Research Article

咖啡酸苯乙酯抑制泛素化和p53降解,阻断宫颈癌细胞生长

卷 23, 期 9, 2023

发表于: 11 October, 2022

页: [960 - 970] 页: 11

弟呕挨: 10.2174/1566524023666220829154716

价格: $65

conference banner
摘要

背景:在高危人乳头瘤病毒 (HR-HPV) 阳性宫颈癌中,E6 相关蛋白 (E6AP)(一种 E3 泛素连接酶)介导肿瘤抑制因子 p53 的泛素化和蛋白酶体降解。在这里,我们解决了主要源自蜂胶的天然产物咖啡酸苯乙酯(CAPE)是否可以破坏E6AP和p53之间的相互作用,抑制p53泛素化降解并表现出抗宫颈癌活性的问题。 方法:通过 CCK-8、集落形成和 TUNEL 检测,在 HR-HPV 阳性宫颈癌细胞系中显示 CAPE 抑制生长和诱导细胞凋亡的能力。通过蛋白质印迹法测试细胞凋亡相关蛋白。通过免疫共沉淀、泛素化实验和蛋白质稳定性实验来确定CAPE是否可以破坏E6AP-p53相互作用并抑制p53泛素化降解。 结果:我们的结果表明,CAPE 抑制 HR-HPV 阳性宫颈癌细胞的生长并诱导细胞凋亡相关途径的激活。重要的是,CAPE 抑制 E6AP 表达并破坏 E6AP 和 p53 之间的相互作用。它抑制 p53 的泛素化并促进其稳定。 结论:综上所述,CAPE对HPV阳性恶性细胞具有治疗作用,其临床应用尚需进一步研究评估。

关键词: CAPE,宫颈癌,HPV,E6AP,p53。

[1]
Sari AN, Bhargava P, Dhanjal JK, et al. Combination of Withaferin-A and CAPE provides superior anticancer potency: Bioinformatics and experimental evidence to their molecular targets and mechanism of action. Cancers 2020; 12(5): 1160.
[http://dx.doi.org/10.3390/cancers12051160] [PMID: 32380701]
[2]
Moore DH, Tian C, Monk BJ, Long HJ, Omura GA, Bloss JD. Prognostic factors for response to cisplatin based chemotherapy in advanced cervical carcinoma: A gynecologic oncology group study. Gynecol Oncol 2010; 116(1): 44-9.
[http://dx.doi.org/10.1016/j.ygyno.2009.09.006] [PMID: 19853287]
[3]
Wolford JE, Tewari KS. Rational design for cervical cancer therapeutics: Cellular and non-cellular based strategies on the horizon for recurrent, metastatic or refractory cervical cancer. Expert Opin Drug Discov 2018; 13(5): 445-57.
[http://dx.doi.org/10.1080/17460441.2018.1443074] [PMID: 29463131]
[4]
Shai A, Pitot HC, Lambert PF. E6-associated protein is required for human papillomavirus type 16 E6 to cause cervical cancer in mice. Cancer Res 2010; 70(12): 5064-73.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3307] [PMID: 20530688]
[5]
Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990; 63(6): 1129-36.
[http://dx.doi.org/10.1016/0092-8674(90)90409-8] [PMID: 2175676]
[6]
Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV-16 E6 and E6-AP complex functions as a ubiquitin protein ligase in the ubiquitination of p53. Cell 1993; 75(3): 495-505.
[http://dx.doi.org/10.1016/0092-8674(93)90384-3] [PMID: 8221889]
[7]
Ferenczy A, Franco E. Persistent human papillomavirus infection and cervical neoplasia. Lancet Oncol 2002; 3(1): 11-6.
[http://dx.doi.org/10.1016/S1470-2045(01)00617-9] [PMID: 11905599]
[8]
Bernard X, Robinson P, Nominé Y, et al. Proteasomal degradation of p53 by human papillomavirus E6 oncoprotein relies on the structural integrity of p53 core domain. PLoS One 2011; 6(10): e25981.
[http://dx.doi.org/10.1371/journal.pone.0025981] [PMID: 22046250]
[9]
Modi A, Singh M, Gutti G, et al. Benzothiazole derivative bearing amide moiety induces p53-mediated apoptosis in HPV16 positive cervical cancer cells. Invest New Drugs 2020; 38(4): 934-45.
[http://dx.doi.org/10.1007/s10637-019-00848-7] [PMID: 31432292]
[10]
Grunberger D, Banerjee R, Eisinger K, et al. Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis. Experientia 1988; 44(3): 230-2.
[http://dx.doi.org/10.1007/BF01941717] [PMID: 2450776]
[11]
Balaha M, De Filippis B, Cataldi A, di Giacomo V. CAPE and neuroprotection: A review. Biomolecules 2021; 11(2): 176.
[http://dx.doi.org/10.3390/biom11020176] [PMID: 33525407]
[12]
Cui Z, Wang Q, Li D, et al. Icariin, formononetin and caffeic acid phenethyl ester inhibit feline calicivirus replication in vitro. Arch Virol 2021; 166(9): 2443-50.
[http://dx.doi.org/10.1007/s00705-021-05107-w] [PMID: 34173062]
[13]
Tolba MF, Omar HA, Azab SS, Khalifa AE, Abdel NAB, Abdel RSZ. Caffeic acid phenethyl ester: A review of its antioxidant activity, protective effects against ischemia reperfusion injury and drug adverse reactions. Crit Rev Food Sci Nutr 2016; 56(13): 2183-90.
[http://dx.doi.org/10.1080/10408398.2013.821967] [PMID: 25365228]
[14]
Ozturk G, Ginis Z, Akyol S, Erden G, Gurel A, Akyol O. The anticancer mechanism of caffeic acid phenethyl ester (CAPE): Review of melanomas, lung and prostate cancers. Eur Rev Med Pharmacol Sci 2012; 16(15): 2064-8.
[PMID: 23280020]
[15]
Xiang D, Wang D, He Y, et al. Caffeic acid phenethyl ester induces growth arrest and apoptosis of colon cancer cells via the β-catenin/T-cell factor signaling. Anticancer Drugs 2006; 17(7): 753-62.
[http://dx.doi.org/10.1097/01.cad.0000224441.01082.bb] [PMID: 16926625]
[16]
Chen MF, Wu CT, Chen YJ, Keng PC, Chen WC. Cell killing and radiosensitization by caffeic acid phenethyl ester (CAPE) in lung cancer cells. J Radiat Res (Tokyo) 2004; 45(2): 253-60.
[http://dx.doi.org/10.1269/jrr.45.253] [PMID: 15304968]
[17]
Omene CO, Wu J, Frenkel K. Caffeic Acid Phenethyl Ester (CAPE) derived from propolis, a honeybee product, inhibits growth of breast cancer stem cells. Invest New Drugs 2012; 30(4): 1279-88.
[http://dx.doi.org/10.1007/s10637-011-9667-8] [PMID: 21537887]
[18]
Motawi TK, Abdelazim SA, Darwish HA, Elbaz EM, Shouman SA. Modulation of tamoxifen cytotoxicity by caffeic acid phenethyl ester in MCF-7 breast cancer cells. Oxid Med Cell Longev 2016; 2016: 1-13.
[http://dx.doi.org/10.1155/2016/3017108] [PMID: 26697130]
[19]
Kabała DA, Rzepecka SA, Kubina R, et al. Comparison of two components of propolis: Caffeic Acid (CA) and Caffeic Acid Phenethyl Ester (CAPE) induce apoptosis and cell cycle arrest of breast cancer cells MDA-MB-231. Molecules 2017; 22(9): 1554.
[http://dx.doi.org/10.3390/molecules22091554] [PMID: 28926932]
[20]
Chen MJ, Chang WH, Lin CC, et al. Caffeic acid phenethyl ester induces apoptosis of human pancreatic cancer cells involving caspase and mitochondrial dysfunction. Pancreatology 2008; 8(6): 558-65.
[http://dx.doi.org/10.1159/000159214] [PMID: 18824880]
[21]
Rzepecka SA, Kabała DA, Moździerz A, et al. Caffeic Acid phenethyl ester and ethanol extract of propolis induce the complementary cytotoxic effect on triple negative breast cancer cell lines. Molecules 2015; 20(5): 9242-62.
[http://dx.doi.org/10.3390/molecules20059242] [PMID: 26007182]
[22]
Chiang EPI, Tsai SY, Kuo YH, et al. Caffeic acid derivatives inhibit the growth of colon cancer: Involvement of the PI3-K/Akt and AMPK signaling pathways. PLoS One 2014; 9(6): e99631.
[http://dx.doi.org/10.1371/journal.pone.0099631] [PMID: 24960186]
[23]
Carrasco LCE, Sánchez PY, Márquez RL, et al. A single dose of caffeic acid phenethyl ester prevents initiation in a medium term rat hepatocarcinogenesis model. World J Gastroenterol 2006; 12(42): 6779-85.
[http://dx.doi.org/10.3748/wjg.v12.i42.6779] [PMID: 17106925]
[24]
Chuu CP, Lin HP, Ciaccio MF, et al. Caffeic acid phenethyl ester suppresses the proliferation of human prostate cancer cells through inhibition of p70S6K and Akt signaling networks. Cancer Prev Res 2012; 5(5): 788-97.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0004-T] [PMID: 22562408]
[25]
Kaushal JB, Bhatia R, Kanchan RK, et al. Repurposing niclosamide for targeting pancreatic cancer by inhibiting Hh/Gli non-canonical axis of Gsk3β. Cancers 2021; 13(13): 3105.
[http://dx.doi.org/10.3390/cancers13133105] [PMID: 34206370]
[26]
Xu X, Li C, Gao X, et al. Excessive UBE3A dosage impairs retinoic acid signaling and synaptic plasticity in autism spectrum disorders. Cell Res 2018; 28(1): 48-68.
[http://dx.doi.org/10.1038/cr.2017.132] [PMID: 29076503]
[27]
Peng H, Yang J, Li G, et al. Ubiquitylation of p62/sequestosome1 activates its autophagy receptor function and controls selective autophagy upon ubiquitin stress. Cell Res 2017; 27(5): 657-74.
[http://dx.doi.org/10.1038/cr.2017.40] [PMID: 28322253]
[28]
Patiño MCC, Soto RE, Arechaga OE, et al. Curcumin stabilizes p53 by interaction with NAD(P)H:quinone oxidoreductase 1 in tumor derived cell lines. Redox Biol 2020; 28: 101320.
[http://dx.doi.org/10.1016/j.redox.2019.101320] [PMID: 31526948]
[29]
Beaudenon S, Huibregtse JM. HPV E6, E6AP and cervical cancer. BMC Biochem 2008; 9(1): S4.
[http://dx.doi.org/10.1186/1471-2091-9-S1-S4] [PMID: 19007434]
[30]
Gonzalez RMJ, Fondevila MF, Fernandez U, et al. O-GlcNAcylated p53 in the liver modulates hepatic glucose production. Nat Commun 2021; 12(1): 5068.
[http://dx.doi.org/10.1038/s41467-021-25390-0] [PMID: 34417460]
[31]
Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356(6366): 215-21.
[http://dx.doi.org/10.1038/356215a0] [PMID: 1552940]
[32]
Miller JJ, Gaiddon C, Storr T. A balancing act: Using small molecules for therapeutic intervention of the p53 pathway in cancer. Chem Soc Rev 2020; 49(19): 6995-7014.
[http://dx.doi.org/10.1039/D0CS00163E] [PMID: 32869798]
[33]
Udomwan P, Pientong C, Tongchai P, et al. Proteomics analysis of andrographolide-induced apoptosis via the regulation of tumor suppressor p53 proteolysis in cervical cancer-derived human papillomavirus 16-positive cell lines. Int J Mol Sci 2021; 22(13): 6806.
[http://dx.doi.org/10.3390/ijms22136806] [PMID: 34202736]
[34]
Jimenez GS, Khan SH, Stommel JM, Wahl GM. p53 regulation by post-translational modification and nuclear retention in response to diverse stresses. Oncogene 1999; 18(53): 7656-65.
[http://dx.doi.org/10.1038/sj.onc.1203013] [PMID: 10618705]
[35]
Meek DW, Anderson CW. Posttranslational modification of p53: Cooperative integrators of function. Cold Spring Harb Perspect Biol 2009; 1(6): a000950.
[http://dx.doi.org/10.1101/cshperspect.a000950] [PMID: 20457558]
[36]
Bode AM, Dong Z. Post translational modification of p53 in tumorigenesis. Nat Rev Cancer 2004; 4(10): 793-805.
[http://dx.doi.org/10.1038/nrc1455] [PMID: 15510160]
[37]
Zhao X, Sun W, Ren Y, Lu Z. Therapeutic potential of p53 reactivation in cervical cancer. Crit Rev Oncol Hematol 2021; 157: 103182.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103182] [PMID: 33276182]
[38]
Jain AK, Allton K, Duncan AD, Barton MC. TRIM24 is a p53 induced E3 ubiquitin ligase that undergoes ATM mediated phosphorylation and autodegradation during DNA damage. Mol Cell Biol 2014; 34(14): 2695-709.
[http://dx.doi.org/10.1128/MCB.01705-12] [PMID: 24820418]
[39]
Pal A, Young MA, Donato NJ. Emerging potential of therapeutic targeting of ubiquitin-specific proteases in the treatment of cancer. Cancer Res 2014; 74(18): 4955-66.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1211] [PMID: 25172841]
[40]
Nag S, Qin J, Srivenugopal KS, Wang M, Zhang R. The MDM2-p53 pathway revisited. J Biomed Res 2013; 27(4): 254-71.
[http://dx.doi.org/10.7555/JBR.27.20130030] [PMID: 23885265]
[41]
Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303(5659): 844-8.
[http://dx.doi.org/10.1126/science.1092472] [PMID: 14704432]
[42]
Hengstermann A, Linares LK, Ciechanover A, Whitaker NJ, Scheffner M. Complete switch from Mdm2 to human papillomavirus E6-mediated degradation of p53 in cervical cancer cells. Proc Natl Acad Sci USA 2001; 98(3): 1218-23.
[http://dx.doi.org/10.1073/pnas.98.3.1218] [PMID: 11158620]
[43]
Wolyniec K, Shortt J, de Stanchina E, et al. E6AP ubiquitin ligase regulates PML-induced senescence in Myc-driven lymphomagenesis. Blood 2012; 120(4): 822-32.
[http://dx.doi.org/10.1182/blood-2011-10-387647] [PMID: 22689861]
[44]
Owais A, Mishra RK, Kiyokawa H. The HECT E3 Ligase E6AP/UBE3A as a Therapeutic Target in Cancer and Neurological Disorders. Cancers 2020; 12(8): 2108.
[http://dx.doi.org/10.3390/cancers12082108] [PMID: 32751183]
[45]
Huibregtse JM, Scheffner M, Howley PM. Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol Cell Biol 1993; 13(8): 4918-27.
[http://dx.doi.org/10.1128/mcb.13.8.4918-4927.1993] [PMID: 8393140]
[46]
Paul PJ, Raghu D, Chan AL, et al. Restoration of tumor suppression in prostate cancer by targeting the E3 ligase E6AP. Oncogene 2016; 35(48): 6235-45.
[http://dx.doi.org/10.1038/onc.2016.159] [PMID: 27641331]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy