Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Nutraceuticals, a Bridge Between Past and Future: Focus on Mushrooms Biological Activities and Myco-Chemistry

Author(s): Gitishree Das, Roberta Budriesi, Han-Seung Shin, Francesco Urso, Sankhadip Bose, Sabyasachi Banerjee, Maria del Pilar Rodriguez-Torres, Laura Beatrice Mattioli, Jayanta Kumar Patra* and Matteo Micucci*

Volume 23, Issue 3, 2023

Published on: 05 September, 2022

Page: [320 - 335] Pages: 16

DOI: 10.2174/1389557522666220622104845

Price: $65

Abstract

Background: Mushrooms are consumed worldwide due to their high nutritional and nutraceutical values. In addition to the presence of various vitamins, low-fat, and proteins, they are also an important source of trace elements, dietary fibers, and bioactive compounds. Their potential therapeutic properties are due to their multiple biological effects, such as antimicrobial, antiviral, antioxidant, anticancer, immune-modulating, cardioprotective, and antidiabetic properties. The global market of mushroom farming is anticipated to witness remarkable progress for its potential application in health products, profitable production and a rising demand for the healthy foods across the globe. The Asia Pacific marketplace seems to represent the major market of mushrooms, due to the higher per capita consumption of culinary and medical purposes.

Objective: Mushrooms have generally low calories, low levels of cholesterol, fats, gluten and sodium. Several biological effects of mushroom are due to the presence of phenolic components, polysaccharides, terpenoids, terphenyl-related compounds, and many other lower molecular weight molecules. This review aims at describing the chemical characterization of several mushrooms species and their biological effects.

Conclusion: The current review describes different secondary metabolites found in several mushrooms and mushrooms extracts, and the molecular mechanisms underlying the biological activities. Also the antimicrobial activities of mushrooms, mushrooms extracts and isolated compounds from mushrooms were described.

The description of these activities, related to the presence of specific classes of secondary metabolites and isolated compounds, may lead to the identification of mycomplexes and mushrooms compounds that may be further studied for their potential application in nutraceutical products.

Keywords: Antimicrobial, antiviral, anticancer, medicinal mushrooms, respiratory diseases, pharmacological potential.

Graphical Abstract
[1]
Gupta, S.; Summuna, B.; Gupta, M.; Annepu, S.K. Edible mushrooms: Cultivation, bioactive molecules, and health benefits. In: Merillon, J.M.; Ramawat, K.; Eds. Bioactive Molecules in Food; Springer: Cham, 2018, pp. 1-33.
[http://dx.doi.org/10.1007/978-3-319-54528-8_86-1]
[2]
Chamberlain, J.; Bush, R.; Hammett, A. Non-timber forest products. For. Prod. J., 1998, 48, 10-19.
[3]
Vinceti, B.; Termote, C.; Ickowitz, A.; Powell, B.; Kehlenbeck, K.; Hunter, D. The contribution of forests and trees to sustainable diets. Sustainability, 2013, 5, 4797-4824.
[http://dx.doi.org/10.3390/su5114797]
[4]
Falconer, J.; Koppell, C.R. The Major Significance of ‘Minor’ Forest Products. The Local Use and Value of Forests in the West African Humid Forest Zone; 1020-3133; FAO: Roma, Italia, 1990.
[5]
Gilbert, F.A.; Robinson, R.F. Food from fungi. Econ. Bot., 1957, 11, 126-145.
[http://dx.doi.org/10.1007/BF02985303]
[6]
Raghavendra, V.B.; Venkitasamy, C.; Pan, Z.; Nayak, C. Functional foods from mushroom. In: Gupta, V.K.; Treichel, H.; Shapaval, V.; de Oliveira, L.A.; Tuohy, M.G.; Eds. Microbial Functional Foods and Nutraceuticals; John Wiley & Sons, Ltd.: Chichester, UK, 2017, pp. 65-91.
[http://dx.doi.org/10.1002/9781119048961.ch4]
[7]
Das, A.K.; Nanda, P.K.; Dandapat, P.; Bandyopadhyay, S.; Gullón, P.; Sivaraman, G.K.; McClements, D.J.; Gullón, B.; Lorenzo, J.M. Edible mushrooms as functional ingredients for development of healthier and more sustainable muscle foods: A flexitarian approach. Molecules, 2021, 26(9), 2463.
[http://dx.doi.org/10.3390/molecules26092463] [PMID: 33922630]
[8]
Golian, M. Hegedűsová, A.; Mezeyová, I.; Chlebová, Z.; Hegedűs, O.; Urminská, D.; Vollmannová, A.; Chlebo, P. Accumulation of selected metal elements in fruiting bodies of oyster mushroom. Foods, 2021, 11(1), 76.
[http://dx.doi.org/10.3390/foods11010076] [PMID: 35010201]
[9]
Bernart, M.W. Mushrooms. In: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact; CRC Press: Boca Raton, 2004, 68, p. 629.
[10]
Arora, D. Notes on economic mushrooms. Econ. Bot., 2008, 62, 540-544.
[http://dx.doi.org/10.1007/s12231-008-9049-0]
[11]
Yang, X.; He, J.; Li, C.; Ma, J.; Yang, Y.; Xu, J. Matsutake trade in Yunnan Province, China: An overview. Econ. Bot., 2008, 62, 269-277.
[http://dx.doi.org/10.1007/s12231-008-9019-6]
[12]
Fanzo, J.; Cogill, B.; Mattei, F. Metrics of Sustainable Diets and Food Systems; Biodiversity International: Rome, Italy, 2012.
[13]
Dasgupta, A.; Acharya, K. Mushrooms: An emerging resource for therapeutic terpenoids. 3 Biotech, 2019, 9, 369.
[14]
Asgar, M.A.; Fazilah, A.; Huda, N.; Bhat, R.; Karim, A.A. Nonmeat protein alternatives as meat extenders and meat analogs. Compr. Rev. Food Sci. Food Saf., 2010, 9(5), 513-529.
[http://dx.doi.org/10.1111/j.1541-4337.2010.00124.x] [PMID: 33467834]
[15]
Chadha, K.; Sharma, S. Mushroom research in India-History, Infrastructure and Achievements. In: Chadha, K.L., Ed.; Advances in Horticulture; Malhotra Publishing House: New Delhi, India, 1995, pp. 1-8.
[16]
Kakon, A.; Choudhury, M.B.K.; Saha, S. Mushroom is an ideal food supplement. J. Dhaka Natl. Med. Coll. Hosp., 2012, 18, 58-62.
[http://dx.doi.org/10.3329/jdnmch.v18i1.12243]
[17]
Oyetayo, F.L.; Akindahunsi, A.A.; Oyetayo, V.O. Chemical profile and amino acids composition of edible mushrooms Pleurotus sajor-caju. Nutr. Health, 2007, 18(4), 383-389.
[http://dx.doi.org/10.1177/026010600701800407] [PMID: 18087869]
[18]
Kratika, S. Mushroom: Cultivation and processing. Int. J. Food Process. Technol., 2018, 5(2), 9-12.
[http://dx.doi.org/10.15379/2408-9826.2018.05.02.02]
[19]
Yadav, D.; Negi, P.S. Bioactive components of mushrooms: Processing effects and health benefits. Food Res. Int., 2021, 148, 110599.
[http://dx.doi.org/10.1016/j.foodres.2021.110599] [PMID: 34507744]
[20]
Lu, X.; Brennan, M.A.; Narciso, J.; Guan, W.; Zhang, J.; Yuan, L. Correlations between the phenolic and fibre composition of mushrooms and the glycaemic and textural characteristics of mushroom enriched extruded products. Lebensm. Wiss. Technol., 2020, 118, 108730.
[http://dx.doi.org/10.1016/j.lwt.2019.108730]
[21]
Roncero-Ramos, I.; Delgado-Andrade, C. The beneficial role of edible mushrooms in human health. Curr. Opin. Food Sci., 2017, 14, 122-128.
[http://dx.doi.org/10.1016/j.cofs.2017.04.002]
[22]
Nowak, R.; Nowacka-Jechalke, N.; Pietrzak, W.; Gawlik-Dziki, U. A new look at edible and medicinal mushrooms as a source of ergosterol and ergosterol peroxide - UHPLC-MS/MS analysis. Food Chem., 2022, 369, 130927.
[http://dx.doi.org/10.1016/j.foodchem.2021.130927] [PMID: 34461517]
[23]
Biesalski, H. K. Since January 2020 Elsevier has created a COVID- 19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19. The COVID-19 resource centre is hosted on Elsevier Connect, the company ’ s public news and information, 2020, (January). Available from: https://www.paho.org/es/file/94392/download?token=u8cjpJNI
[24]
Laird, E.; Kenny, R.A. Implications for COVID-19. Results from the Irish Longitudinal Study on Ageing (TILDA). 2020, Available from: https://tilda.tcd.ie/publications/reports/Covid19VitaminD/index.php
[http://dx.doi.org/10.38018/TildaRe.2020-05]
[25]
Laird, E.; Rhodes, J.; Kenny, R.A. Vitamin d and inflammation-potential implications for severity of COVID-19. Ir. Med. J., 2020, 113(5), 81.
[PMID: 32603576]
[26]
Xu, T.; Beelman, R. The bioactive com-pounds in medicinal mushrooms have potential protective effects against neuro-degenerative diseases. Adv. Food Technol. Nutr. Sci. Open J., 2015, 1, 62-66.
[http://dx.doi.org/10.17140/AFTNSOJ-1-110]
[27]
Yip, K.; Fung, K.; Chang, S.; Tam, S. Purification and mechanism of the hypotensive action of an extract from edible mushroom Pleurotus sajor-caju. Neurosci. Lett. Suppl., 1987, 28, S59.
[28]
Wang, H.X.; Liu, W.K.; Ng, T.B.; Ooi, V.E.; Chang, S.T. The immunomodulatory and antitumor activities of lectins from the mushroom Tricholoma mongolicum. Immunopharmacology, 1996, 31(2-3), 205-211.
[http://dx.doi.org/10.1016/0162-3109(95)00049-6] [PMID: 8861746]
[29]
Chang, S. Mushroom biology: The impact on mushroom production and mushroom products. In: Mushroom biology and mushroom products; The Chinese University Press: Hongkong, 1993, Feb; pp. 3-20.
[30]
Lindequist, U.; Teuscher, E.; Narbe, G. New active ingredients from basidiomycetes. Z. Phytother., 1990, 11, 139-149.
[31]
Eo, S-K.; Kim, Y-S.; Lee, C-K.; Han, S-S. Antiviral activities of various water and methanol soluble substances isolated from Ganoderma lucidum. J. Ethnopharmacol., 1999, 68(1-3), 129-136.
[http://dx.doi.org/10.1016/S0378-8741(99)00067-7] [PMID: 10624872]
[32]
Takazawa, H.; Tajima, F.; Miyashita, C. An antifungal compound from “Shiitake” (Lentinus edodes). Yakugaku Zasshi, 1982, 102(5), 489-491.
[http://dx.doi.org/10.1248/yakushi1947.102.5_489] [PMID: 6890104]
[33]
Mothana, R.A.; Jansen, R.; Jülich, W-D.; Lindequist, U. Ganomycins A and B, new antimicrobial farnesyl hydroquinones from the basidiomycete Ganoderma pfeifferi. J. Nat. Prod., 2000, 63(3), 416-418.
[http://dx.doi.org/10.1021/np990381y] [PMID: 10757736]
[34]
Bender, S.; Dumitrache-Anghel, C.N.; Backhaus, J.; Christie, G.; Cross, R.F.; Lonergan, G.T.; Baker, W.L. A case for caution in assessing the antibiotic activity of extracts of culinary-medicinal Shiitake mushroom [Lentinus edodes (Berk.) Singer] (Agaricomycetideae). Int. J. Med. Mushrooms, 2003, 5, 31-36.
[http://dx.doi.org/10.1615/InterJMedicMush.v5.i1.40]
[35]
Badalyan, S.M. Antiprotozoal activity and mitogenic effect of mycelium of culinary-medicinal shiitake mushroom Lentinus edodes (Berk.) Singer (Agaricomycetideae). Int. J. Med. Mushrooms, 2004, 6, 131-138.
[http://dx.doi.org/10.1615/IntJMedMushr.v6.i2.40]
[36]
Kolundžić, M.; Grozdanić, N.Đ.; Dodevska, M.; Milenković, M.; Sisto, F.; Miani, A.; Farronato, G.; Kundaković, T. Antibacterial and cytotoxic activities of wild mushroom Fomes fomentarius (L.) Fr. Polyporaceae. Ind. Crops Prod., 2016, 79, 110-115.
[http://dx.doi.org/10.1016/j.indcrop.2015.10.030]
[37]
Wang, G.; Zhang, X.; Maier, S.E.; Zhang, L.; Maier, R.J. In vitro and in vivo inhibition of helicobacter pylori by ethanolic extracts of lion’s mane medicinal mushroom, Hericium erinaceus (Agaricomycetes). Int. J. Med. Mushrooms, 2019, 21(1), 1-11.
[http://dx.doi.org/10.1615/IntJMedMushrooms.2018029487] [PMID: 30806251]
[38]
Liu, J-H.; Li, L.; Shang, X-D.; Zhang, J-L.; Tan, Q. Anti-Helicobacter pylori activity of bioactive components isolated from Hericium erinaceus. J. Ethnopharmacol., 2016, 183, 54-58.
[http://dx.doi.org/10.1016/j.jep.2015.09.004] [PMID: 26364939]
[39]
Shameem, N.; Kamili, A.N.; Ahmad, M.; Masoodi, F.A.; Parray, J.A. Antimicrobial activity of crude fractions and morel compounds from wild edible mushrooms of North Western Himalaya. Microb. Pathog., 2017, 105, 356-360.
[http://dx.doi.org/10.1016/j.micpath.2017.03.005] [PMID: 28286150]
[40]
Duvnjak, D. Pantić, M.; Pavlović, V.; Nedović, V.; Lević, S.; Matijašević, D.; Sknepnek, A.; Nikšić, M. Advances in batch culture fermented Coriolus versicolor medicinal mushroom for the production of antibacterial compounds. Innov. Food Sci. Emerg. Technol., 2016, 34, 1-8.
[http://dx.doi.org/10.1016/j.ifset.2015.12.028]
[41]
Gebreyohannes, G.; Nyerere, A.; Bii, C.; Sbhatu, D.B. Investigation of antioxidant and antimicrobial activities of different extracts of Auricularia and Termitomyces species of mushrooms. ScientificWorldJournal, 2019, 2019, 7357048.
[http://dx.doi.org/10.1155/2019/7357048] [PMID: 31427902]
[42]
Gebreyohannes, G.; Nyerere, A.; Bii, C.; Berhe Sbhatu, D. Determination of antimicrobial activity of extracts of indigenous wild mushrooms against pathogenic organisms. Evid. Based Complement. Alternat. Med., 2019, 2019, 6212673.
[http://dx.doi.org/10.1155/2019/6212673] [PMID: 30906415]
[43]
Liktor-Busa, E.; Kovács, B.; Urbán, E.; Hohmann, J.; Ványolós, A. Investigation of Hungarian mushrooms for antibacterial activity and synergistic effects with standard antibiotics against resistant bacterial strains. Lett. Appl. Microbiol., 2016, 62(6), 437-443.
[http://dx.doi.org/10.1111/lam.12576] [PMID: 27100065]
[44]
Béni, Z.; Dékány, M.; Kovács, B.; Csupor-Löffler, B.; Zomborszki, Z.P.; Kerekes, E.; Szekeres, A.; Urbán, E.; Hohmann, J.; Ványolós, A. Bioactivity-guided isolation of antimicrobial and antioxidant metabolites from the mushroom Tapinella atrotomentosa. Molecules, 2018, 23(5), 1082.
[http://dx.doi.org/10.3390/molecules23051082] [PMID: 29734648]
[45]
Schillaci, D.; Arizza, V.; Gargano, M.L.; Venturella, G. Antibacterial activity of Mediterranean Oyster mushrooms, species of genus Pleurotus (higher Basidiomycetes). Int. J. Med. Mushrooms, 2013, 15(6), 591-594.
[http://dx.doi.org/10.1615/IntJMedMushr.v15.i6.70] [PMID: 24266382]
[46]
Alves, M.J.; Ferreira, I.C.; Lourenço, I.; Costa, E.; Martins, A.; Pintado, M. Wild mushroom extracts as inhibitors of bacterial biofilm formation. Pathogens, 2014, 3(3), 667-679.
[http://dx.doi.org/10.3390/pathogens3030667] [PMID: 25438017]
[47]
Duan, Y-C.; Feng, J.; Bai, N.; Li, G-H.; Zhang, K-Q.; Zhao, P-J. Four novel antibacterial sesquiterpene-α-amino acid quaternary ammonium hybrids from the mycelium of mushroom Stereum hirsutum. Fitoterapia, 2018, 128, 213-217.
[http://dx.doi.org/10.1016/j.fitote.2018.05.026] [PMID: 29792906]
[48]
Ma, K.; Bao, L.; Han, J.; Jin, T.; Yang, X.; Zhao, F.; Li, S.; Song, F.; Liu, M.; Liu, H. New benzoate derivatives and hirsutane type sesquiterpenoids with antimicrobial activity and cytotoxicity from the solid-state fermented rice by the medicinal mushroom Stereum hirsutum. Food Chem., 2014, 143, 239-245.
[http://dx.doi.org/10.1016/j.foodchem.2013.07.124] [PMID: 24054236]
[49]
Kleinwächter, P.; Dahse, H-M.; Luhmann, U.; Schlegel, B.; Dornberger, K. Epicorazine C, an antimicrobial metabolite from Stereum hirsutum HKI 0195. J. Antibiot. (Tokyo), 2001, 54(6), 521-525.
[http://dx.doi.org/10.7164/antibiotics.54.521] [PMID: 11513044]
[50]
Cateni, F.; Doljak, B.; Zacchigna, M.; Anderluh, M.; Piltaver, A.; Scialino, G.; Banfi, E. New biologically active epidioxysterols from Stereum hirsutum. Bioorg. Med. Chem. Lett., 2007, 17(22), 6330-6334.
[http://dx.doi.org/10.1016/j.bmcl.2007.08.072] [PMID: 17869507]
[51]
Tareq, F.S.; Hasan, C.M.; Rahman, M.M.; Hanafi, M.M.M.; Colombi Ciacchi, L.; Michaelis, M.; Harder, T.; Tebben, J.; Islam, M.T.; Spiteller, P. Anti-staphylococcal calopins from fruiting bodies of Caloboletus radicans. J. Nat. Prod., 2018, 81(2), 400-404.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00525] [PMID: 29381357]
[52]
Tian, S.Z.; Pu, X.; Luo, G.; Zhao, L.X.; Xu, L.H.; Li, W.J.; Luo, Y. Isolation and characterization of new p-Terphenyls with antifungal, antibacterial, and antioxidant activities from halophilic actinomycete Nocardiopsis gilva YIM 90087. J. Agric. Food Chem., 2013, 61(12), 3006-3012.
[http://dx.doi.org/10.1021/jf400718w] [PMID: 23441911]
[53]
Zhou, G.; Chen, X.; Zhang, X.; Che, Q.; Zhang, G.; Zhu, T.; Gu, Q.; Li, D. Prenylated p-terphenyls from a mangrove endophytic fungus, Aspergillus candidus LDJ-5. J. Nat. Prod., 2020, 83(1), 8-13.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00004] [PMID: 31904949]
[54]
Zhang, X.Q.; Mou, X.F.; Mao, N.; Hao, J.J.; Liu, M.; Zheng, J.Y.; Wang, C.Y.; Gu, Y.C.; Shao, C.L. Design, semisynthesis, α-glucosidase inhibitory, cytotoxic, and antibacterial activities of p-terphenyl derivatives. Eur. J. Med. Chem., 2018, 146, 232-244.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.057] [PMID: 29407953]
[55]
Kanokmedhakul, S.; Kanokmedhakul, K.; Prajuabsuk, T.; Soytong, K.; Kongsaeree, P.; Suksamrarn, A. A bioactive triterpenoid and vulpinic acid derivatives from the mushroom Scleroderma citrinum. Planta Med., 2003, 69(6), 568-571.
[http://dx.doi.org/10.1055/s-2003-40639] [PMID: 12865983]
[56]
Lauterwein, M.; Oethinger, M.; Belsner, K.; Peters, T.; Marre, R. In vitro activities of the lichen secondary metabolites vulpinic acid, (+)-usnic acid, and (-)-usnic acid against aerobic and anaerobic microorganisms. Antimicrob. Agents Chemother., 1995, 39(11), 2541-2543.
[http://dx.doi.org/10.1128/AAC.39.11.2541] [PMID: 8585741]
[57]
Shrestha, G.; Thompson, A.; Robison, R.; St Clair, L.L. Letharia vulpina, a vulpinic acid containing lichen, targets cell membrane and cell division processes in methicillin-resistant Staphylococcus aureus. Pharm. Biol., 2016, 54(3), 413-418.
[http://dx.doi.org/10.3109/13880209.2015.1038754] [PMID: 25919857]
[58]
Nowacka, N.; Nowak, R.; Drozd, M.; Olech, M.; Los, R.; Malm, A. Antibacterial, antiradical potential and phenolic compounds of thirty-one polish mushrooms. PLoS One, 2015, 10(10), e0140355.
[http://dx.doi.org/10.1371/journal.pone.0140355] [PMID: 26468946]
[59]
Heleno, S.A. Ferreira, I.C.; Esteves, A.P.; Ćirić, A.; Glamočlija, J.; Martins, A.; Soković, M.; Queiroz, M.J. Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters. Food Chem. Toxicol., 2013, 58, 95-100.
[http://dx.doi.org/10.1016/j.fct.2013.04.025] [PMID: 23607932]
[60]
Kong, F.D.; Ma, Q.Y.; Huang, S.Z.; Wang, P.; Wang, J.F.; Zhou, L.M.; Yuan, J.Z.; Dai, H.F.; Zhao, Y.X. Chrodrimanins K-N and related meroterpenoids from the fungus Penicillium sp. SCS-KFD09 isolated from a marine worm, Sipunculus nudus. J. Nat. Prod., 2017, 80(4), 1039-1047.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01061] [PMID: 28212032]
[61]
Huang, G.L.; Zhou, X.M.; Bai, M.; Liu, Y.X.; Zhao, Y.L.; Luo, Y.P.; Niu, Y.Y.; Zheng, C.J.; Chen, G.Y. Dihydroisocoumarins from the mangrove-derived fungus Penicillium citrinum. Mar. Drugs, 2016, 14(10), 177.
[http://dx.doi.org/10.3390/md14100177] [PMID: 27735855]
[62]
Fukuda, T.; Kurihara, Y.; Kanamoto, A.; Tomoda, H. Terretonin G, a new sesterterpenoid antibiotic from marine-derived Aspergillus sp. OPMF00272. J. Antibiot. (Tokyo), 2014, 67(8), 593-595.
[http://dx.doi.org/10.1038/ja.2014.46] [PMID: 24802208]
[63]
Beattie, K.D.; Rouf, R.; Gander, L.; May, T.W.; Ratkowsky, D.; Donner, C.D.; Gill, M.; Grice, I.D.; Tiralongo, E. Antibacterial metabolites from Australian macrofungi from the genus Cortinarius. Phytochemistry, 2010, 71(8-9), 948-955.
[http://dx.doi.org/10.1016/j.phytochem.2010.03.016] [PMID: 20392467]
[64]
Schwan, W.R.; Dunek, C.; Gebhardt, M.; Engelbrecht, K.; Klett, T.; Monte, A.; Toce, J.; Rott, M.; Volk, T.J. LiPuma, J.J.; Liu, X.T.; McKelvey, R. Screening a mushroom extract library for activity against Acinetobacter baumannii and Burkholderia cepacia and the identification of a compound with anti-Burkholderia activity. Ann. Clin. Microbiol. Antimicrob., 2010, 9, 4.
[http://dx.doi.org/10.1186/1476-0711-9-4] [PMID: 20092635]
[65]
Richter, C.; Helaly, S.E.; Thongbai, B.; Hyde, K.D.; Stadler, M. Pyristriatins A and B: Pyridino-cyathane antibiotics from the Basidiomycete Cyathus cf. striatus. J. Nat. Prod., 2016, 79(6), 1684-1688.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00194] [PMID: 27231731]
[66]
Brandt, C.R.; Piraino, F. Mushroom antivirals. Recent Res. Dev. Antimicrob. Agents Chemoter, 2000, 4, 11-26.
[67]
el-Mekkawy, S.; Meselhy, M.R.; Nakamura, N.; Tezuka, Y.; Hattori, M.; Kakiuchi, N.; Shimotohno, K.; Kawahata, T.; Otake, T. Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochemistry, 1998, 49(6), 1651-1657.
[http://dx.doi.org/10.1016/S0031-9422(98)00254-4] [PMID: 9862140]
[68]
Grienke, U.; Zwirchmayr, J.; Peintner, U.; Urban, E.; Zehl, M.; Schmidtke, M.; Rollinger, J.M. Lanostane triterpenes from Gloeophyllum odoratum and their anti-influenza effects. Planta Med., 2019, 85(3), 195-202.
[http://dx.doi.org/10.1055/a-0690-9236] [PMID: 30130818]
[69]
Zhao, C.; Gao, L.; Wang, C.; Liu, B.; Jin, Y.; Xing, Z. Structural characterization and antiviral activity of a novel heteropolysaccharide isolated from Grifola frondosa against enterovirus 71. Carbohydr. Polym., 2016, 144, 382-389.
[http://dx.doi.org/10.1016/j.carbpol.2015.12.005] [PMID: 27083830]
[70]
Ren, G.; Xu, L.; Lu, T.; Yin, J. Structural characterization and antiviral activity of lentinan from Lentinus edodes mycelia against infectious hematopoietic necrosis virus. Int. J. Biol. Macromol., 2018, 115, 1202-1210.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.132] [PMID: 29704603]
[71]
Eguchi, N.; Fujino, K.; Thanasut, K.; Taharaguchi, M.; Motoi, M.; Motoi, A.; Oonaka, K.; Taharaguchi, S. In vitro anti-influenza virus activity of Agaricus brasiliensis KA21. Biocontrol Sci., 2017, 22(3), 171-174.
[http://dx.doi.org/10.4265/bio.22.171] [PMID: 28954960]
[72]
Chen, M.Z.; Xie, H.G.; Yang, L.W.; Liao, Z.H.; Yu, J. In vitro anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis. Virol. Sin., 2010, 25(5), 341-351.
[http://dx.doi.org/10.1007/s12250-010-3137-x] [PMID: 20960180]
[73]
Muramatsu, D. Iwai, A.; Aoki, S.; Uchiyama, H.; Kawata, K.; Nakayama, Y.; Nikawa, Y.; Kusano, K.; Okabe, M.; Miyazaki, T. β-Glucan derived from Aureobasidium pullulans is effective for the prevention of influenza in mice. PLoS One, 2012, 7(7), e41399.
[http://dx.doi.org/10.1371/journal.pone.0041399] [PMID: 22844473]
[74]
Gao, L.; Sun, Y.; Si, J.; Liu, J.; Sun, G.; Sun, X.; Cao, L. Cryptoporus volvatus extract inhibits influenza virus replication in vitro and in vivo. PLoS One, 2014, 9(12), e113604.
[http://dx.doi.org/10.1371/journal.pone.0113604] [PMID: 25437846]
[75]
Gao, L.; Han, J.; Si, J.; Wang, J.; Wang, H.; Sun, Y.; Bi, Y.; Liu, J.; Cao, L. Cryptoporic acid E from Cryptoporus volvatus inhibits influenza virus replication in vitro. Antiviral Res., 2017, 143, 106-112.
[http://dx.doi.org/10.1016/j.antiviral.2017.02.010] [PMID: 28232246]
[76]
Hwang, B.S.; Lee, I-K.; Choi, H.J.; Yun, B-S. Anti-influenza activities of polyphenols from the medicinal mushroom Phellinus baumii. Bioorg. Med. Chem. Lett., 2015, 25(16), 3256-3260.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.081] [PMID: 26077494]
[77]
Obi, N.; Hayashi, K.; Miyahara, T.; Shimada, Y.; Terasawa, K.; Watanabe, M.; Takeyama, M.; Obi, R.; Ochiai, H. Inhibitory effect of TNF-β produced by macrophages stimulated with Grifola frondosa extract (ME) on the growth of influenza A/Aichi/2/68 virus in MDCK cells. Am. J. Chin. Med., 2008, 36(6), 1171-1183.
[http://dx.doi.org/10.1142/S0192415X08006508] [PMID: 19051344]
[78]
Nishihira, J.; Sato, M.; Tanaka, A.; Okamatsu, M.; Azuma, T.; Tsutsumi, N.; Yoneyama, S. Maitake mushrooms (Grifola frondosa) enhances antibody production in response to influenza vaccination in healthy adult volunteers concurrent with alleviation of common cold symptoms. J. Funct. Food Health Dis., 2017, 7, 462-482.
[http://dx.doi.org/10.31989/ffhd.v7i7.363]
[79]
Wang, M.; Zhang, L.; Yang, R.; Fei, C.; Wang, X.; Zhang, K.; Wang, C.; Zheng, W.; Xue, F. Improvement of immune responses to influenza vaccine (H5N1) by sulfated yeast beta-glucan. Int. J. Biol. Macromol. 2016, 93(Pt A), 203-207.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.057] [PMID: 27339320]
[80]
Majtan, J. Pleuran (β-glucan from Pleurotus ostreatus): An effective nutritional supplement against upper respiratory tract infections? Med. Sport Sci., 2012, 59, 57-61.
[81]
Kuroki, T.; Lee, S.; Hirohama, M.; Taku, T.; Kumakura, M.; Haruyama, T.; Nagata, K.; Kawaguchi, A. Inhibition of influenza virus infection by Lentinus edodes mycelia extract through its direct action and immunopotentiating activity. Front. Microbiol., 2018, 9, 1164.
[http://dx.doi.org/10.3389/fmicb.2018.01164] [PMID: 29910790]
[82]
Sacramento, C.Q.; Marttorelli, A.; Fintelman-Rodrigues, N.; de Freitas, C.S.; de Melo, G.R.; Rocha, M.E.; Kaiser, C.R.; Rodrigues, K.F.; da Costa, G.L.; Alves, C.M.; Santos-Filho, O.; Barbosa, J.P.; Souza, T.M. Aureonitol, a fungi-derived tetrahydrofuran, inhibits influenza replication by targeting its surface glycoprotein hemagglutinin. PLoS One, 2015, 10(10), e0139236.
[http://dx.doi.org/10.1371/journal.pone.0139236] [PMID: 26462111]
[83]
Gao, H.; Guo, W.; Wang, Q.; Zhang, L.; Zhu, M.; Zhu, T.; Gu, Q.; Wang, W.; Li, D. Aspulvinones from a mangrove rhizosphere soil-derived fungus Aspergillus terreus Gwq-48 with anti-influenza A viral (H1N1) activity. Bioorg. Med. Chem. Lett., 2013, 23(6), 1776-1778.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.051] [PMID: 23411074]
[84]
Wang, Z.; Hu, X.; Li, Y.; Mou, X.; Wang, C.; Chen, X.; Tan, Y.; Wu, C.; Liu, H.; Xu, H. Discovery and SAR research for antivirus activity of novel butenolide on influenza a virus H1N1 in vitro and in vivo. ACS Omega, 2019, 4(8), 13265-13269.
[http://dx.doi.org/10.1021/acsomega.9b01421] [PMID: 31460454]
[85]
Sandargo, B.; Michehl, M.; Praditya, D.; Steinmann, E.; Stadler, M.; Surup, F. Antiviral meroterpenoid rhodatin and sesquiterpenoids rhodocoranes A-E from the wrinkled peach mushroom, Rhodotus palmatus. Org. Lett., 2019, 21(9), 3286-3289.
[http://dx.doi.org/10.1021/acs.orglett.9b01017] [PMID: 31008606]
[86]
Zhou, H.; Li, L.; Wang, W.; Che, Q.; Li, D.; Gu, Q.; Zhu, T. Chrodrimanins I and J from the antarctic moss-derived fungus Penicillium funiculosum GWT2-24. J. Nat. Prod., 2015, 78(6), 1442-1445.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00103] [PMID: 26046820]
[87]
Wang, J.; Wei, X.; Qin, X.; Tian, X.; Liao, L.; Li, K.; Zhou, X.; Yang, X.; Wang, F.; Zhang, T.; Tu, Z.; Chen, B.; Liu, Y. Antiviral merosesquiterpenoids produced by the antarctic fungus Aspergillus ochraceopetaliformis SCSIO 05702. J. Nat. Prod., 2016, 79(1), 59-65.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00650] [PMID: 26697718]
[88]
Cao, X.; Shi, Y.; Wu, X.; Wang, K.; Huang, S.; Sun, H.; Dickschat, J.S.; Wu, B. Talaromyolides A-D and talaromytin: Polycyclic meroterpenoids from the fungus Talaromyces sp. CX11. Org. Lett., 2019, 21(16), 6539-6542.
[http://dx.doi.org/10.1021/acs.orglett.9b02466] [PMID: 31364857]
[89]
Zhang, S.P.; Huang, R.; Li, F.F.; Wei, H.X.; Fang, X.W.; Xie, X.S.; Lin, D.G.; Wu, S.H.; He, J. Antiviral anthraquinones and azaphilones produced by an endophytic fungus Nigrospora sp. from Aconitum carmichaeli. Fitoterapia, 2016, 112, 85-89.
[http://dx.doi.org/10.1016/j.fitote.2016.05.013] [PMID: 27233986]
[90]
Hawas, U.W.; El-Beih, A.A.; El-Halawany, A.M. Bioactive anthraquinones from endophytic fungus Aspergillus versicolor isolated from red sea algae. Arch. Pharm. Res., 2012, 35(10), 1749-1756.
[http://dx.doi.org/10.1007/s12272-012-1006-x] [PMID: 23139125]
[91]
Kang, H.H.; Zhang, H.B.; Zhong, M.J.; Ma, L.Y.; Liu, D.S.; Liu, W.Z.; Ren, H. Potential antiviral xanthones from a coastal saline soil fungus Aspergillus iizukae. Mar. Drugs, 2018, 16(11), 449.
[http://dx.doi.org/10.3390/md16110449] [PMID: 30445748]
[92]
Jin, Y.; Qin, S.; Gao, H.; Zhu, G.; Wang, W.; Zhu, W.; Wang, Y. An anti-HBV anthraquinone from aciduric fungus Penicillium sp. OUCMDZ-4736 under low pH stress. Extremophiles, 2018, 22(1), 39-45.
[http://dx.doi.org/10.1007/s00792-017-0975-6] [PMID: 29103183]
[93]
Liu, F.A.; Lin, X.; Zhou, X.; Chen, M.; Huang, X.; Yang, B.; Tao, H. Xanthones and quinolones derivatives produced by the deep-sea-derived fungus Penicillium sp. SCSIO Ind16F01. Molecules, 2017, 22(12), 1999.
[http://dx.doi.org/10.3390/molecules22121999] [PMID: 29215585]
[94]
Huang, T.T.; Lai, H.C.; Ko, Y.F.; Ojcius, D.M.; Lan, Y.W.; Martel, J.; Young, J.D.; Chong, K.Y. Hirsutella sinensis mycelium attenuates bleomycin-induced pulmonary inflammation and fibrosis in vivo. Sci. Rep., 2015, 5, 15282.
[http://dx.doi.org/10.1038/srep15282] [PMID: 26497260]
[95]
Subbarao, K.; Mahanty, S. Respiratory virus infections: Understanding COVID-19. Immunity, 2020, 52(6), 905-909.
[http://dx.doi.org/10.1016/j.immuni.2020.05.004] [PMID: 32497522]
[96]
Schmiedel, Y.; Zimmerli, S. Common invasive fungal diseases: An overview of invasive candidiasis, aspergillosis, cryptococcosis, and Pneumocystis pneumonia. Swiss Med. Wkly., 2016, 146, w14281.
[http://dx.doi.org/10.4414/smw.2016.14281] [PMID: 26901377]
[97]
Aksamit, T.R. Hot tub lung: Infection, inflammation, or both? Semin. Respir. Infect., 2003, 18(1), 33-39.
[http://dx.doi.org/10.1053/srin.2003.50003] [PMID: 12652452]
[98]
Spriet, I.; Desmet, S.; Willems, L.; Lagrou, K. No interference of the 1,3-β-D-glucan containing nutritional supplement ImunixX with the 1,3-β-D-glucan serum test. Mycoses, 2011, 54(5), e352-e353.
[http://dx.doi.org/10.1111/j.1439-0507.2010.01922.x] [PMID: 20637053]
[99]
Jesenak, M.; Majtan, J.; Rennerova, Z.; Kyselovic, J.; Banovcin, P.; Hrubisko, M. Immunomodulatory effect of pleuran (β-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Int. Immunopharmacol., 2013, 15(2), 395-399.
[http://dx.doi.org/10.1016/j.intimp.2012.11.020] [PMID: 23261366]
[100]
Lee, J.G.; Kim, Y.S.; Lee, Y.J.; Ahn, H.Y.; Kim, M.; Kim, M.; Cho, M.J.; Cho, Y.; Lee, J.H. Effect of immune-enhancing enteral nutrition enriched with or without beta-glucan on immunomodulation in critically ill patients. Nutrients, 2016, 8(6), 336.
[http://dx.doi.org/10.3390/nu8060336] [PMID: 27271657]
[101]
Oloke, J.; Adebayo, E. Effectiveness of immunotherapies from oyster mushroom (Pleurotus species) in the management of immunocompromised patients. Int. J. Immunol. Immunology, 2015, 3, 8-20.
[http://dx.doi.org/10.11648/j.iji.s.2015030201.12]
[102]
Jesenak, M.; Sanislo, L.; Kuniakova, R.; Rennerova, Z.; Buchanec, J.; Banovcin, P.I. P4H® in the prevention of recurrent respiratory infections in childhood. Cesk. Pediatr., 2010, 65, 639-647.
[103]
Grau, J.S.; Sirvent, L.P.; Ingles, M.M.; Urgell, M.R. Beta-glucans from Pleurotus ostreatus for prevention of recurrent respiratory tract infections. Acta Pediatr. Esp., 2015, 73, 186-193.
[104]
Andri Wihastuti, T.; Sargowo, D.; Heriansyah, T.; Eka Aziza, Y.; Puspitarini, D.; Nur Iwana, A.; Astrida Evitasari, L. The reduction of aorta histopathological images through inhibition of reactive oxygen species formation in hypercholesterolemia rattus norvegicus treated with polysaccharide peptide of Ganoderma lucidum. Iran. J. Basic Med. Sci., 2015, 18(5), 514-519.
[PMID: 26124939]
[105]
Wihastuti, T.A.; Amiruddin, R.; Cesa, F.Y.; Alkaf, A.I.; Setiawan, M.; Heriansyah, T. Decreasing angiogenesis vasa vasorum through Lp-PLA2 and H2O2 inhibition by PSP from Ganoderma lucidum in atherosclerosis: In vivo diabetes mellitus type 2. J. Basic Clin. Physiol. Pharmacol., 2020, 30(6), 20190349.
[http://dx.doi.org/10.1515/jbcpp-2019-0349] [PMID: 32031980]
[106]
Sargowo, D.; Ovianti, N.; Susilowati, E.; Ubaidillah, N.; Widya Nugraha, A. Vitriyaturrida; Siwi Proboretno, K.; Failasufi, M.; Ramadhan, F.; Wulandari, H.; Waranugraha, Y.; Hayuning Putri, D. The role of polysaccharide peptide of Ganoderma lucidum as a potent antioxidant against atherosclerosis in high risk and stable angina patients. Indian Heart J., 2018, 70(5), 608-614.
[http://dx.doi.org/10.1016/j.ihj.2017.12.007] [PMID: 30392496]
[107]
Sato, M.; Tokuji, Y.; Yoneyama, S.; Fujii-Akiyama, K.; Kinoshita, M.; Ohnishi, M. Profiling of hepatic gene expression of mice fed with edible japanese mushrooms by DNA microarray analysis: Comparison among Pleurotus ostreatus, Grifola frondosa, and Hypsizigus marmoreus. J. Agric. Food Chem., 2011, 59(19), 10723-10731.
[http://dx.doi.org/10.1021/jf2025659] [PMID: 21910414]
[108]
Ismail, T.A.; Soliman, M.M.; Nassan, M.A.; Mohamed, D.I. Antihypercholesterolemic Effects of Mushroom, Chrysin, Curcumin and Omega-3 in Experimental Hypercholesterolemic Rats. J. Food Nutr. Res., 2015, 3, 77-87.
[http://dx.doi.org/10.12691/jfnr-3-2-1]
[109]
Sayeed, M.A.; Banu, A.; Khatun, K.; Khanam, P.A.; Begum, T.; Mahtab, H.; Haq, J.A. Effect of edible mushroom (Pleurotus ostreatus) on type-2 diabetics. Ibrahim. Med. Coll. J., 2014, 8, 6-11.
[http://dx.doi.org/10.3329/imcj.v8i1.22982]
[110]
Khatun, K.; Mahtab, H.; Khanam, P.A.; Sayeed, M.A.; Khan, K.A. Oyster mushroom reduced blood glucose and cholesterol in diabetic subjects. Mymensingh Med. J., 2007, 16(1), 94-99.
[http://dx.doi.org/10.3329/mmj.v16i1.261] [PMID: 17344789]
[111]
Schneider, I.; Kressel, G.; Meyer, A.; Krings, U.; Berger, R.G.; Hahn, A. Lipid lowering effects of oyster mushroom (Pleurotus ostreatus) in humans. J. Funct. Foods, 2011, 3, 17-24.
[http://dx.doi.org/10.1016/j.jff.2010.11.004]
[112]
de Miranda, A.M.; Ribeiro, G.M.; Cunha, A.C.; Silva, L.S.; dos Santos, R.C.; Pedrosa, M.L.; Silva, M.E. Hypolipidemic effect of the edible mushroom Agaricus blazei in rats subjected to a hypercholesterolemic diet. J. Physiol. Biochem., 2014, 70(1), 215-224.
[http://dx.doi.org/10.1007/s13105-013-0295-y] [PMID: 24203633]
[113]
Hiraki, E.; Furuta, S.; Kuwahara, R.; Takemoto, N.; Nagata, T.; Akasaka, T.; Shirouchi, B.; Sato, M.; Ohnuki, K.; Shimizu, K. Anti-obesity activity of Yamabushitake (Hericium erinaceus) powder in ovariectomized mice, and its potentially active compounds. J. Nat. Med., 2017, 71(3), 482-491.
[http://dx.doi.org/10.1007/s11418-017-1075-8] [PMID: 28181079]
[114]
Chen, Y.; Liu, Y.; Sarker, M.M.R.; Yan, X.; Yang, C.; Zhao, L.; Lv, X.; Liu, B.; Zhao, C. Structural characterization and antidiabetic potential of a novel heteropolysaccharide from Grifola frondosa via IRS1/PI3K-JNK signaling pathways. Carbohydr. Polym., 2018, 198, 452-461.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.077] [PMID: 30093022]
[115]
Zhang, Y.; Hu, T.; Zhou, H.; Zhang, Y.; Jin, G.; Yang, Y. Antidiabetic effect of polysaccharides from Pleurotus ostreatus in streptozotocin-induced diabetic rats. Int. J. Biol. Macromol., 2016, 83, 126-132.
[116]
Gąsecka, M.; Mleczek, M.; Siwulski, M.; Niedzielski, P. Phenolic composition and antioxidant properties of Pleurotus ostreatus and Pleurotus eryngii enriched with selenium and zinc. Eur. Food Res. Technol., 2016, 242, 723-732.
[http://dx.doi.org/10.1007/s00217-015-2580-1]
[117]
Liu, Y.T.; Sun, J.; Luo, Z.Y.; Rao, S.Q.; Su, Y.J.; Xu, R.R.; Yang, Y.J. Chemical composition of five wild edible mushrooms collected from Southwest China and their antihyperglycemic and antioxidant activity. Food Chem. Toxicol., 2012, 50(5), 1238-1244.
[http://dx.doi.org/10.1016/j.fct.2012.01.023] [PMID: 22300772]
[118]
Saltarelli, R.; Ceccaroli, P.; Buffalini, M.; Vallorani, L.; Casadei, L.; Zambonelli, A.; Iotti, M.; Badalyan, S.; Stocchi, V. Biochemical characterization and antioxidant and antiproliferative activities of different Ganoderma collections. J. Mol. Microbiol. Biotechnol., 2015, 25(1), 16-25.
[http://dx.doi.org/10.1159/000369212] [PMID: 25662590]
[119]
Valdez-Morales, M.; Carlos, L.C.; Valverde, M.E.; Ramírez-Chávez, E.; Paredes-López, O. Phenolic compounds, antioxidant activity and lipid profile of huitlacoche mushroom (Ustilago maydis) produced in several maize genotypes at different stages of development. Plant Foods Hum. Nutr., 2016, 71(4), 436-443.
[http://dx.doi.org/10.1007/s11130-016-0572-3] [PMID: 27605221]
[120]
Novakovic, A.; Karaman, M.; Kaisarevic, S.; Radusin, T.; Llic, N. Antioxidant and Antiproliferative Potential of Fruiting Bodies of the Wild-Growing King Bolete Mushroom, Boletus edulis (Agaricomycetes), from Western Serbia. Int. J. Med. Mushrooms, 2017, 19(1), 27-34.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v19.i1.30] [PMID: 28322144]
[121]
Butkhup, L.; Samappito, W.; Jorjong, S. Evaluation of bioactivities and phenolic contents of wild edible mushrooms from northeastern Thailand. Food Sci. Biotechnol., 2017, 27(1), 193-202.
[http://dx.doi.org/10.1007/s10068-017-0237-5] [PMID: 30263740]
[122]
Mishra, K.K.; Pal, R.S.; Arunkumar, R. Antioxidant activities and bioactive compound determination from caps and stipes of specialty medicinal mushrooms Calocybe indica and Pleurotus sajor-caju (higher Basidiomycetes) from India. Int. J. Med. Mushrooms, 2014, 16(6), 555-567.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v16.i6.50] [PMID: 25404220]
[123]
Fijałkowska, A.; Muszyńska, B.; Sułkowska-Ziaja, K.; Kała, K.; Pawlik, A.; Stefaniuk, D.; Matuszewska, A.; Piska, K.; Pękala, E.; Kaczmarczyk, P.; Piętka, J.; Jaszek, M. Medicinal potential of mycelium and fruiting bodies of an arboreal mushroom Fomitopsis officinalis in therapy of lifestyle diseases. Sci. Rep., 2020, 10(1), 20081.
[http://dx.doi.org/10.1038/s41598-020-76899-1] [PMID: 33208786]
[124]
He, J.; Fan, P.; Feng, S.; Shao, P.; Sun, P. Isolation and purification of two isoflavones from Hericium erinaceum mycelium by high-speed counter-current chromatography. Molecules, 2018, 23(3), 560.
[http://dx.doi.org/10.3390/molecules23030560] [PMID: 29498678]
[125]
Erbiai, E.H.; da Silva, L.P.; Saidi, R.; Lamrani, Z.; Esteves da Silva, J.C.G.; Maouni, A. Chemical Composition, Bioactive Compounds, and Antioxidant Activity of Two Wild Edible Mushrooms Armillaria mellea and Macrolepiota procera from Two Countries (Morocco and Portugal). Biomolecules, 2021, 11(4), 575.
[http://dx.doi.org/10.3390/biom11040575] [PMID: 33920034]
[126]
Dhanasekaran, D.; Latha, S.; Suganya, P.; Panneerselvam, A.; Senthil Kumar, T.; Alharbi, N.S.; Arunachalam, C.; Alharbi, S.A.; Thajuddin, N. Taxonomic identification and bioactive compounds characterization of Psilocybe cubensis DPT1 to probe its antibacterial and mosquito larvicidal competency. Microb. Pathog., 2020, 143, 104138.
[http://dx.doi.org/10.1016/j.micpath.2020.104138] [PMID: 32173495]
[127]
Oli, A.N.; Edeh, P.A.; Al-Mosawi, R.M.; Mbachu, N.A.; Al-Dahmoshi, H.O.M.; Al-Khafaji, N.S.K.; Ekuma, U.O.; Okezie, U.M.; Saki, M. Evaluation of the phytoconstituents of Auricularia auricula-judae mushroom and antimicrobial activity of its protein extract. Eur. J. Integr. Med., 2020, 38, 101176.
[http://dx.doi.org/10.1016/j.eujim.2020.101176] [PMID: 32834875]
[128]
Leonti, M.; Bellot, S.; Zucca, P.; Rescigno, A. Astringent drugs for bleedings and diarrhoea: The history of Cynomorium coccineum (Maltese Mushroom). J. Ethnopharmacol., 2020, 249, 112368.
[http://dx.doi.org/10.1016/j.jep.2019.112368] [PMID: 31678417]
[129]
Rahimah, S.B.; Djunaedi, D.D.; Soeroto, A.Y.; Bisri, T. The phytochemical screening, total phenolic contents and antioxidant activities in vitro of white oyster mushroom (Pleurotus ostreatus) preparations. Open Access Maced. J. Med. Sci., 2019, 7(15), 2404-2412.
[http://dx.doi.org/10.3889/oamjms.2019.741] [PMID: 31666837]
[130]
Villares, A.; Mateo-Vivaracho, L.; Guillamón, E. Structural features andhealthy properties of polysaccharides occurring in mushrooms. Agriculture2, 2012, 452-471.
[131]
Badalyan, S.M. Potential of mushroom bioactive molecules to develop healthcare biotech products. In: Proceedings of the 8th International Conference on Mushroom Biology and Mushroom Products (ICMBMP8), 2014 Oct 19, New Delhi, India, , pp. 373-378.
[132]
Ma, G.; Yang, W.; Zhao, L.; Pei, F.; Fang, D.; Hu, Q. A critical review on the health promoting effects of mushrooms nutraceuticals. Food Sci. Hum. Wellness, 2018, 7, 125-133.
[http://dx.doi.org/10.1016/j.fshw.2018.05.002]
[133]
Wasser, S.P. Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl. Microbiol. Biotechnol., 2011, 89(5), 1323-1332.
[http://dx.doi.org/10.1007/s00253-010-3067-4] [PMID: 21190105]
[134]
Martinez-Medina, G.A.; Chávez-González, M.L.; Verma, D.K.; Prado-Barragán, L.A.; Martínez-Hernández, J.L.; Flores-Gallegos, A.C.; Thakur, M.; Srivastav, P.P.; Aguilar, C.N. Bio-funcional components in mushrooms, a health opportunity: Ergothionine and huitlacohe as recent trends. J. Funct. Foods, 2021, 77, 104326.
[http://dx.doi.org/10.1016/j.jff.2020.104326]
[135]
Yuan, P.; Aipire, A.; Yang, Y.; Wei, X.; Fu, C.; Zhou, F.; Mahabati, M.; Li, J.; Li, J. Comparison of the structural characteristics and immune stimulatory activities of polysaccharides from wild and cultivated Pleurotus feruleus. J. Funct. Foods, 2020, 72, 104050.
[http://dx.doi.org/10.1016/j.jff.2020.104050]
[136]
Li, D.; Gao, L.; Li, M.; Luo, Y.; Xie, Y.; Luo, T.; Su, L.; Yong, T.; Chen, S.; Jiao, C. Polysaccharide from spore of Ganoderma lucidum ameliorates paclitaxelinduced intestinal barrier injury: Apoptosis inhibition by reversing microtubule polymerization. Biomed. Pharmacother., 2020, 130, 110539.
[137]
Mingyi, Y.; Belwal, T.; Devkota, H.P.; Li, L.; Luo, Z. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: A comprehensive review. Trends Food Sci. Technol., 2019, 92, 94-110.
[http://dx.doi.org/10.1016/j.tifs.2019.08.009]
[138]
Paul, B.D.; Snyder, S.H. The unusual amino acid L-ergothioneine is a physiologic cytoprotectant. Cell Death Differ., 2010, 17(7), 1134-1140.
[http://dx.doi.org/10.1038/cdd.2009.163] [PMID: 19911007]
[139]
Dubost, N.J.; Beelman, R.B.; Peterson, D.; Royse, D.J. Identification and quantification of ergothioneine in cultivated mushrooms by liquid chromatography mass spectroscopy. Int. J. Med. Mushrooms, 2006, 8, 215-222.
[http://dx.doi.org/10.1615/IntJMedMushr.v8.i3.30]
[140]
Ito, T.; Kato, M.; Tsuchida, H.; Harada, E.; Niwa, T.; Osawa, T. Ergothioneine as an anti-oxidative/anti-inflammatory component in several edible mushrooms. Food Sci. Technol. Res., 2011, 17, 103-110.
[http://dx.doi.org/10.3136/fstr.17.103]
[141]
Kalaras, M.D.; Richie, J.P.; Calcagnotto, A.; Beelman, R.B. Mushrooms: A rich source of the antioxidants ergothioneine and glutathione. Food Chem., 2017, 233, 429-433.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.109] [PMID: 28530594]
[142]
Türkmen, M.; Budur, D. Heavy metal contaminations in edible wild mushroom species from Turkey’s Black Sea region. Food Chem., 2018, 254, 256-259.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.010] [PMID: 29548450]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy