Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Chemistry of 2-Aminoquinolines: Synthesis, Reactivity, and Biological Activities

Author(s): Moustafa A. Gouda* and Ghada G. El-Bana*

Volume 20, Issue 5, 2023

Published on: 27 August, 2022

Page: [509 - 529] Pages: 21

DOI: 10.2174/1570193X19666220629103027

Price: $65

Open Access Journals Promotions 2
Abstract

This review described the preparation of 2-chloroquinoline-3-carbaldehyde derivatives through Vilsmeier-Haack formylation of N-arylacetamides and their use as a key intermediate for the preparation of 2-aminoquinoline-3-carbaldehydes. The synthesis of the 2-aminoquinolines can be done through the following chemical reactions: Claisen-Schmidt condensation, 1, 3-dipolar cycloaddition, one-pot multicomponent reactions (MCRs), and reductive amination.

Keywords: 2-chloroquinoline-3-carbaldehyde, 2-aminoquinoline-3-carbaldehydes, Vilsmeier-Haack, synthesis, reactivity, reductive animation.

« Previous
Graphical Abstract
[1]
Prajapati, S.M.; Patel, K.D.; Vekariya, R.H.; Panchal, S.N.; Patel, H.D. Recent advances in the synthesis of quinolines: A review. RSC Advances, 2014, 4(47), 24463-24476.
[http://dx.doi.org/10.1039/C4RA01814A]
[2]
Djemel, T.; Messai, A.; Luneau, D.; Jeanneau, E. Synthesis, crystal structures, hydrogen bonds and antibacterial activity of new quinoline derivatives. J. Chem. Crystallogr., 2015, 45(6), 300-309.
[http://dx.doi.org/10.1007/s10870-015-0595-x]
[3]
Plevová, K.; Briestenská, K.; Colobert, F.; Mistríková, J.; Milata, V.; Leroux, F.R. Synthesis and biological evaluation of new nucleosides derived from trifluoromethoxy-4-quinolones. Tetrahedron Lett., 2015, 56(36), 5112-5115.
[http://dx.doi.org/10.1016/j.tetlet.2015.07.031]
[4]
Barteselli, A.; Parapini, S.; Basilico, N.; Mommo, D.; Sparatore, A. Synthesis and evaluation of the antiplasmodial activity of novel indeno[2,1-c]quinoline derivatives. Bioorg. Med. Chem., 2014, 22(21), 5757-5765.
[http://dx.doi.org/10.1016/j.bmc.2014.09.040] [PMID: 25311562]
[5]
Vandekerckhove, S.; Desmet, T.; Tran, H.G.; de Kock, C.; Smith, P.J.; Chibale, K.; D’hooghe, M. Synthesis of halogenated 4-quinolones and evaluation of their antiplasmodial activity. Bioorg. Med. Chem. Lett., 2014, 24(4), 1214-1217.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.067] [PMID: 24468411]
[6]
Vivekanand, B.; Mahendra Raj, K.; Mruthyunjayaswamy, B.H.M. Synthesis, characterization, antimicrobial, DNA-cleavage and antioxidant activities of 3-((5-chloro-2-phenyl-1 H -indol-3-ylimino)methyl)quinoline-2(1 H)-thione and its metal complexes. J. Mol. Struct., 2015, 1079, 214-224.
[http://dx.doi.org/10.1016/j.molstruc.2014.08.033]
[7]
Gomez, C.; Ponien, P.; Serradji, N.; Lamouri, A.; Pantel, A.; Capton, E.; Jarlier, V.; Anquetin, G.; Aubry, A. Synthesis of gatifloxacin derivatives and their biological activities against Mycobacterium leprae and Mycobacterium tuberculosis. Bioorg. Med. Chem., 2013, 21(4), 948-956.
[http://dx.doi.org/10.1016/j.bmc.2012.12.011] [PMID: 23294829]
[8]
Abonia, R.; Insuasty, D.; Castillo, J.; Insuasty, B.; Quiroga, J.; Nogueras, M.; Cobo, J. Synthesis of novel quinoline-2-one based chalcones of potential anti-tumor activity. Eur. J. Med. Chem., 2012, 57, 29-40.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.039] [PMID: 23043766]
[9]
Vittorio, C.; Guyen, B.; Opoku-Boahen, Y.; Mann, J.; Gowan, S.M.; Lloyd, M.; Martin, A.R.; Stephen, N. A novel inhibitor of human telomerase derived from 10H-indolo[3,2-b]quinoline Bioorgan. Med. Chem. Lett, 2000, 10, 2063-2066.
[http://dx.doi.org/10.1016/S0960-894X(00)00378-4]
[10]
Fournet, A.; Barrios, A.A.; Muñoz, V.; Hocquemiller, R.; Cavé, A.; Bruneton, J. 2-substituted quinoline alkaloids as potential antileishmanial drugs. Antimicrob. Agents Chemother., 1993, 37(4), 859-863.
[http://dx.doi.org/10.1128/AAC.37.4.859] [PMID: 8494383]
[11]
Mahboob Alam, M.; Shaharyar, M.; Hamid, H.; Nazreen, S.; Haider, S.; Sarwar Alam, M. Synthesis of novel 8-hydroxy quinolin based 1,3,4-oxadiazoles and S-substituted 1,2,4-triazole derivatives and evaluation of their anti-inflammatory, analgesic, ulcerogenic and anti-microbial activities. Med. Chem., 2011, 7(6), 663-673.
[http://dx.doi.org/10.2174/157340611797928334] [PMID: 22313306]
[12]
Narwal, S.; Kumar, S.; Verma, P.K. Synthesis and therapeutic potential of quinoline derivatives. Res. Chem. Intermed., 2017, 43(5), 2765-2798.
[http://dx.doi.org/10.1007/s11164-016-2794-2]
[13]
Gouda, M. A. El-Bana; Ghada, G Chemistry of 2-(pipridin-1-yl) and/ or 2-(morpholin-1-yl) quinolines (part ii): Synthesis, reactivity and biological activities. Mini Rev. Org. Chem,, 2022, 19(00), 00.
[http://dx.doi.org/10.2174/1570193X1966622032816345]
[14]
Abu-Hashem, A.A.; Abdelgawad, A.A.M.; Hussein, H.A.R.; Gouda, M.A. Synthetic and reactions routes to tetrahydrothieno[3,2-b]quinoline derivatives (Part IV). Mini Rev. Org. Chem., 2022, 19(1), 74-91.
[http://dx.doi.org/10.2174/1570193X18666210218212719]
[15]
Kalluraya, B.; Nayak, J.; Adhikari, A. v, S.K.; Shetty, N.S.; Winter, M. Synthesis and characterization of some novel quinolinothiazines of biological interest. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183(8), 1870-1883.
[http://dx.doi.org/10.1080/10426500701792933]
[16]
Meth-Cohn, O.; Narine, B. A versatile new synthesis of quinolines, thienopyridines and related fused pyridines. Tetrahedron Lett., 1978, 19(23), 2045-2048.
[http://dx.doi.org/10.1016/S0040-4039(01)94745-8]
[17]
Meth-Cohn, O.; Narine, B.; Tarnowski, B. A versatile new synthesis of quinolines, thienopyridines, and related fused pyridines 5: The synthesis of 2-chloroquinoline-3-carbaldehydes. J. Chem. Soc., Perkin Trans. 1, 1981, 1520-1530.
[http://dx.doi.org/10.1039/p19810001520]
[18]
Kalita, P.K.; Baruah, B.; Bhuyan, P.J. Synthesis of novel pyrano[2,3-b]quinolines from simple acetanilides via intramolecular 1,3-dipolar cycloaddition. Tetrahedron Lett., 2006, 47(44), 7779-7782.
[http://dx.doi.org/10.1016/j.tetlet.2006.08.086]
[19]
Ohgiya, T.; Yamazaki, K.; Matsuda, K.; Murakami, T.; Watanabe, T.; Maejima, T. Preparation of N, 5-disubstituted pyrimidin-2-amine compounds for reducing low-density lipoprotein (LDL) cholesterol level in blood. WO 2013137371 A1, 2013.
[20]
El-Naggar, A.M.; Ramadan, S.K. Efficient synthesis of some pyrimidine and thiazolidine derivatives bearing quinoline scaffold under microwave irradiation. Synth. Commun., 2020, 50(14), 2188-2198.
[http://dx.doi.org/10.1080/00397911.2020.1769673]
[21]
Majumder, S.; Borah, P.; Bhuyan, P.J. Intramolecular 1,3-dipolar cycloaddition reactions in the synthesis of complex annelated quinolines, α-carbolines and coumarins. Mol. Divers., 2012, 16(2), 279-289.
[http://dx.doi.org/10.1007/s11030-012-9358-1]
[22]
Baruah, B.; Bhuyan, P.J. Synthesis of some complex pyrano[2,3-b]- and pyrido[2,3-b]quinolines from simple acetanilides via intramolecular domino hetero Diels–Alder reactions of 1-oxa-1,3-butadienes in aqueous medium. Tetrahedron, 2009, 65(34), 7099-7104.
[http://dx.doi.org/10.1016/j.tet.2009.06.036]
[23]
Bendorf, H.D.; Ruhl, K.E.; Shurer, A.J.; Shaffer, J.B.; Duffin, T.O.; LaBarte, T.L.; Maddock, M.L.; Wheeler, O.W. Amine-directed intramolecular hydroacylation of alkenes and alkynes. Tetrahedron Lett., 2012, 53(10), 1275-1277.
[http://dx.doi.org/10.1016/j.tetlet.2011.12.125]
[24]
Marjani, A.P.; Khalafy, J.; Ebrahimlo, A.R.M. Facile synthesis of some new pyrimidoquinolines. Synth. Commun., 2011, 41(16), 2475-2482.
[http://dx.doi.org/10.1080/00397911.2010.505701]
[25]
Marjani, A.P.; Khalafy, J. A short and efficient method for the synthesis of pyrimido[1,2-a]quinolines. Chem. Heterocycl. Compd., 2011, 47(1), 96-100.
[http://dx.doi.org/10.1007/s10593-011-0725-0]
[26]
Tóth, J.; Somfai, B.; Blaskó, G.; Dancsó, A.; Töke, L.; Nyerges, M. Intramolecular 1, 3-dipolar cycloaddition of azomethine ylides leading to pyrido [2, 3-b] quinolines. Synth. Commun., 2009, 39(13), 2258-2270.
[http://dx.doi.org/10.1080/00397910802401142]
[27]
Donello, I.E.; Yang, R.; Leblond, B.; Beausoleil, E.; Casagrande, A.S.; Desire, L.J.R.; Pando, M.P.; Chauvignac, C.; Taverne, T. Substituted 6,7-dialkoxy-3-isoquinolinol derivatives as inhibitors of phosphor-diesterase 10 (PDE10A). PCT Int. Appl., 2012, 2012112946, 23.
[28]
Huang, L.; Fei, T.H.; Hu, K.; Liu, F.M. Design and synthesis of novel 2-(1,2,4-triazol-1-yl)-quinoline-based tricyclic 1,5-benzothiazepine derivatives. J. Heterocycl. Chem., 2015, 52(6), 1731-1736.
[http://dx.doi.org/10.1002/jhet.2245]
[29]
Lin, H.; Yang, P.; Fei, T.; Liu, F. Synthesis and crystal structure of novel β-lactam derivatives bearing quinoline moiety via [2+ 2] cycloaddition. J. Heterocycl. Chem., 2016, 53(6), 2036-2041.
[30]
Huang, L.; Fei, T.H.; Hu, K.; Liu, F.M. Synthesis of novel 1,2,4-oxadiazoline derivatives containing quinoline moiety by 1,3-dipolar cycloaddition. J. Heterocycl. Chem., 2015, 52(3), 902-906.
[http://dx.doi.org/10.1002/jhet.2126]
[31]
Korcz, M. Saczewski, F.; Bednarski, P. J.; Kornicka, A. Synthesis, structure, chemical stability, and in vitro cytotoxic properties of novel quinoline-3-carbaldehyde hydrazones bearing a 1, 2, 4-triazole or benzotriazole moiety. Molecules, 2018, 23(6), 1497.
[http://dx.doi.org/10.3390/molecules]
[32]
Rabong, C.; Hametner, C.; Mereiter, K. Scope and limitations of the T-reaction employing some functionalized CH-acids and naturally occurring secondary amines. Heterocycles, 2008, 75(4), 799-838.
[http://dx.doi.org/10.3987/COM-07-11260]
[33]
Ashok, D.; Ganesh, A.; Vijaya Lakshmi, B.; Ravi, S. Ultrasound- and microwave-assisted synthesis of (E)-1-aryl-3-[2-(piperidin-1-yl)quinolin-3-yl]prop-2-en-1-ones and (E)-1-aryl-3-[2-(pyrrolidin-1-yl)quinolin-3-yl]prop-2-en-1-ones, and their antimicrobial activity. Russ. J. Gen. Chem., 2014, 84(6), 1237-1242.
[http://dx.doi.org/10.1134/S1070363214060309]
[34]
Pradeep, M.; Vishnuvardhan, M.; Bala Krishna, V.; Madhusudhan Raju, R. An efficient microwave assisted synthesis and antimicrobial activty of 1,2,3-triazolyl-pyrrolidinyl-quinolinolines. Russ. J. Gen. Chem., 2019, 89(2), 313-318.
[http://dx.doi.org/10.1134/S1070363219020233]
[35]
Bhuyan, P.J.; Devi, I.; Kalita, P.K. . Synthesis of novel pyrrolo[ 1',2':1,6] and morpholino[1',2':1,6]tetrahydropyrido[2,3-b]- quinoline. IN 2006DE00891, 2016.
[36]
Rao, P.V.; Goli, K. Microwave assisted synthesis and antibacterial activies of some (E)-1-phenyl-3-(2-thiomorpholinoquinolin-3-yl) prop-2-en-1-one using basic catalyst. Int. J. Chem. Sci., 2014, 12(4), 1577-1586. [https://www.cabdirect.org/cabdirect/abstract/
[37]
Paitandi, R.P.; Mukhopadhyay, S.; Singh, R.S.; Sharma, V.; Mobin, S.M.; Pandey, D.S. Anticancer activity of iridium (III) complexes based on a pyrazole-appended quinoline-based BODIPY. Inorg. Chem., 2017, 56(20), 12232-12247.
[38]
Paitandi, R.P.; Sharma, V.; Singh, V.D.; Dwivedi, B.K.; Mobin, S.M.; Pandey, D.S. Pyrazole appended quinoline-bodipy based arene ruthenium complexes: Their anticancer activity and potential applications in cellular imaging. Dalton Trans., 2018, 47(48), 17500-17514.
[http://dx.doi.org/10.1039/C8DT02947D] [PMID: 30507985]
[39]
Nakamura, Y.; Hayashi, N.; Higashijima, T.; Kubota, H.; Oka, K. Trisubstituted amine compounds as cetp inhibitors and their preparation, pharmaceutical compositions and use in the treatment of arteriosclerotic diseases, hyperlipemia, dyslipidemia and related diseases.us; , 2009, p. 20090023729.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy