Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Systematic Review Article

Effects of Growth Factors on the Differentiation of Dental Stem Cells: A Systematic Review and Meta-analysis (Part I)

Author(s): Sayna Shamszadeh, Armin Shirvani, Hassan Torabzadeh and Saeed Asgary*

Volume 19, Issue 4, 2024

Published on: 03 September, 2022

Page: [523 - 543] Pages: 21

DOI: 10.2174/1574888X17666220628125048

Price: $65

Abstract

Introduction: To evaluate the biological interaction between dental stem cells (DSCs) and different growth factors in the field of regenerative endodontics.

Methods: A systematic search was conducted in the electronic databases up to October 2021. This study followed the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Ex vivo studies evaluating the biological interactions of DSCs and growth factors were included. The meta-analysis was performed according to the type of growth factor. The outcomes were cell viability/ proliferation and mineralization. Standardized mean differences (SMDs) were estimated using the random-effect maximum-likelihood method (P < .05). Additional analysis was performed to find any potential source of heterogeneity.

Results: Twenty articles were included in the systematic review; meta-analysis was performed for fibroblast growth factor-2 (FGF-2) and Transforming growth factor-ß1 (TGF-β1) (n = 5). Results showed that use of FGF-2 significantly increased cell proliferation on day 1-(SMD = 3.56, P = 0.00), 3-(SMD = 9.04, P = 0.00), 5-(SMD = 8.37, P = 0.01), and 7 (SMD=8.51, P=0.00) than the control group. TGF-ß1 increased alkaline phosphatase (ALP) activity more than control only on day 3 (SMD = 3.68, P = 0.02). TGF-β1 had no significant effect on cell proliferation on days 1 and 3 (P > 0.05) and on ALP activity on days 5 and 7 (P > 0.05). Meta-regression analysis showed that different covariates (i.e., cell type, passage number, and growth factors' concentration) could significantly influence the effect sizes at different follow- ups (P < 0.05).

Conclusion: Specific growth factors might enhance the proliferation and mineralization of DSCs; however, the obtained evidence was weak. Due to the high heterogeneity among the included studies, other growth factors' inhibitory/stimulatory effects on DSCs could not be evaluated.

Keywords: Cell differentiation, growth factor, meta-analysis, regenerative endodontics, systematic review, fibroblast growth factor.

Graphical Abstract
[1]
Thesleff I. Developmental biology and building a tooth. Quintessence Int 2003; 34(8): 613-20.
[PMID: 14620213]
[2]
Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 2000; 92(1): 19-29.
[http://dx.doi.org/10.1016/S0925-4773(99)00322-6] [PMID: 10704885]
[3]
Thesleff I, Sharpe P. Signalling networks regulating dental development. Mech Dev 1997; 67(2): 111-23.
[http://dx.doi.org/10.1016/S0925-4773(97)00115-9] [PMID: 9392510]
[4]
Thesleff I, Mikkola M. The role of growth factors in tooth development. Int Rev Cytol 2002; 217: 93-135.
[http://dx.doi.org/10.1016/S0074-7696(02)17013-6] [PMID: 12019566]
[5]
Cho YD, Yoon WJ, Woo KM, Baek JH, Park JC, Ryoo HM. The canonical BMP signaling pathway plays a crucial part in stimulation of dentin sialophosphoprotein expression by BMP-2. J Biol Chem 2010; 285(47): 36369-76.
[http://dx.doi.org/10.1074/jbc.M110.103093] [PMID: 20843790]
[6]
Kwon HE, Jia S, Lan Y, Liu H, Jiang R. Activin and Bmp4 signaling converge on Wnt activation during odontogenesis. J Dent Res 2017; 96(10): 1145-52.
[http://dx.doi.org/10.1177/0022034517713710] [PMID: 28605600]
[7]
Wang Y, Li L, Zheng Y, et al. BMP activity is required for tooth development from the lamina to bud stage. J Dent Res 2012; 91(7): 690-5.
[http://dx.doi.org/10.1177/0022034512448660] [PMID: 22592126]
[8]
Bègue-Kirn C, Smith AJ, Loriot M, Kupferle C, Ruch JV, Lesot H. Comparative analysis of TGF beta s, BMPs, IGF1, msxs, fibronectin, osteonectin and bone sialoprotein gene expression during normal and in vitro -induced odontoblast differentiation. Int J Dev Biol 1994; 38(3): 405-20.
[PMID: 7848824]
[9]
Madan AK, Kramer B. Immunolocalization of fibroblast growth factor-2 (FGF-2) in the developing root and supporting structures of the murine tooth. J Mol Histol 2005; 36(3): 171-8.
[http://dx.doi.org/10.1007/s10735-005-2684-1] [PMID: 15900407]
[10]
Wu J, Huang GT, He W, et al. Basic fibroblast growth factor enhances stemness of human stem cells from the apical papilla. J Endod 2012; 38(5): 614-22.
[http://dx.doi.org/10.1016/j.joen.2012.01.014] [PMID: 22515889]
[11]
Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res 2004; 83(8): 590-5.
[http://dx.doi.org/10.1177/154405910408300802] [PMID: 15271965]
[12]
Chen S, Gluhak-Heinrich J, Martinez M, et al. Bone morphogenetic protein 2 mediates dentin sialophosphoprotein expression and odontoblast differentiation via NF-Y signaling. J Biol Chem 2008; 283(28): 19359-70.
[http://dx.doi.org/10.1074/jbc.M709492200] [PMID: 18424784]
[13]
Wang W, Dang M, Zhang Z, et al. Dentin regeneration by stem cells of apical papilla on injectable nanofibrous microspheres and stimulated by controlled BMP-2 release. Acta Biomater 2016; 36: 63-72.
[http://dx.doi.org/10.1016/j.actbio.2016.03.015] [PMID: 26971664]
[14]
Nakao K, Itoh M, Tomita Y, Tomooka Y, Tsuji T. FGF-2 potently induces both proliferation and DSP expression in collagen type I gel cultures of adult incisor immature pulp cells. Biochem Biophys Res Commun 2004; 325(3): 1052-9.
[http://dx.doi.org/10.1016/j.bbrc.2004.10.136] [PMID: 15541395]
[15]
Nowwarote N, Sukarawan W, Pavasant P, Foster BL, Osathanon T. Basic fibroblast growth factor regulates phosphate/pyrophosphate regulatory genes in stem cells isolated from human exfoliated deciduous teeth. Stem Cell Res Ther 2018; 9(1): 345.
[http://dx.doi.org/10.1186/s13287-018-1093-9] [PMID: 30526676]
[16]
Hao J, Yang H, Cao Y, Zhang C, Fan Z. IGFBP5 enhances the dentinogenesis potential of dental pulp stem cells via JNK and ErK signalling pathways. J Oral Rehabil 2020; 47(12): 1557-65.
[http://dx.doi.org/10.1111/joor.13047] [PMID: 32623775]
[17]
Aksel H, Huang GT. Combined effects of vascular endothelial growth factor and bone morphogenetic protein 2 on Odonto/osteogenic differentiation of human dental pulp stem cells In Vitro. J Endod 2017; 43(6): 930-5.
[http://dx.doi.org/10.1016/j.joen.2017.01.036] [PMID: 28457634]
[18]
Shamszadeh S, Asgary S, Nosrat A. Regenerative endodontics: A scientometric and bibliometric analysis. J Endod 2019; 45(3): 272-80.
[http://dx.doi.org/10.1016/j.joen.2018.11.010] [PMID: 30803534]
[19]
Sheykhhasan M, Seifalian A. Plasma-Rich in growth factor and its clinical application. Curr Stem Cell Res Ther 2021; 16(6): 730-44.
[http://dx.doi.org/10.2174/1574888X16666210120101600] [PMID: 33494683]
[20]
Huang K, Li Q, Li Y, et al. Cartilage tissue regeneration: The roles of cells, stimulating factors and scaffolds. Curr Stem Cell Res Ther 2018; 13(7): 547-67.
[http://dx.doi.org/10.2174/1574888X12666170608080722] [PMID: 28595567]
[21]
Bhaskar B, Mekala NK, Baadhe RR, Rao PS. Role of signaling pathways in mesenchymal stem cell differentiation. Curr Stem Cell Res Ther 2014; 9(6): 508-12.
[http://dx.doi.org/10.2174/1574888X09666140812112002] [PMID: 25116449]
[22]
Dave S. Extrinsic factors promoting insulin producing cell-differentiation and insulin expression enhancement-hope for diabetics. Curr Stem Cell Res Ther 2013; 8(6): 471-83.
[http://dx.doi.org/10.2174/1574888X113089990056] [PMID: 23957934]
[23]
Archer DE, Mafi R, Mafi P, Khan WS. Preclinical studies on biomaterial scaffold use in knee ligament regeneration: A systematic review. Curr Stem Cell Res Ther 2018; 13(8): 691-701.
[http://dx.doi.org/10.2174/1574888X13666180809093343] [PMID: 30091417]
[24]
Nokhbatolfoghahaei H, Rad MR, Paknejad Z, Ardeshirylajimi A, Khojasteh A. Identification osteogenic signaling pathways following mechanical stimulation: A systematic review. Curr Stem Cell Res Ther 2021; 16.
[http://dx.doi.org/10.2174/1574888X16666211006105915] [PMID: 34615453]
[25]
Nokhbatolfoghahaei H, Rad MR, Khani MM, Shahriari S, Nadjmi N, Khojasteh A. Application of bioreactors to improve functionality of bone tissue engineering constructs: A systematic review. Curr Stem Cell Res Ther 2017; 12(7): 564-99.
[http://dx.doi.org/10.2174/1574888X12666170822100105] [PMID: 28828969]
[26]
de Oliveira NK, Miguita L, Salles THC, d’Ávila MA, Marques MM, Deboni MCZ. Can porous polymeric scaffolds be functionalized by stem cells leading to osteogenic differentiation? A systematic review of in vitro studies. J Mater Sci 2018; 53(23): 15757-68.
[http://dx.doi.org/10.1007/s10853-018-2621-9]
[27]
Shahravan A, Haghdoost AA, Adl A, Rahimi H, Shadifar F. Effect of smear layer on sealing ability of canal obturation: A systematic review and meta-analysis. J Endod 2007; 33(2): 96-105.
[http://dx.doi.org/10.1016/j.joen.2006.10.007] [PMID: 17258623]
[28]
Wehner C, Lettner S, Moritz A, Andrukhov O, Rausch-Fan X. Effect of bisphosphonate treatment of titanium surfaces on alkaline phosphatase activity in osteoblasts: A systematic review and meta-analysis. BMC Oral Health 2020; 20(1): 125.
[http://dx.doi.org/10.1186/s12903-020-01089-4] [PMID: 32334598]
[29]
Caballé-Serrano J, Abdeslam-Mohamed Y, Munar-Frau A, Fujioka-Kobayashi M, Hernández-Alfaro F, Miron R. Adsorption and release kinetics of growth factors on barrier membranes for guided tissue/bone regeneration: A systematic review. Arch Oral Biol 2019; 100: 57-68.
[http://dx.doi.org/10.1016/j.archoralbio.2019.02.006] [PMID: 30798032]
[30]
Sanz JL, Forner L, Almudéver A, Guerrero-Gironés J, Llena C. Viability and stimulation of human stem cells from the apical papilla (hSCAPs) induced by silicate-based materials for their potential use in regenerative endodontics: A systematic review. Materials (Basel) 2020; 13(4): E974.
[http://dx.doi.org/10.3390/ma13040974] [PMID: 32098171]
[31]
Strauss FJ, Nasirzade J, Kargarpoor Z, Stähli A, Gruber R. Effect of platelet-rich fibrin on cell proliferation, migration, differentiation, inflammation, and osteoclastogenesis: A systematic review of in vitro studies. Clin Oral Investig 2020; 24(2): 569-84.
[http://dx.doi.org/10.1007/s00784-019-03156-9] [PMID: 31879804]
[32]
Sanz JL, Forner L, Llena C, et al. Cytocompatibility and bioactive properties of hydraulic calcium silicate-based cements (HCSCs) on stem cells from human exfoliated deciduous teeth (SHEDs): A systematic review of in vitro studies. J Clin Med 2020; 9(12): E3872.
[http://dx.doi.org/10.3390/jcm9123872] [PMID: 33260782]
[33]
Moher D, Altman DG, Liberati A, Tetzlaff J. PRISMA statement. Epidemiology 2011; 22(1): 128.
[http://dx.doi.org/10.1097/EDE.0b013e3181fe7825] [PMID: 21150360]
[34]
Faggion CM Jr. Guidelines for reporting pre-clinical in vitro studies on dental materials. J Evid Based Dent Pract 2012; 12(4): 182-9.
[http://dx.doi.org/10.1016/j.jebdp.2012.10.001] [PMID: 23177493]
[35]
Pamies D, Bal-Price A, Simeonov A, et al. Good cell culture practice for stem cells and stem-cell-derived models. Altern Anim Exp 2017; 34(1): 95-132.
[PMID: 27554434]
[36]
Xu F, Qiao L, Zhao Y, et al. The potential application of concentrated growth factor in pulp regeneration: An in vitro and in vivo study. Stem Cell Res Ther 2019; 10(1): 134.
[http://dx.doi.org/10.1186/s13287-019-1247-4] [PMID: 31109358]
[37]
Tian S, Wang J, Dong F, et al. Concentrated growth factor promotes dental pulp cells proliferation and mineralization and facilitates recovery of dental pulp tissue. Med Sci Monit 2019; 25: 10016-28.
[http://dx.doi.org/10.12659/MSM.919316] [PMID: 31877561]
[38]
Hong S, Li L, Cai W, Jiang B. The potential application of concentrated growth factor in regenerative endodontics. Int Endod J 2019; 52(5): 646-55.
[http://dx.doi.org/10.1111/iej.13045] [PMID: 30471228]
[39]
Jin R, Song G, Chai J, Gou X, Yuan G, Chen Z. Effects of concentrated growth factor on proliferation, migration, and differentiation of human dental pulp stem cells in vitro. J Tissue Eng 2018; 9: 2041731418817505.
[http://dx.doi.org/10.1177/2041731418817505] [PMID: 30622693]
[40]
Li Z, Liu L, Wang L, Song D. The effects and potential applications of concentrated growth factor in dentin-pulp complex regeneration. Stem Cell Res Ther 2021; 12(1): 357.
[http://dx.doi.org/10.1186/s13287-021-02446-y] [PMID: 34147130]
[41]
Hong S, Chen W, Jiang B. A Comparative evaluation of concentrated growth factor and platelet-rich fibrin on the proliferation, migration, and differentiation of human stem cells of the apical papilla. J Endod 2018; 44(6): 977-83.
[http://dx.doi.org/10.1016/j.joen.2018.03.006] [PMID: 29703620]
[42]
Li L, Wang Z. PDGF-BB, NGF and BDNF enhance pulp-like tissue regeneration via cell homing. RSC Advances 2016; 6(111): 109519-27.
[http://dx.doi.org/10.1039/C6RA20290J]
[43]
Kim YS, Min KS, Jeong DH, Jang JH, Kim HW, Kim EC. Effects of fibroblast growth factor-2 on the expression and regulation of chemokines in human dental pulp cells. J Endod 2010; 36(11): 1824-30.
[http://dx.doi.org/10.1016/j.joen.2010.08.020] [PMID: 20951295]
[44]
Li R, Peng L, Ren L, Tan H, Ye L. Hepatocyte growth factor exerts promoting functions on murine dental papilla cells. J Endod 2009; 35(3): 382-8.
[http://dx.doi.org/10.1016/j.joen.2008.11.031] [PMID: 19249600]
[45]
Arany S, Koyota S, Sugiyama T. Nerve growth factor promotes differentiation of odontoblast-like cells. J Cell Biochem 2009; 106(4): 539-45.
[http://dx.doi.org/10.1002/jcb.22006] [PMID: 19170059]
[46]
Catón J, Bringas P Jr, Zeichner-David M. Establishment and characterization of an immortomouse-derived odontoblast-like cell line to evaluate the effect of insulin-like growth factors on odontoblast differentiation. J Cell Biochem 2007; 100(2): 450-63.
[http://dx.doi.org/10.1002/jcb.21053] [PMID: 16927272]
[47]
Tsuboi T, Mizutani S, Nakano M, Hirukawa K, Togari A. Fgf-2 regulates enamel and dentine formation in mouse tooth germ. Calcif Tissue Int 2003; 73(5): 496-501.
[http://dx.doi.org/10.1007/s00223-002-4070-2] [PMID: 12958698]
[48]
Unda FJ, Martín A, Hernandez C, Pérez-Nanclares G, Hilario E, Aréchaga J. FGFs-1 and -2, and TGF beta 1 as inductive signals modulating in vitro odontoblast differentiation. Adv Dent Res 2001; 15(1): 34-7.
[http://dx.doi.org/10.1177/08959374010150010801] [PMID: 12640736]
[49]
Oyanagi T, Takeshita N, Hara M, et al. Insulin-like growth factor 1 modulates bioengineered tooth morphogenesis. Sci Rep 2019; 9(1): 368.
[http://dx.doi.org/10.1038/s41598-018-36863-6] [PMID: 30675004]
[50]
Washio A, Kitamura C, Morotomi T, Terashita M, Nishihara T. Possible involvement of smad signaling pathways in induction of odontoblastic properties in KN-3 cells by bone morphogenetic protein-2: A growth factor to induce dentin regeneration. Int J Dent 2012; 2012: 258469.
[http://dx.doi.org/10.1155/2012/258469] [PMID: 22505896]
[51]
Zhang Y, Zhang H, Yuan G, Yang G. Effects of transforming growth factor-β1 on odontoblastic differentiation in dental papilla cells is determined by IPO7 expression level. Biochem Biophys Res Commun 2021; 545: 105-11.
[http://dx.doi.org/10.1016/j.bbrc.2021.01.076] [PMID: 33548622]
[52]
Sagomonyants K, Kalajzic I, Maye P, Mina M. Enhanced dentinogenesis of pulp progenitors by early exposure to FGF2. J Dent Res 2015; 94(11): 1582-90.
[http://dx.doi.org/10.1177/0022034515599768] [PMID: 26276371]
[53]
Iohara K, Imabayashi K, Ishizaka R, et al. Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue Eng Part A 2011; 17(15-16): 1911-20.
[http://dx.doi.org/10.1089/ten.tea.2010.0615] [PMID: 21417716]
[54]
Sagomonyants K, Mina M. Stage-specific effects of fibroblast growth factor 2 on the differentiation of dental pulp cells. Cells Tissues Organs 2014; 199(5-6): 311-28.
[http://dx.doi.org/10.1159/000371343] [PMID: 25823776]
[55]
Melin M, Joffre-Romeas A, Farges JC, Couble ML, Magloire H, Bleicher F. Effects of TGFbeta1 on dental pulp cells in cultured human tooth slices. J Dent Res 2000; 79(9): 1689-96.
[http://dx.doi.org/10.1177/00220345000790090901] [PMID: 11023265]
[56]
Mullane EM, Dong Z, Sedgley CM, et al. Effects of VEGF and FGF2 on the revascularization of severed human dental pulps. J Dent Res 2008; 87(12): 1144-8.
[http://dx.doi.org/10.1177/154405910808701204] [PMID: 19029083]
[57]
Shen Z, Tsao H, LaRue S, et al. Vascular endothelial growth factor and/or nerve growth factor treatment induces expression of dentinogenic, neuronal, and healing markers in stem cells of the apical papilla. J Endod 2021; 47(6): 924-31.
[http://dx.doi.org/10.1016/j.joen.2021.02.011] [PMID: 33652017]
[58]
Iohara K, Murakami M, Takeuchi N, et al. A novel combinatorial therapy with pulp stem cells and granulocyte colony-stimulating factor for total pulp regeneration. Stem Cells Transl Med 2013; 2(10): 818.
[http://dx.doi.org/10.5966/sctm.2012-0132erratum] [PMID: 28945010]
[59]
Pääkkönen V, Vuoristo J, Salo T, Tjäderhane L. Effects of TGF-beta 1 on interleukin profile of human dental pulp and odontoblasts. Cytokine 2007; 40(1): 44-51.
[http://dx.doi.org/10.1016/j.cyto.2007.08.003] [PMID: 17889552]
[60]
Yan L, Sun S, Qu L. Insulin-like growth factor-1 promotes the proliferation and odontoblastic differentiation of human dental pulp cells under high glucose conditions. Int J Mol Med 2017; 40(4): 1253-60.
[http://dx.doi.org/10.3892/ijmm.2017.3117] [PMID: 28902344]
[61]
Liu L, Peng Z, Xu Z, Huang H, Wei X. Mouse embryonic fibroblast (MEF)/BMP4-conditioned medium enhanced multipotency of human dental pulp cells. J Mol Histol 2018; 49(1): 17-26.
[http://dx.doi.org/10.1007/s10735-017-9743-2] [PMID: 29214501]
[62]
Srisuwan T, Wattanapakkavong K. Direct effect of transforming growth factor-beta 1 (TGF-β1) on human apical papilla cell proliferation and mineralisation. Aust Endod J 2021; aej: 12572.
[http://dx.doi.org/10.1111/aej.12572] [PMID: 34596309]
[63]
Shimabukuro Y, Ueda M, Ozasa M, et al. Fibroblast growth factor-2 regulates the cell function of human dental pulp cells. J Endod 2009; 35(11): 1529-35.
[http://dx.doi.org/10.1016/j.joen.2009.08.010] [PMID: 19840642]
[64]
He H, Yu J, Liu Y, et al. Effects of FGF2 and TGFbeta1 on the differentiation of human dental pulp stem cells in vitro. Cell Biol Int 2008; 32(7): 827-34.
[http://dx.doi.org/10.1016/j.cellbi.2008.03.013] [PMID: 18442933]
[65]
Chang YC, Chang MC, Chen YJ, et al. Basic fibroblast growth factor regulates gene and protein expression related to proliferation, differentiation, and matrix production of human dental pulp cells. J Endod 2017; 43(6): 936-42.
[http://dx.doi.org/10.1016/j.joen.2017.01.024] [PMID: 28416318]
[66]
Kang KJ, Ryu CJ, Jang YJ. Identification of dentinogenic cell-specific surface antigens in odontoblast-like cells derived from adult dental pulp. Stem Cell Res Ther 2019; 10(1): 128.
[http://dx.doi.org/10.1186/s13287-019-1232-y] [PMID: 31029165]
[67]
Wu S, Zhou Y, Yu Y, et al. Evaluation of chitosan hydrogel for sustained delivery of VEGF for odontogenic differentiation of dental pulp stem cells. Stem Cells Int 2019; 2019: 1515040.
[http://dx.doi.org/10.1155/2019/1515040] [PMID: 31949434]
[68]
Jiang L, Ayre WN, Melling GE, et al. Liposomes loaded with transforming growth factor β1 promote odontogenic differentiation of dental pulp stem cells. J Dent 2020; 103: 103501.
[http://dx.doi.org/10.1016/j.jdent.2020.103501] [PMID: 33068710]
[69]
Atalayin C, Tezel H, Dagci T, Yavasoglu NU, Oktem G. Medium modification with bone morphogenetic protein 2 addition for odontogenic differentiation. Braz Oral Res 2016; 30(1): 30.
[http://dx.doi.org/10.1590/1807-3107BOR-2016.vol30.0020] [PMID: 26981753]
[70]
Tabatabaei FS, Torshabi M. Effects of non-collagenous proteins, TGF-β1, and PDGF-BB on viability and proliferation of dental pulp stem cells. J Oral Maxillofac Res 2016; 7(1): e4.
[http://dx.doi.org/10.5037/jomr.2016.7104] [PMID: 27099698]
[71]
Lv T, Wu Y, Mu C, et al. Insulin-like growth factor 1 promotes the proliferation and committed differentiation of human dental pulp stem cells through MAPK pathways. Arch Oral Biol 2016; 72: 116-23.
[http://dx.doi.org/10.1016/j.archoralbio.2016.08.011] [PMID: 27573439]
[72]
Chang MC, Lin LD, Tseng HC, et al. Growth and differentiation factor-5 regulates the growth and differentiation of human dental pulp cells. J Endod 2013; 39(10): 1272-7.
[http://dx.doi.org/10.1016/j.joen.2013.06.003] [PMID: 24041390]
[73]
Li Y, Lü X, Sun X, Bai S, Li S, Shi J. Odontoblast-like cell differentiation and dentin formation induced with TGF-β1. Arch Oral Biol 2011; 56(11): 1221-9.
[http://dx.doi.org/10.1016/j.archoralbio.2011.05.002] [PMID: 21641578]
[74]
Nie X, Tian W, Zhang Y, et al. Induction of transforming growth factor-beta 1 on dentine pulp cells in different culture patterns. Cell Biol Int 2006; 30(4): 295-300.
[http://dx.doi.org/10.1016/j.cellbi.2005.12.001] [PMID: 16458025]
[75]
Luisi SB, Barbachan JJ, Chies JA, Filho MS. Behavior of human dental pulp cells exposed to transforming growth factor-beta1 and acidic fibroblast growth factor in culture. J Endod 2007; 33(7): 833-5.
[http://dx.doi.org/10.1016/j.joen.2007.04.002] [PMID: 17804323]
[76]
Yokose S, Kadokura H, Tajima N, et al. Platelet-derived growth factor exerts disparate effects on odontoblast differentiation depending on the dimers in rat dental pulp cells. Cell Tissue Res 2004; 315(3): 375-84.
[http://dx.doi.org/10.1007/s00441-003-0839-5] [PMID: 14740293]
[77]
Chang HH, Chang MC, Wu IH, et al. Role of ALK5/Smad2/3 and MEK1/ERK Signaling in transforming growth factor beta 1-modulated growth, collagen turnover, and differentiation of stem cells from apical papilla of human tooth. J Endod 2015; 41(8): 1272-80.
[http://dx.doi.org/10.1016/j.joen.2015.03.022] [PMID: 26001858]
[78]
Khoroushi M, Foroughi MR, Karbasi S, Hashemibeni B, Khademi AA. Effect of Polyhydroxybutyrate/Chitosan/Bioglass nanofiber scaffold on proliferation and differentiation of stem cells from human exfoliated deciduous teeth into odontoblast-like cells. Mater Sci Eng C 2018; 89: 128-39.
[http://dx.doi.org/10.1016/j.msec.2018.03.028] [PMID: 29752081]
[79]
Cagidiaco MC, Radovic I, Simonetti M, Tay F, Ferrari M. Clinical performance of fiber post restorations in endodontically treated teeth: 2-year results. Int J Prosthodont 2007; 20(3): 293-8.
[PMID: 17580463]
[80]
Choi MR, Kim HY, Park J-Y, et al. Selection of optimal passage of bone marrow-derived mesenchymal stem cells for stem cell therapy in patients with amyotrophic lateral sclerosis. Neurosci Lett 2010; 472(2): 94-8.
[http://dx.doi.org/10.1016/j.neulet.2010.01.054] [PMID: 20117176]
[81]
Hafner M, Niepel M, Chung M, Sorger PK. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat Methods 2016; 13(6): 521-7.
[http://dx.doi.org/10.1038/nmeth.3853] [PMID: 27135972]
[82]
Ashe HL, Mannervik M, Levine M. Dpp signaling thresholds in the dorsal ectoderm of the Drosophila embryo. Development 2000; 127(15): 3305-12.
[http://dx.doi.org/10.1242/dev.127.15.3305] [PMID: 10887086]
[83]
Kim JH, Lee MC, Seong SC, Park KH, Lee S. Enhanced proliferation and chondrogenic differentiation of human synovium-derived stem cells expanded with basic fibroblast growth factor. Tissue Eng Part A 2011; 17(7-8): 991-1002.
[http://dx.doi.org/10.1089/ten.tea.2010.0277] [PMID: 21091327]
[84]
Nakashima M. The effects of growth factors on DNA synthesis, proteoglycan synthesis and alkaline phosphatase activity in bovine dental pulp cells. Arch Oral Biol 1992; 37(3): 231-6.
[http://dx.doi.org/10.1016/0003-9969(92)90093-N] [PMID: 1375023]
[85]
Solchaga LA, Penick K, Porter JD, Goldberg VM, Caplan AI, Welter JF. FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol 2005; 203(2): 398-409.
[http://dx.doi.org/10.1002/jcp.20238] [PMID: 15521064]
[86]
Xian CJ, Foster BK. Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy. Curr Stem Cell Res Ther 2006; 1(2): 213-29.
[http://dx.doi.org/10.2174/157488806776956904] [PMID: 18220868]
[87]
Lee TH, Kim WT, Ryu CJ, Jang YJ. Optimization of treatment with recombinant FGF-2 for proliferation and differentiation of human dental stem cells, mesenchymal stem cells, and osteoblasts. Biochem Cell Biol 2015; 93(4): 298-305.
[http://dx.doi.org/10.1139/bcb-2014-0140] [PMID: 25789782]
[88]
Takayama S, Yoshida J, Hirano H, Okada H, Murakami S. Effects of basic fibroblast growth factor on human gingival epithelial cells. J Periodontol 2002; 73(12): 1467-73.
[http://dx.doi.org/10.1902/jop.2002.73.12.1467] [PMID: 12546097]
[89]
Chan CP, Lan WH, Chang MC, et al. Effects of TGF-beta s on the growth, collagen synthesis and collagen lattice contraction of human dental pulp fibroblasts in vitro. Arch Oral Biol 2005; 50(5): 469-79.
[http://dx.doi.org/10.1016/j.archoralbio.2004.10.005] [PMID: 15777529]
[90]
Massagué J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 2000; 103(2): 295-309.
[http://dx.doi.org/10.1016/S0092-8674(00)00121-5] [PMID: 11057902]
[91]
Miyazaki Y, Tsukazaki T, Hirota Y, et al. Dexamethasone inhibition of TGF beta-induced cell growth and type II collagen mRNA expression through ERK-integrated AP-1 activity in cultured rat articular chondrocytes. Osteoarthritis Cartilage 2000; 8(5): 378-85.
[http://dx.doi.org/10.1053/joca.1999.0313] [PMID: 10966845]
[92]
Ching HS, Luddin N, Rahman IA, Ponnuraj KT. Expression of odontogenic and osteogenic markers in DPSCs and SHED: A review. Curr Stem Cell Res Ther 2017; 12(1): 71-9.
[http://dx.doi.org/10.2174/1574888X11666160815095733] [PMID: 27527527]
[93]
Mekala NK, Baadhe RR, Parcha SR. Study on osteoblast like behavior of umbilical cord blood cells on various combinations of PLGA scaffolds prepared by salt fusion. Curr Stem Cell Res Ther 2013; 8(3): 253-9.
[http://dx.doi.org/10.2174/1574888X11308030010] [PMID: 23317433]
[94]
Kim HP, Ji YH, Rhee SC, Dhong ES, Park SH, Yoon ES. Enhancement of bone regeneration using osteogenic-induced adipose-derived stem cells combined with demineralized bone matrix in a rat critically-sized calvarial defect model. Curr Stem Cell Res Ther 2012; 7(3): 165-72.
[http://dx.doi.org/10.2174/157488812799859847] [PMID: 22329583]
[95]
Shui C, Scutt A. Mild heat shock induces proliferation, alkaline phosphatase activity, and mineralization in human bone marrow stromal cells and Mg-63 cells in vitro. J Bone Miner Res 2001; 16(4): 731-41.
[http://dx.doi.org/10.1359/jbmr.2001.16.4.731] [PMID: 11316001]
[96]
Sloan AJ, Rutherford RB, Smith AJ. Stimulation of the rat dentine-pulp complex by bone morphogenetic protein-7 in vitro. Arch Oral Biol 2000; 45(2): 173-7.
[http://dx.doi.org/10.1016/S0003-9969(99)00131-4] [PMID: 10716622]
[97]
Lallier TE, Spencer A, Fowler MM. Transcript profiling of periodontal fibroblasts and osteoblasts. J Periodontol 2005; 76(7): 1044-55.
[http://dx.doi.org/10.1902/jop.2005.76.7.1044] [PMID: 16018745]
[98]
Javid B, Panahandeh N, Torabzadeh H, Nazarian H, Parhizkar A, Asgary S. Bioactivity of endodontic biomaterials on dental pulp stem cells through dentin. Restor Dent Endod 2019; 45(1): e3.
[http://dx.doi.org/10.5395/rde.2020.45.e3] [PMID: 32110533]
[99]
Martín A, Unda FJ, Bègue-Kirn C, Ruch JV, Aréchaga J. Effects of aFGF, bFGF, TGFbeta1 and IGF-I on odontoblast differentiation in vitro. Eur J Oral Sci 1998; 106(S1) (Suppl. 1): 117-21.
[http://dx.doi.org/10.1111/j.1600-0722.1998.tb02162.x] [PMID: 9541212]
[100]
Li CY, Prochazka J, Goodwin AF, Klein OD. Fibroblast growth factor signaling in mammalian tooth development. Odontology 2014; 102(1): 1-13.
[http://dx.doi.org/10.1007/s10266-013-0142-1] [PMID: 24343791]
[101]
Guo W, Lin X, Zhang R, et al. Spatiotemporal expression patterns of critical genes involved in FGF signaling during morphogenesis and odontogenesis of deciduous molars in miniature pigs. Int J Med Sci 2022; 19(1): 132-41.
[http://dx.doi.org/10.7150/ijms.61798] [PMID: 34975307]
[102]
Quarto N, Longaker MT. FGF-2 inhibits osteogenesis in mouse adipose tissue-derived stromal cells and sustains their proliferative and osteogenic potential state. Tissue Eng 2006; 12(6): 1405-18.
[http://dx.doi.org/10.1089/ten.2006.12.1405] [PMID: 16846339]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy