Tan, Y.; Peng, T.; Wang, X.Q.; Tan, W. Conjugating aptamer and mitomycin c with reductant-responsive linker leading to synergistically enhanced anticancer effect. J. Am. Chem. Soc., 2020, 142(5), 2532-2540.
[http://dx.doi.org/10.1021/jacs.9b12409] [PMID: 31910340]
[82]
Zhang, B.; Yao, K.; Zhou, E.; Zhang, L.; Cheng, C. Chr20q amplification defines a distinct molecular subtype of microsatellite stable colorectal cancer. Cancer Res., 2021, 81(8), 1977-1987.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-4009] [PMID: 33619118]
[83]
Parikh, P.M.; Panigrahi, M.; Das, P.K. Brain tumor and Gliadel wafer treatment. Indian J. Cancer, 2011, 48(1), 11-17.
[http://dx.doi.org/10.4103/0019-509X.76623] [PMID: 21330749]
[84]
Ludlum, D.B. DNA alkylation by the haloethylnitrosoureas: Nature of modifications produced and their enzymatic repair or removal. Mutat. Res., 1990, 233(1-2), 117-126.
[http://dx.doi.org/10.1016/0027-5107(90)90156-X] [PMID: 2233793]
[85]
Ludlum, D.B. The chloroethylnitrosoureas: Sensitivity and resistance to cancer chemotherapy at the molecular level. Cancer Invest., 1997, 15(6), 588-598.
[http://dx.doi.org/10.3109/07357909709047601] [PMID: 9412665]
[86]
Ludlum, D.B. Formation of cyclic adducts in nucleic acids by the haloethylnitrosoureas. IARC Sci. Publ, 1986, (70), 137-146.
[PMID: 3793169]
[87]
Kohn, K.W. Interstrand cross-linking of DNA by 1,3-bis(2-chloroethyl)-1-nitrosourea and other 1-(2-haloethyl)-1-nitrosoureas. Cancer Res., 1977, 37(5), 1450-1454.
[PMID: 851960]
[88]
Woynarowska, B.A.; Woynarowski, J.M.; Herzig, M.C.S.; Roberts, K.; Higdon, A.L.; MacDonald, J.R. Differential cytotoxicity and induction of apoptosis in tumor and normal cells by hydroxymethylacylfulvene (HMAF). Biochem. Pharmacol., 2000, 59(10), 1217-1226.
[http://dx.doi.org/10.1016/S0006-2952(00)00254-9] [PMID: 10736422]
[89]
Woynarowski, J.M.; Napier, C.; Koester, S.K.; Chen, S.F.; Troyer, D.; Chapman, W.; MacDonald, J.R. Effects on DNA integrity and apoptosis induction by a novel antitumor sesquiterpene drug, 6-hydroxymethylacylfulvene (HMAF, MGI 114). Biochem. Pharmacol., 1997, 54(11), 1181-1193.
[http://dx.doi.org/10.1016/S0006-2952(97)00321-3] [PMID: 9416969]
[90]
Herzig, M.C.S.; Arnett, B.; MacDonald, J.R.; Woynarowski, J.M. Drug uptake and cellular targets of hydroxymethylacylfulvene (HMAF). Biochem. Pharmacol., 1999, 58(2), 217-225.
[http://dx.doi.org/10.1016/S0006-2952(99)00085-4] [PMID: 10423161]
[91]
Donald, E.L.; Stojanovska, L.; Apostolopoulos, V.; Nurgali, K. Resveratrol alleviates oxidative damage in enteric neurons and associated gastrointestinal dysfunction caused by chemotherapeutic agent oxaliplatin. Maturitas, 2017, 105, 100-106.
[http://dx.doi.org/10.1016/j.maturitas.2017.05.010] [PMID: 28545905]
[92]
Huerta, S.; Goulet, E.J.; Livingston, E.H. Colon cancer and apoptosis. Am. J. Surg., 2006, 191(4), 517-526.
[http://dx.doi.org/10.1016/j.amjsurg.2005.11.009] [PMID: 16531147]
[93]
Schatzkin, A.; Kelloff, G. Chemo- and dietary prevention of colorectal cancer. Eur. J. Cancer., (Oxford, England: 1990), 1995, 31a(7-8), 1198-1204.
[94]
Cheah, FK; Leong, KH; Thomas, NF; Chin, HK Ariffin, A Resveratrol analogue, (E)-N-(2-(4-methoxystyryl) phenyl) furan-2-carboxamide induces G(2)/M cell cycle arrest through the activation of p53-p21(CIP1/WAF1) in human colorectal HCT116 cells. Apoptosis, 2018, 23(5-6), 329-342.
[95]
Chen, Y.; Li, Z.; Gao, F. Zhang; Sun, H.; Li, P. Effects of combined Chinese drugs and chemotherapy in treating advanced non-small cell lung cancer. Chin. J. Integr. Med., 2009, 15(6), 415-419.
[http://dx.doi.org/10.1007/s11655-009-0415-2] [PMID: 20082245]
[96]
Singh, C.K.; Ndiaye, M.A.; Ahmad, N. Resveratrol and cancer: Challenges for clinical translation. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(6), 1178-1185.
[http://dx.doi.org/10.1016/j.bbadis.2014.11.004] [PMID: 25446990]
[97]
Momtaz, S.; Baeeri, M.; Rahimifard, M.; Haghi-Aminjan, H.; Hassani, S.; Abdollahi, M. Manipulation of molecular pathways and senescence hallmarks by natural compounds in fibroblast cells. J. Cell. Biochem., 2019, 120(4), 6209-6222.
[http://dx.doi.org/10.1002/jcb.27909] [PMID: 30474871]
[98]
Mortezaee, K.; Narmani, A.; Salehi, M.; Bagheri, H.; Farhood, B.; Haghi-Aminjan, H.; Najafi, M. Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sci., 2021, 269, 119020.
[http://dx.doi.org/10.1016/j.lfs.2021.119020] [PMID: 33450258]
[99]
Rahimifard, M.; Baeeri, M.; Bahadar, H.; Moini-Nodeh, S.; Khalid, M.; Haghi-Aminjan, H.; Mohammadian, H.; Abdollahi, M. Therapeutic effects of gallic acid in regulating senescence and diabetes; an in vitro study. Molecules, 2020, 25(24), 5875.
[http://dx.doi.org/10.3390/molecules25245875] [PMID: 33322612]
[100]
Shayesteh, M.R.H.; Haghi-Aminjan, H.; Mousavi, M.J.; Momtaz, S.; Abdollahi, M. The protective mechanism of cannabidiol in cardiac injury: A systematic review of non-clinical studies. Curr. Pharm. Des., 2019, 25(22), 2499-2507.
[http://dx.doi.org/10.2174/2210327909666190710103103] [PMID: 31291873]
[101]
Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev., 2016, 2016, 1-44.
[http://dx.doi.org/10.1155/2016/1245049] [PMID: 27478531]
[102]
Haghi Aminjan, H.; Abtahi, S.R.; Hazrati, E.; Chamanara, M.; Jalili, M.; Paknejad, B. Targeting of oxidative stress and inflammation through ROS/NF-kappaB pathway in phosphine-induced hepatotoxicity mitigation. Life Sci., 2019, 232, 116607.
[http://dx.doi.org/10.1016/j.lfs.2019.116607] [PMID: 31254582]
[103]
Lingappan, K. NF-κB in oxidative stress. Curr. Opin. Toxicol., 2018, 7, 81-86.
[http://dx.doi.org/10.1016/j.cotox.2017.11.002] [PMID: 29862377]
[104]
Negi, R.R.; Rana, S.V.; Gupta, V.; Gupta, R.; Chadha, V.D.; Prasad, K.K.; Dhawan, D.K. Over-expression of cyclooxygenase-2 in colorectal cancer patients. Asian Pac. J. Cancer Prev., 2019, 20(6), 1675-1681.
[http://dx.doi.org/10.31557/APJCP.2019.20.6.1675] [PMID: 31244287]
[105]
Haghi-Aminjan, H.; Baeeri, M.; Rahimifard, M.; Alizadeh, A.; Hodjat, M.; Hassani, S.; Asghari, M.H.; Abdollahi, A.; Didari, T.; Hosseini, R.; Sharifzadeh, M.; Abdollahi, M. The role of minocycline in alleviating aluminum phosphide-induced cardiac hemodynamic and renal toxicity. Environ. Toxicol. Pharmacol., 2018, 64, 26-40.
[http://dx.doi.org/10.1016/j.etap.2018.09.008] [PMID: 30290328]
[106]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[107]
Moodbidri, M.S.; Shirsat, N.V. Activated JNK brings about accelerated apoptosis of Bcl-2-overexpressing C6 glioma cells on treatment with tamoxifen. J. Neurochem., 2005, 92(1), 1-9.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02855.x] [PMID: 15606891]
[108]
He, W.; Zhang, M.; Ye, J.; Jiang, T.; Fang, X.; Song, Y. Cordycepin induces apoptosis by enhancing JNK and p38 kinase activity and increasing the protein expression of Bcl-2 pro-apoptotic molecules. J. Zhejiang Univ. Sci. B, 2010, 11(9), 654-660.
[http://dx.doi.org/10.1631/jzus.B1000081] [PMID: 20803769]
[109]
Tallant, C.; Marrero, A.; Gomis-Rüth, F.X. Matrix metalloproteinases: Fold and function of their catalytic domains. Biochim. Biophys. Acta Mol. Cell Res., 2010, 1803(1), 20-28.
[http://dx.doi.org/10.1016/j.bbamcr.2009.04.003] [PMID: 19374923]
[110]
Sun, J. Matrix metalloproteinases and tissue inhibitor of metalloproteinases are essential for the inflammatory response in cancer cells. J. Signal Transduct., 2010, 2010, 1-7.
[http://dx.doi.org/10.1155/2010/985132] [PMID: 21152266]
[111]
Cabral-Pacheco, G.A.; Garza-Veloz, I.; Castruita-De la Rosa, C. Ramirez-Acuña, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci., 2020, 21(24), 9739.
[http://dx.doi.org/10.3390/ijms21249739] [PMID: 33419373]
[112]
Deryugina, E.I.; Quigley, J.P. Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol., 2015, 44-46, 94-112.
[http://dx.doi.org/10.1016/j.matbio.2015.04.004] [PMID: 25912949]
[113]
Shay, G.; Lynch, C.C.; Fingleton, B. Moving targets: Emerging roles for MMPs in cancer progression and metastasis. Matrix Biol., 2015, 44-46, 200-206.
[http://dx.doi.org/10.1016/j.matbio.2015.01.019] [PMID: 25652204]
[114]
Juric, V.; O’Sullivan, C.; Stefanutti, E.; Kovalenko, M.; Greenstein, A.; Barry-Hamilton, V.; Mikaelian, I.; Degenhardt, J.; Yue, P.; Smith, V.; Mikels-Vigdal, A. MMP-9 inhibition promotes anti-tumor immunity through disruption of biochemical and physical barriers to T-cell trafficking to tumors. PLoS One, 2018, 13(11), e0207255-e0207255.
[http://dx.doi.org/10.1371/journal.pone.0207255] [PMID: 30500835]
[115]
Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci., 2017, 18(12), 2589.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[116]
Yamaguchi, H.; Wang, H.G. The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene, 2001, 20(53), 7779-7786.
[http://dx.doi.org/10.1038/sj.onc.1204984] [PMID: 11753656]
[117]
Bode, A.M.; Dong, Z. The enigmatic effects of caffeine in cell cycle and cancer. Cancer Lett., 2007, 247(1), 26-39.
[http://dx.doi.org/10.1016/j.canlet.2006.03.032] [PMID: 16709440]
[118]
Hoxhaj, G.; Manning, B.D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer, 2020, 20(2), 74-88.
[http://dx.doi.org/10.1038/s41568-019-0216-7] [PMID: 31686003]
[119]
Cheung, M.; Testa, J.R. Diverse mechanisms of AKT pathway activation in human malignancy. Curr. Cancer Drug Targets, 2013, 13(3), 234-244.
[http://dx.doi.org/10.2174/1568009611313030002] [PMID: 23297823]
[120]
Al Zaid Siddiquee, K.; Turkson, J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res., 2008, 18(2), 254-267.
[http://dx.doi.org/10.1038/cr.2008.18] [PMID: 18227858]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy