Generic placeholder image

Recent Advances in Anti-Infective Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-4344
ISSN (Online): 2772-4352

General Review Article

Structural Insights and Pharmaceutical Relevance of Plumbagin in Parasitic Disorders: A Comprehensive Review

Author(s): Amrat Pal Singh and Alok Sharma*

Volume 17, Issue 3, 2022

Published on: 27 October, 2022

Page: [187 - 198] Pages: 12

DOI: 10.2174/2772434417666220905121531

Price: $65

Abstract

Recently, natural products have been became the center of attraction for the scientific society and exploration of their biologically abilities is proceeding continuously. In search for novel antiparasitic agents with an objective of protecting humans from parasitic infections, the present work was focused on naphthoquinones possessing antiparasitic activity. Among naphthoquinones, plumbagin is one of the secondary metabolites exhibiting diverse biological properties such as antibacterial, antimalarial, antiinflammatory, insecticidal and antiparasitic. Plumbagin is reported to have antischistosomiasis, anti-haemonchosis, anti-fascioliasis, antiotoacariasis, anti-leishmaniasis, antimalaria, antiallergic and anthelmintic activities. Besides, various methods of extraction of plumbagin from different methods, their effectiveness against different parasites, and the structure-activity relationship reported by different researchers. This work highlight on recent advancements in the phytochemistry of plumbagin, studies associated with various biological activities. The structure-activity relationship studies have also been summarized. To conclude, present review could be beneficial for the scientific community to get better insight into medicinal research of plumbagin and may provide a new horizon for the rational design of plumbagin based compounds.

Keywords: Plumbagin, naphthoquinone, antiparasitic, antimicrobial, extraction, gram-negative bacteria.

Graphical Abstract
[1]
Cox FEG. History of human parasitic diseases. Infect Dis Clin North Am 2004; 18(2): 171-88.
[http://dx.doi.org/10.1016/j.idc.2004.01.001] [PMID: 15145374]
[2]
Garcia LS. Classification and nomenclature of human parasites. Philadelphia: Saunders/Elsevier 2009; pp. 2861-7.
[3]
Babula P, Mikelova R, Adam V, Kizek R, Havel L, Sladký Z. Naphthoquinones--biosynthesis, occurrence and metabo-lism in plants. Ceska Slov Farm 2006; 55(4): 151-9.
[PMID: 16921733]
[4]
Krolicka A, Szpitter A, Maciag M, et al. Antibacterial and antioxidant activity of the secondary metabolites from in vitro cultures of the Alice sundew (Drosera aliciae). Biotechnol Appl Biochem 2009; 53(3): 175-84.
[PMID: 18782083]
[5]
Weissenberg M, Meisner J, Klein M, et al. Effect of substituent and ring changes in naturally occurring naphthoquinones on the feeding response of larvae of the Mexican bean beetle, Epilachna varivestis. J Chem Ecol 1997; 23(1): 3-18.
[http://dx.doi.org/10.1023/B:JOEC.0000006342.51040.90]
[6]
Duroux L, Delmotte FM, Lancelin JM, Kéravis G, Jay-Allemand C. Insight into naphthoquinone metabolism: β-glucosidase-catalysed hydrolysis of hydrojuglone β-d-glucopyranoside. Biochem J 1998; 333(2): 275-83.
[http://dx.doi.org/10.1042/bj3330275] [PMID: 9657966]
[7]
Aziz MH, Dreckschmidt NE, Verma AK. Plumbagin, a medicinal plant-derived naphthoquinone, is a novel inhibitor of the growth and invasion of hormone-refractory prostate cancer. Cancer Res 2008; 68(21): 9024-32.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2494] [PMID: 18974148]
[8]
Pendurkar SR, Mengi SA. Antihyperlipidemic effect of aqueous extract of Plumbago zeylanica roots in diet-induced hyperlipidemic rat. Pharm Biol 2009; 47(10): 1004-10.
[http://dx.doi.org/10.1080/13880200902973779]
[9]
Simonsen HT, Nordskjold JB, Smitt UW, et al. In vitro screening of Indian medicinal plants for antiplasmodial activity. J Ethnopharmacol 2001; 74(2): 195-204.
[http://dx.doi.org/10.1016/S0378-8741(00)00369-X] [PMID: 11167038]
[10]
Baker RA, Tatum JH, Nemec S. Antimicrobial activity of naphthoquinones from Fusaria. Mycopathologia 1990; 111(1): 9-15.
[http://dx.doi.org/10.1007/BF02277294] [PMID: 2233983]
[11]
Mehmood Z, Ahmad I, Mohammad F, Ahmad S. Indian medicinal plants: a potential source for anticandidal drugs. Pharm Biol 1999; 37(3): 237-42.
[http://dx.doi.org/10.1076/phbi.37.3.237.6296]
[12]
Oyedapo O. Studies on bioactivity of the root extract of Plumbago zeylanica. Int J Pharm 1996; 34(5): 365-9.
[http://dx.doi.org/10.1076/phbi.34.5.365.13249]
[13]
Jeyachandran R, Mahesh A, Cindrella L, Sudhakar S, Pazhanichamy K. Antibacterial activity of plumbagin and root extracts of Plumbago zeylanica L. Acta Biol Cracov Ser; Bot 2009; 51(1): 17-22.
[14]
Sunil C, Duraipandiyan V, Agastian P, Ignacimuthu S. Antidiabetic effect of plumbagin isolated from Plumbago zeyla-nica L. root and its effect on GLUT4 translocation in streptozotocin-induced diabetic rats. Food Chem Toxicol 2012; 50(12): 4356-63.
[http://dx.doi.org/10.1016/j.fct.2012.08.046] [PMID: 22960630]
[15]
Sharma I, Gusain D, Dixit VP. Hypolipidaemic and antiatherosclerotic effects of plumbagin in rabbits. Indian J Physiol Pharmacol 1991; 35(1): 10-4.
[PMID: 1917004]
[16]
Babula P, Adam V, Havel L, Kizek R. Noteworthy secondary metabolites naphthoquinones-their occurrence, pharma-cological properties and analysis. Curr Pharm Anal 2009; 5(1): 47-68.
[http://dx.doi.org/10.2174/157341209787314936]
[17]
van der Vijver LM. Distribution of plumbagin in the mplumbaginaceae. Phytochemistry 1972; 11(11): 3247-8.
[http://dx.doi.org/10.1016/S0031-9422(00)86380-3]
[18]
Omosa LK, Midiwo JO, Mbaveng AT, et al. Antibacterial activities and structure–activity relationships of a panel of 48 compounds from Kenyan plants against multidrug resistant phenotypes. Springerplus 2016; 5(1): 901.
[http://dx.doi.org/10.1186/s40064-016-2599-1] [PMID: 27386347]
[19]
Sumsakul W, Chaijaroenkul W, Na-Bangchang K. In vitro inhibitory effects of plumbagin, the promising antimalarial candidate, on human cytochrome P450 enzymes. Asian Pac J Trop Med 2015; 8(11): 914-8.
[http://dx.doi.org/10.1016/j.apjtm.2015.10.016] [PMID: 26614990]
[20]
Pile JE, Navalta JW, Davis CD, Sharma NC. Interventional effects of plumbagin on experimental ulcerative colitis in mice. J Nat Prod 2013; 76(6): 1001-6.
[http://dx.doi.org/10.1021/np3008792] [PMID: 23742275]
[21]
Yan W, Tu B, Liu Y, et al. Suppressive effects of plumbagin on invasion and migration of breast cancer cells via the inhibition of STAT3 signaling and down-regulation of inflammatory cytokine expressions. Bone Res 2013; 1(4): 362-70.
[http://dx.doi.org/10.4248/BR201304007] [PMID: 26273514]
[22]
Kuan-hong W, Bai-zhou L. Plumbagin protects against hydrogen peroxide-induced neurotoxicity by modulating NF-κB and Nrf-2. Arch Med Sci 2018; 14(5): 1112-8.
[http://dx.doi.org/10.5114/aoms.2016.64768] [PMID: 30154895]
[23]
Pavela R. Efficacy of naphthoquinones as insecticides against the house fly, Musca domestica L. Ind Crops Prod 2013; 43: 745-50.
[http://dx.doi.org/10.1016/j.indcrop.2012.08.025]
[24]
Gu XD, Sun MY, Zhang L, et al. UV-B induced changes in the secondary metabolites of Morus alba L. leaves. Molecules 2010; 15(5): 2980-93.
[http://dx.doi.org/10.3390/molecules15052980] [PMID: 20657460]
[25]
Rischer H, Hamm A, Bringmann G. Nepenthes insignis uses a C2-portion of the carbon skeleton of l-alanine acquired via its carnivorous organs, to build up the allelochemical plumbagin. Phytochemistry 2002; 59(6): 603-9.
[http://dx.doi.org/10.1016/S0031-9422(02)00003-1] [PMID: 11867092]
[26]
Badwaik HR, Kumari L, Nakhate K, Verma VS, Sakure K. Phytoconstituent plumbagin: Chemical, biotechnological and pharmaceutical aspects Studies in Natural Products Chemistry 63. Elsevier 2019; pp. 415-60.
[27]
Shang XF, Liu YQ, Guo X, et al. Application of sustainable natural resources in agriculture: Acaricidal and enzyme in-hibitory activities of naphthoquinones and their analogs against Psoroptes cuniculi. Sci Rep 2018; 8(1): 1609.
[http://dx.doi.org/10.1038/s41598-018-19964-0] [PMID: 29371639]
[28]
Tokunaga T, Takada N, Ueda M. Mechanism of antifeedant activity of plumbagin, a compound concerning the che-mical defense in carnivorous plant. Tetrahedron Lett 2004; 45(38): 7115-9.
[http://dx.doi.org/10.1016/j.tetlet.2004.07.094]
[29]
Fieser LF, Berliner E, Bondhus FJ, et al. Naphthoquinone antimalarials; general survey. J Am Chem Soc 1948; 70(10): 3151-5.
[http://dx.doi.org/10.1021/ja01190a001] [PMID: 18891812]
[30]
Kongkathip N, Luangkamin S, Kongkathip B, et al. Synthesis of novel rhinacanthins and related anticancer naphtho-quinone esters. J Med Chem 2004; 47(18): 4427-38.
[http://dx.doi.org/10.1021/jm030323g] [PMID: 15317455]
[31]
Rajalakshmi S, Vyawahare N, Pawar A, Mahaparale P, Chellampillai B. Current development in novel drug delivery systems of bioactive molecule plumbagin. Artif Cells Nanomed Biotechnol 2018; 46(S1): 209-18.
[http://dx.doi.org/10.1080/21691401.2017.1417865] [PMID: 29298523]
[32]
Jamal MS, Parveen S, Beg MA, et al. Anticancer compound plumbagin and its molecular targets: a structural insight into the inhibitory mechanisms using computational approaches. PLoS One 2014; 9(2): e87309.
[http://dx.doi.org/10.1371/journal.pone.0087309] [PMID: 24586269]
[33]
K A T, T R, G R, et al. Structure activity relationship of plumbagin in BRCA1 related cancer cells. Mol Carcinog 2013; 52(5): 392-403.
[http://dx.doi.org/10.1002/mc.21877] [PMID: 22290577]
[34]
Bothiraja C, Joshi PP, Dama GY, Pawar AP. Rapid method for isolation of plumbagin, an alternative medicine from roots of Plumbago zeylanica. Eur J Integr Med 2011; 3(1): 39-42.
[http://dx.doi.org/10.1016/j.eujim.2011.02.008]
[35]
Padhye S, Dandawate P, Yusufi M, Ahmad A, Sarkar FH. Perspectives on medicinal properties of plumbagin and its analogs. Med Res Rev 2012; 32(6): 1131-58.
[http://dx.doi.org/10.1002/med.20235] [PMID: 23059762]
[36]
Chrastina A, Baron VT, Abedinpour P, Rondeau G, Welsh J, Borgström P. Plumbagin-loaded nanoemulsion drug deli-very formulation and evaluation of antiproliferative effect on prostate cancer cells. BioMed Res Int 2018; 2018: 9035452.
[http://dx.doi.org/10.1155/2018/9035452]
[37]
Adusei E, Adosraku RK, Oppong-Kyekyeku J, Amengor CD. Investigation of acid-base indicator property of plumbagin from Plumbago zeylanica Linn. Int J Anal Chem 2019; 2019: 4061927.
[http://dx.doi.org/10.1155/2019/4061927]
[38]
Pradeepa V, Senthil-Nathan S, Sathish-Narayanan S, et al. Potential mode of action of a novel plumbagin as a mosqui-to repellent against the malarial vector Anopheles stephensi, (Culicidae: Diptera). Pestic Biochem Physiol 2016; 134: 84-93.
[http://dx.doi.org/10.1016/j.pestbp.2016.04.001] [PMID: 27914545]
[39]
Hsieh YJ, Lin LC, Tsai TH. Determination and identification of plumbagin from the roots of Plumbago zeylanica L. by liquid chromatography with tandem mass spectrometry. J Chromatogr A 2005; 1083(1-2): 141-5.
[http://dx.doi.org/10.1016/j.chroma.2005.06.030] [PMID: 16078700]
[40]
Kapadia NS, Isarani SA, Shah MB. A Simple Method for Isolation of Plumbagin from Roots of Plumbago rosea. Pharm Biol 2005; 43(6): 551-3.
[http://dx.doi.org/10.1080/13880200500220888]
[41]
Muhammad HM, Saour KY, Naqishbandi AM. Quantitative and qualitative analysis of Plumbagin in the leaf and root of Plumbago europaea growing naturally in Kurdistan by HPLC. Iraqi J Pharm Sci 2009; 18(1): 54-9.
[42]
Zhang SM, Coultas KA. Identification of plumbagin and sanguinarine as effective chemotherapeutic agents for treat-ment of schistosomiasis. Int J Parasitol Drugs Drug Resist 2013; 3: 28-34.
[http://dx.doi.org/10.1016/j.ijpddr.2012.12.001] [PMID: 23641325]
[43]
Fetterer RH, Fleming MW. Effects of plumbagin on development of the parasitic nematodes Haemonchus contortus and Ascaris suum. Comp Biochem Physiol C Comp Pharmacol 1991; 100(3): 539-42.
[http://dx.doi.org/10.1016/0742-8413(91)90036-S] [PMID: 1687553]
[44]
Mas-Coma S, Valero MA, Bargues MD. Fascioliasis. Digenetic Trematodes 2019; pp. 71-103.
[45]
Lorsuwannarat N, Piedrafita D, Chantree P, et al. The in vitro anthelmintic effects of plumbagin on newly excysted and 4-weeks-old juvenile parasites of Fasciola gigantica. Exp Parasitol 2014; 136: 5-13.
[http://dx.doi.org/10.1016/j.exppara.2013.10.004] [PMID: 24157317]
[46]
Cakabay T, Gokdogan O, Kocyigit M. Human otoacariasis: Demographic and clinical outcomes in patients with ear-canal ticks and a review of literature. J Otol 2016; 11(3): 111-7.
[http://dx.doi.org/10.1016/j.joto.2016.06.003] [PMID: 29937819]
[47]
Yeruham I, Hadani A, Rosen S. Psoroptic ear mange (Psoroptes cuniculi, Delafond, 1859) in domestic and wild rumi-nants in Israel. Vet Parasitol 1985; 17(4): 349-53.
[http://dx.doi.org/10.1016/0304-4017(85)90026-3] [PMID: 4002605]
[48]
Sharma N, Shukla AK, Das M, Dubey VK. Evaluation of plumbagin and its derivative as potential modulators of redox thiol metabolism of Leishmania parasite. Parasitol Res 2012; 110(1): 341-8.
[http://dx.doi.org/10.1007/s00436-011-2498-x] [PMID: 21717278]
[49]
Miller LH, Good MF, Milon G. Malaria Pathogenesis. Science 1994; 264(5167): 1878-83.
[http://dx.doi.org/10.1126/science.8009217] [PMID: 8009217]
[50]
Sumsakul W, Plengsuriyakarn T, Chaijaroenkul W, Viyanant V, Karbwang J, Na-Bangchang K. Antimalarial activity of plumbagin in vitro and in animal models. BMC Complement Altern Med 2014; 14(1): 15.
[http://dx.doi.org/10.1186/1472-6882-14-15] [PMID: 24410949]
[51]
Lee C-H, Lee H-S. Acaricidal activity and function of mite indicator using plumbagin and its derivatives isolated from Diospyros kaki Thunb. roots (Ebenaceae). J Microbiol Biotechnol 2008; 18(2): 314-21.
[PMID: 18309277]
[52]
Chaweeborisuit P, Suriyonplengsaeng C, Suphamungmee W, Sobhon P, Meemon K. Nematicidal effect of plumbagin on Caenorhabditis elegans: a model for testing a nematicidal drug. Z Naturforsch C J Biosci 2016; 71(5-6): 121-31.
[http://dx.doi.org/10.1515/znc-2015-0222] [PMID: 27140303]
[53]
Wang YC, Huang TL. High-performance liquid chromatography for quantification of plumbagin, an anti-Helicobacter pylori compound of Plumbago zeylanica L. J Chromatogr A 2005; 1094(1-2): 99-104.
[http://dx.doi.org/10.1016/j.chroma.2005.07.092] [PMID: 16257295]
[54]
Rondevaldova J, Novy P, Kokoska L. In vitro combinatory antimicrobial effect of plumbagin with oxacillin and te-tracycline against Staphylococcus aureus. Phytother Res 2015; 29(1): 144-7.
[http://dx.doi.org/10.1002/ptr.5237] [PMID: 25266704]
[55]
Periasamy H, Iswarya S, Pavithra N, Senthilnathan S, Gnanamani A. In vitro antibacterial activity of plumbagin isola-ted from Plumbago zeylanica L. against methicillin-resistant Staphylococcus aureus. Lett Appl Microbiol 2019; 69(1): 41-9.
[PMID: 31044446]
[56]
Adusei E, Adosraku RK, Oppong-Kyekyeku J, Amengor CD, Jibira Y. Resistance modulation action, time-kill kinetics assay, and inhibition of biofilm formation effects of plumbagin from Plumbago zeylanica Linn. Journal of tropical medicine 2019; 2019: 1250645.
[http://dx.doi.org/10.1155/2019/1250645]
[57]
Paiva SR, Figueiredo MR, Aragão TV, Kaplan MAC. Antimicrobial activity in vitro of plumbagin isolated from Plum-bago species. Mem Inst Oswaldo Cruz 2003; 98(7): 959-61.
[http://dx.doi.org/10.1590/S0074-02762003000700017] [PMID: 14762525]
[58]
Talapko J, Juzbašić M, Matijević T, et al. Candida albicans-The virulence factors and clinical manifestations of infec-tion. J Fungi (Basel) 2021; 7(2): 79.
[http://dx.doi.org/10.3390/jof7020079] [PMID: 33499276]
[59]
Hassan STS, Berchová-Bímová K, Petráš J. Plumbagin, a plant‐derived compound, exhibits antifungal combinatory effect with amphotericin B against Candida albicans clinical isolates and anti‐hepatitis C virus activity. Phytother Res 2016; 30(9): 1487-92.
[http://dx.doi.org/10.1002/ptr.5650] [PMID: 27215409]
[60]
Dzoyem JP, Tangmouo JG, Lontsi D, Etoa FX, Lohoue PJ. In Vitro antifungal activity of extract and plumbagin from the stem bark of Diospyros crassiflora Hiern (Ebenaceae). Phytother Res 2007; 21(7): 671-4.
[http://dx.doi.org/10.1002/ptr.2140] [PMID: 17444575]
[61]
Likhitwitayawuid K, Kaewamatawong R, Ruangrungsi N, Krungkrai J. Antimalarial naphthoquinones from Nepenthes thorelii. Planta Med 1998; 64(3): 237-41.
[http://dx.doi.org/10.1055/s-2006-957417] [PMID: 9581522]
[62]
Hook ILI. Naphthoquinone contents of in vitro cultured plants and cell suspensions of Dionaea muscipula and Drosera species. Plant Cell Tissue Organ Cult 2001; 67(3): 281-5.
[http://dx.doi.org/10.1023/A:1012708819212]
[63]
Sreelatha T, Hymavathi A, Murthy JM, Rani PU, Rao JM, Babu KS. Bioactivity-guided isolation of mosquitocidal constituents from the rhizomes of Plumbago capensis Thunb. Bioorg Med Chem Lett 2010; 20(9): 2974-7.
[http://dx.doi.org/10.1016/j.bmcl.2010.02.107] [PMID: 20347303]
[64]
Kishore N, Mishra BB, Tiwari VK, Tripathi V. Difuranonaphthoquinones from Plumbago zeylanica roots. Phytochem Lett 2010; 3(2): 62-5.
[http://dx.doi.org/10.1016/j.phytol.2009.11.007]
[65]
Grevenstuk T, Gonçalves S, Nogueira JMF, Bernardo-Gil MG, Romano A. Recovery of high purity plumbagin from Drosera intermedia. Ind Crops Prod 2012; 35(1): 257-60.
[http://dx.doi.org/10.1016/j.indcrop.2011.07.003]
[66]
Dorni AC, Vidyalakshmi K, Vasanthi H, Rajamanickam G. HPTLC method for the quantification of plumbagin in three Plumbago species. Res J Phytochem 2010; 4(3): 207-12.
[67]
Yue J, Lin Z, Wang D, Feng Y, Sun H. Plumbasides A-C three naphthoquinone derivatives from Ceratostigma minus. Phytochemistry 1994; 35(4): 1023-5.
[http://dx.doi.org/10.1016/S0031-9422(00)90660-5]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy