Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Synthetic Procedures to Access 2-Guanidinobenzazoles of Biological Interest

Author(s): Martha C. Rosales-Hernández, Jessica E. Mendieta-Wejebe, Feliciano Tamay-Cach and Alejandro Cruz*

Volume 20, Issue 5, 2023

Published on: 16 November, 2022

Page: [504 - 522] Pages: 19

DOI: 10.2174/1570179419666220615143529

Price: $65

Abstract

Benzazoles (Bz) and derivatives are interesting molecules in medicinal chemistry. Several of these compounds display diverse biological activities; some are still used in clinical applications. In this way, synthetic chemists are interested in developing new procedures to access compounds with the guanidine moiety as 2-aminobenzimidazole (2ABI), Astemizole (antihistaminic), Albendazole (anthelmintic) and Carbendazim (fungicide). The guanidine group, considered a super base bonded to a benzoxazole ring, results in the 2-guanidinobenzazoles (2GBZs), which could modify the biological activity of these heterocycles. On these bases, we prepared this review article, which covers chemical aspects of 2-guanidinobenzoazoles as potential therapeutic agents and summarizes the current knowledge on the mechanism of pharmacological activities such as cytotoxic, inhibition of cell proliferation via angiogenesis and apoptosis. Specifically, it highlights the most recent results of synthetic approaches to 2GBZs with variety of modifications and functionalization with aromatic, carbohydrate, and amino-acid moieties as illustrated on 28 schemes and is concluded with 141 references. Additionally, the format of this interesting review is exclusively designed on specifically classified category of chemical reactions with primary precursors such as o-substituted anilines and 2-aminobenzazoles (2ABZs). This will constitute the important goals and novelty of this paper to facilitate synthetic chemists in the investigation about development of new pharmacophores.

Keywords: Cyanoguanidine, o-substituted anilines, guanidinobenzazoles, alkylthiocyanates, benzozazolilthioureas, 2-aminobenzazoles, smethylisothioureas, carbon disulfide.

Graphical Abstract
[1]
Eckert-Maksic, M.; Glasovac, Z.; Troselj, P.; Kütt, A.; Rodima, T.; Koppel, I.; Koppel, I.A. Basicity of guanidines with heteroalkyl side chains in acetonitrile. Eur. J. Org. Chem., 2008, 2008(30), 5176-5184.
[http://dx.doi.org/10.1002/ejoc.200800673]
[2]
a) Yamada, T.; Liu, X.; Englert, U.; Yamane, H.; Dronskowski, R. Solid-state structure of free base guanidine achieved at last. Chemistry, 2009, 15(23), 5651-5655.
[http://dx.doi.org/10.1002/chem.200900508] [PMID: 19388036];
b) Dworkin, A.; Naumann, R.; Seigfred, C.; Karty, J.M.; Mo, Y. Y-aromaticity: Why is the trimethylenemethane dication more stable than the butadienyl dication? J. Org. Chem., 2005, 70(19), 7605-7616.
[http://dx.doi.org/10.1021/jo0508090] [PMID: 16149789]
[3]
Greenhill, J.V.; Lue, P. Amidines and guanidines in medicinal chemistry. Prog. Med. Chem., 1993, 30, 203-326.
[http://dx.doi.org/10.1016/S0079-6468(08)70378-3] [PMID: 7905649]
[4]
Muttathukattil, A.N.; Srinivasan, S.; Halder, A.; Reddy, G. Role of guanidiniumcarboxylate ion interaction in enzyme inhibition with implications for drug design. J. Phys. Chem. B, 2019, 123(44), 9302-9311.
[http://dx.doi.org/10.1021/acs.jpcb.9b06130] [PMID: 31597039]
[5]
Gilbert, P.; Moore, L.E. Cationic antiseptics: Diversity of action under a common epithet. J. Appl. Microbiol., 2005, 99(4), 703-715.
[http://dx.doi.org/10.1111/j.1365-2672.2005.02664.x] [PMID: 16162221]
[6]
Carmona-Ribeiro, A.M.; de Melo Carrasco, L.D. Cationic antimicrobial polymers and their assemblies. Int. J. Mol. Sci., 2013, 14(5), 9906-9946.
[http://dx.doi.org/10.3390/ijms14059906] [PMID: 23665898]
[7]
Broxton, P.; Woodcock, P.M.; Heatley, F.; Gilbert, P. Interaction of some polyhexamethylene biguanides and membrane phospholipids in Escherichia coli. J. Appl. Bacteriol., 1984, 57(1), 115-124.
[http://dx.doi.org/10.1111/j.1365-2672.1984.tb02363.x] [PMID: 6386785]
[8]
Berlinck, R.G.S.; Berlinck, R.G.S.; Berlinck, R.G.S. Natural guanidine derivatives. Nat. Prod. Rep., 1999, 16(3), 339-365.
[http://dx.doi.org/10.1039/a900338j]
[9]
Akasaka, N.; Fujiwara, S. The therapeutic and nutraceutical potential of agmatine, and its enhanced production using Aspergillus oryzae. Amino Acids, 2020, 52(2), 181-197.
[http://dx.doi.org/10.1007/s00726-019-02720-7] [PMID: 30915570]
[10]
Brogden, R.N.; Carmine, A.A.; Heel, R.C.; Speight, T.M.; Avery, G.S. Trimethoprim: A review of its antibacterial activity, pharmacokinetics and therapeutic use in urinary tract infections. Drugs, 1982, 23(6), 405-430.
[http://dx.doi.org/10.2165/00003495-198223060-00001] [PMID: 7049657]
[11]
Wróbel, A.; Arciszewska, K.; Maliszewski, D.; Drozdowska, D. Trimethoprim and other nonclassical antifolates an excellent template for searching modifications of dihydrofolate reductase enzyme inhibitors. J. Antibiot. (Tokyo), 2020, 73(1), 5-27.
[http://dx.doi.org/10.1038/s41429-019-0240-6] [PMID: 31578455]
[12]
Saczewski, F. Balewski, Ł. Biological activities of guanidine compounds. Expert Opin. Ther. Pat., 2009, 19(10), 1417-1448.
[http://dx.doi.org/10.1517/13543770903216675] [PMID: 19780701]
[13]
Sączewski, F.; Balewski, Ł. Biological activities of guanidine compounds, 2008- 2012 update. Expert Opin. Ther. Pat., 2013, 23(8), 965-995.
[http://dx.doi.org/10.1517/13543776.2013.788645] [PMID: 23617396]
[14]
Berlinck, R.G.S.; Burtoloso, A.C.B.; Trindade-Silva, A.E.; Romminger, S.; Morais, R.P.; Bandeira, K.; Mizuno, C.M. The chemistry and biology of organic guanidine derivatives. Nat. Prod. Rep., 2010, 27(12), 1871-1907.
[http://dx.doi.org/10.1039/c0np00016g] [PMID: 20957265]
[15]
Castagnolo, D.; Schenone, S.; Botta, M. Guanylated diamines, triamines, and polyamines: Chemistry and biological properties. Chem. Rev., 2011, 111(9), 5247-5300.
[http://dx.doi.org/10.1021/cr100423x] [PMID: 21657224]
[16]
Taylor, J.E.; Bull, S.D.; Williams, J.M. Amidines, isothioureas, and guanidines as nucleophilic catalysts. Chem. Soc. Rev., 2012, 41(6), 2109-2121.
[http://dx.doi.org/10.1039/c2cs15288f] [PMID: 22234578]
[17]
Oliver, D.W.; Dormehl, I.C.; Wikberg, J.E.S.; Dambrova, M. Guanidine: From molecule to primate. Med. Chem. Res., 2004, 13(6-7), 427-438.
[http://dx.doi.org/10.1007/s00044-004-0046-2]
[18]
Buxbaum, A.; Kratzer, C.; Graninger, W.; Georgopoulos, A. Antimicrobial and toxicological profile of the new biocide Akacid plus. J. Antimicrob. Chemother., 2006, 58(1), 193-197.
[http://dx.doi.org/10.1093/jac/dkl206] [PMID: 16751199]
[19]
Güthner, T.; Mertschenk, B.; Schulz, B. Guanidine and DerivativesUllmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2006, 17, pp. 175.
[20]
Ishikawa, T.; Kumamoto, T. Guanidines in organic synthesis. Synthesis, 2006, 5(5), 737-752.
[http://dx.doi.org/10.1055/s-2006-926325]
[21]
Ishikawa, T. Superbases for Organic Synthesis: Guanidines; Amidines, Phosphazenes and Related OrganocatalystsJohn Wiley & Sons: West Sussex, 2009.
[http://dx.doi.org/10.1002/9780470740859]
[22]
Ishikawa, T. Guanidine chemistry. Chem. Pharm. Bull. (Tokyo), 2010, 58(12), 1555-1564.
[http://dx.doi.org/10.1248/cpb.58.1555] [PMID: 21139254]
[23]
Muller, G.W.; Walters, D.E.; DuBois, G.E.N. N'-disubstituted guanidine high-potency sweeteners. J. Med. Chem., 1992, 35(4), 740-743.
[http://dx.doi.org/10.1021/jm00082a015] [PMID: 1542101]
[24]
Nash, D.T. Clinical trial with guanabenz, a new antihypertensive agent. J. Clin. Pharmacol., 1973, 13(10), 416-421.
[PMID: 4583572]
[25]
Buchdunger, E.; Zimmermann, J.; Mett, H.; Meyer, T.; Müller, M.; Druker, B.J.; Lydon, N.B. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res., 1996, 56(1), 100-104.
[PMID: 8548747]
[26]
von Itzstein, M. The war against influenza: Discovery and development of sialidase inhibitors. Nat. Rev. Drug Discov., 2007, 6(12), 967-974.
[http://dx.doi.org/10.1038/nrd2400] [PMID: 18049471]
[27]
Kim, S-H.; Semenya, D.; Castagnolo, D. Antimicrobial drugs bearing guanidine moieties: A review. Eur. J. Med. Chem., 2021, 216113293
[http://dx.doi.org/10.1016/j.ejmech.2021.113293] [PMID: 33640673]
[28]
Berlinck, R.G.S.; Burtoloso, A.C.B.; Kossuga, M.H. The chemistry and biology of organic guanidine derivatives. Nat. Prod. Rep., 2008, 25(5), 919-954.
[http://dx.doi.org/10.1039/b507874c] [PMID: 18820759]
[29]
Berlinck, R.G.; Trindade-Silva, A.E.; Santos, M.F. The chemistry and biology of organic guanidine derivatives. Nat. Prod. Rep., 2012, 29(12), 1382-1406.
[http://dx.doi.org/10.1039/c2np20071f] [PMID: 22991131]
[30]
Shaw, J.W.; Grayson, D.H.; Rozas, I. Guanidines as reagents and catalysts ISelig, P Topics in heterocyclic chemistry; Springer: Berlin, 2015, p. 50.
[31]
Berlinck, R.G.S.; Romminger, S. The chemistry and biology of organic guanidine derivatives. Nat. Prod. Rep., 2016, 33, 456-490.
[http://dx.doi.org/10.1039/C5NP00108K] [PMID: 26689539]
[32]
Berlinck, R.G.S.; Bernardi, D.I.; Fill, T.; Fernandes, A.A.G.; Jurberg, I.D. The chemistry and biology of guanidine secondary metabolites. Nat. Prod. Rep., 2021, 38(3), 586-667.
[http://dx.doi.org/10.1039/D0NP00051E] [PMID: 33021301]
[33]
Selig, P. Guanidines as reagents and catalysts I. Top. Heterocycl. Chem., 2016, 50, 1-178.
[34]
Dong, S.; Feng, X.; Liu, X. Chiral guanidines and their derivatives in asymmetric synthesis. Chem. Soc. Rev., 2018, 47(23), 8525-8540.
[http://dx.doi.org/10.1039/C7CS00792B] [PMID: 30375584]
[35]
Cao, W.D.; Liu, X.H.; Feng, X.M. Chiral organobases: Properties and applications in asymmetric catalysis. Chin. Chem. Lett., 2018, 29(8), 1201-1208.
[http://dx.doi.org/10.1016/j.cclet.2018.05.041]
[36]
Chou, H-C.; Leow, D.; Tan, C-H. Recent advances in chiral guanidine-catalyzed enantioselective reactions. Chem. Asian J., 2019, 14(21), 3803-3822.
[http://dx.doi.org/10.1002/asia.201901183] [PMID: 31562680]
[37]
Coles, M.P. Application of neutral amidines and guanidines in coordination chemistry. Dalton Trans., 2006, (8), 985-1001.
[http://dx.doi.org/10.1039/b515490a] [PMID: 16474883]
[38]
Bailey, P.J.; Pace, S. The coordination chemistry of guanidines and guanidinates. Coord. Chem. Rev., 2001, 214(1), 91-141.
[http://dx.doi.org/10.1016/S0010-8545(00)00389-1]
[39]
Blondeau, P.; Segura, M.; Pérez-Fernández, R.; de Mendoza, J. Molecular recognition of oxoanions based on guanidinium receptors. Chem. Soc. Rev., 2007, 36(2), 198-210.
[http://dx.doi.org/10.1039/B603089K] [PMID: 17264923]
[40]
Edelmann, F.T. Lanthanide amidinates and guanidinates in catalysis and materials science: A continuing success story. Chem. Soc. Rev., 2012, 41(23), 7657-7672.
[http://dx.doi.org/10.1039/c2cs35180c] [PMID: 22777063]
[41]
Kiesewetter, M.K.; Shin, E.J.; Hedrick, J.L.; Waymouth, R.M. Organocatalysis: Opportunities and challenges for polymer synthesis. Macromolecules, 2010, 43(5), 2093-2107.
[http://dx.doi.org/10.1021/ma9025948]
[42]
Maksic, M.; Glasovac, Z. Preparation of N, N’, N’’-tris- (3-dimethylaminopropyl)- guanidine from carbodiimide and application in reactions of transesterifcation of oil WO Patent 20051003062005.
[43]
Manimala, J.C.; Anslyn, E.V. Solid-phase synthesis of guanidinium derivatives from thiourea and isothiourea functionalities. Eur. J. Org. Chem., 2002, 2002(23), 3909-3922.
[http://dx.doi.org/10.1002/1099-0690(200212)2002:23<3909:AID-EJOC3909>3.0.CO;2-J]
[44]
Katritzky, A.R.; Rogovoy, B.V. Recent developments in guanylating agents. ARKIVOC, 2005, 4, 49-87.
[http://dx.doi.org/10.3998/ark.5550190.0006.406]
[45]
Suhs, T.; Konig, B. Synthesis of guanidines in solution. Mini Rev. Org. Chem., 2006, 3(4), 315-331.
[http://dx.doi.org/10.2174/157019306778742841]
[46]
Zhang, W.X.; Hou, Z. Catalytic addition of alkyne C-H, amine N-H, and phosphine P-H bonds to carbodiimides: An efficient route to propiolamidines, guanidines, and phosphaguanidines. Org. Biomol. Chem., 2008, 6(10), 1720-1730.
[http://dx.doi.org/10.1039/b800135a] [PMID: 18452004]
[47]
Kharul, R.K.; Goswami, A.; Gite, A.; Godha, A.K.; Jain, M.; Patel, P.R. Convenient synthesis of structurally novel 1,3-disubstituted azetidine derivatives. Synth. Commun., 2008, 38(11), 1703-1717.
[http://dx.doi.org/10.1080/00397910801982340]
[48]
Lange, J.H.; den Hartog, A.P.; van der Neut, M.A.; van Vliet, B.J.; Kruse, C.G. Synthesis and SAR of 1,4,5,6-tetrahydropyridazines as potent cannabinoid CB1 receptor antagonists. Bioorg. Med. Chem. Lett., 2009, 19(19), 5675-5678.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.007] [PMID: 19699640]
[49]
Bienemann, O.; Hoffmann, A.; Herres-Pawlis, S. (Guanidine)copper complexes: Structural variety and application in bioinorganic chemistry and catalysis. Rev. Inorg. Chem., 2011, 31(1), 83-108.
[http://dx.doi.org/10.1515/revic.2011.003]
[50]
Usachev, S.; Gridnev, A. Convenient preparation of bicyclic guanidines. Synth. Commun., 2011, 41(24), 3683-3688.
[http://dx.doi.org/10.1080/00397911.2010.519848]
[51]
Lange, J.H.; Verhoog, S.; Sanders, H.J.; van Loevezijn, A.; Kruse, C.G. A novel atom-efficient, one-pot synthesis of sulfonylguanidines and sulfamoylguanidines. Tetrahedron Lett., 2011, 52(25), 3198-3200.
[http://dx.doi.org/10.1016/j.tetlet.2011.04.031]
[52]
Chorvat, R.J.; Berbaum, J.; Seriacki, K.; McElroy, J.F. JD-5006 and JD-5037: Peripherally restricted (PR) cannabinoid-1 receptor blockers related to SLV-319 (Ibipinabant) as metabolic disorder therapeutics devoid of CNS liabilities. Bioorg. Med. Chem. Lett., 2012, 22(19), 6173-6180.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.004] [PMID: 22959249]
[53]
Alonso-Moreno, C.; Antiñolo, A.; Carrillo-Hermosilla, F.; Otero, A. Guanidines: From classical approaches to efficient catalytic syntheses. Chem. Soc. Rev., 2014, 43(10), 3406-3425.
[http://dx.doi.org/10.1039/C4CS00013G] [PMID: 24626874]
[54]
Tan, D.; Mottillo, C.; Katsenis, A.D.; Štrukil,, V. Friščić, T. Development of C-N coupling using mechanochemistry: Catalytic coupling of arylsulfonamides and carbodiimides. Angew. Chem. Int. Ed. Engl., 2014, 53(35), 9321-9324.
[http://dx.doi.org/10.1002/anie.201404120] [PMID: 25044238]
[55]
Tahir, S.; Badshah, A.; Hussain, R.A. Guanidines from ‘toxic substances’ to compounds with multiple biological applications--detailed outlook on synthetic procedures employed for the synthesis of guanidines. Bioorg. Chem., 2015, 59, 39-79.
[http://dx.doi.org/10.1016/j.bioorg.2015.01.006] [PMID: 25681571]
[56]
Zhang, W-X.; Xu, L.; Xi, Z. Recent development of synthetic preparation methods for guanidines via transition metal catalysis. Chem. Commun. (Camb.), 2015, 51(2), 254-265.
[http://dx.doi.org/10.1039/C4CC05291A] [PMID: 25298218]
[57]
Gu, Z.Y.; Liu, Y.; Wang, F.; Bao, X.; Wang, S.Y.; Ji, S.J. Cobalt(II)-catalyzed synthesis of sulfonyl guanidines via nitrene radical coupling with isonitriles: A combined experimental and computational study. ACS Catal., 2017, 7(6), 3893-3899.
[http://dx.doi.org/10.1021/acscatal.7b00798]
[58]
Qiao, G.; Zhang, Z.; Huang, B.; Zhu, L.; Xiao, F.; Zhang, Z. Palladium-catalyzed one-pot synthesis of n-sulfonyl, n-phosphoryl, and N-Acyl guanidines. Synthesis, 2018, 50(2), 330-340.
[http://dx.doi.org/10.1055/s-0036-1588576]
[59]
Azzam, R.A. Tailored-design synthesis of sulfapyrimidine derivatives. J. Heterocycl. Chem., 2019, 56(2), 619-627.
[http://dx.doi.org/10.1002/jhet.3439]
[60]
Fang, Y.; Yang, J.M.; Zhang, R.; Wang, S.Y.; Ji, S.J. Cobalt-catalyzed condensation of sulfonyl azides with o-diisocyanoarenes and anilines: A new approach to N-sulfonyl guanidines. Org. Chem. Front., 2019, 6(19), 3383-3386.
[http://dx.doi.org/10.1039/C9QO00815B]
[61]
Hazarika, D.; Borah, A.J.; Phukan, P. Facile, catalyst-free cascade synthesis of sulfonyl guanidines via carbodiimide coupling with amines. Chem. Commun. (Camb.), 2019, 55(10), 1418-1421.
[http://dx.doi.org/10.1039/C8CC08564A] [PMID: 30640335]
[62]
Wang, F.; Yumaier, A.; Wusiman, A. “Facile one-pot synthesis of tetrasubstituted N-sulfonylguanidines from sulfonamides and ureas” Monatsh. Chem.-. Monatsh. Chem., 2021, 152(8), 993-999.
[http://dx.doi.org/10.1007/s00706-021-02815-6]
[63]
Cruz, A.; Padilla-Martínez, I.I.; García-Báez, E.V. Methods to access 2-aminobenzimidazoles of medicinal importance. Curr. Org. Chem., 2019, 23(23), 2573-2597.
[http://dx.doi.org/10.2174/1385272823666191023150201]
[64]
Nguyen, T.V.; Blackledge, M.S.; Lindsey, E.A.; Minrovic, B.M.; Ackart, D.F.; Jeon, A.B.; Obregon-Henao, A.; Melander, R.J.; Basaraba, R.J.; Melander, C. The discovery of 2-aminobenzimidazoles that sensitize mycobacterium smegmatis and m. tuberculosis to β-lactam antibiotics in a pattern distinct from β-lactamase inhibitors. Angew. Chem. Int. Ed., 2017, 56, 3940-3944.
[65]
Nguyen, T.V.; Peszko, M.T.; Melander, R.J.; Melander, C. Using 2-aminobenzimidazole derivatives to inhibit Mycobacterium smegmatis biofilm formation. MedChemComm, 2019, 10(3), 456-459.
[http://dx.doi.org/10.1039/C9MD00025A] [PMID: 31015909]
[66]
Acerete, C.; Catalán, J.; Fabero, F.; Sánchez-Cabezudo, M.; Claramunt, R.M.; Elguero, J. Structure and basicity of 2-guanidiobenzimidazoles. Heterocycles, 1987, 26, 1581-1586.
[http://dx.doi.org/10.3987/R-1987-06-1581]
[67]
Grundemann, E.; Graubaum, H.; Martin, D.; Schiewald, E. NMR investigations on benzheteroazoles. 2 NMR investigations of N-acylated 2-aminobenzimidazoles. Magn. Reson. Chem., 1986, 24(1), 21-30.
[http://dx.doi.org/10.1002/mrc.1260240107]
[68]
Bedford, G.R.; Taylor, P.J.; Webb, G.A. 15N NMR studies of guanidines. I-hydrogen bonding and electronic effects in conformationally flexible guanidines. Magn. Reson. Chem., 1995, 33(5), 383-388.
[http://dx.doi.org/10.1002/mrc.1260330510]
[69]
Andrade-López, N.; Ariza-Castolo, A.; Contreras, R.; Tlahuex, H.; Vázquez-Olmos, A. Barba-Behrens, N Versatile behavior of 2-guanidinobenzimidazole nitrogen atoms toward protonation, coordination and methylation. Heteroatom Chem., 1997, 8, 397-410.
[http://dx.doi.org/10.1002/(SICI)1098-1071(1997)8:5<397:AID-HC4>3.0.CO;2-6]
[70]
Caira, M.R.; Watson, W.H.; Vogtle, F.; Müller, W. A 1:2 complex between 1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown-6) and 2-(2-benzimidazolyl)guanidine, C12H24O6.2C8H9N5. Acta Crystallogr., 1984, C40, 1047-1050.
[71]
Steel, P.J. Heterocyclic tautomerism. v. 2-guanidinobenzimidazole. J. Heterocycl. Chem., 1991, 28(7), 1817-1818.
[http://dx.doi.org/10.1002/jhet.5570280729]
[72]
Hernandez-Garcia, R.M.; Barba-Behrens, N.; Salcedo, R.; Hojer, G. Theoretical study of 2-guanidinobenzimidazole. HF, MP2 and DFT calculations. J. Mol. Struct. THEOCHEM, 2003, 637(1-3), 55-72.
[http://dx.doi.org/10.1016/S0166-1280(03)00370-1]
[73]
Watson, W.H.; Galloy, J.; Grossie, D.A.; Voegtle, F.; Mueller, W.M. Host-guest complex chemistry. Structures of 18-crown-6 and diaza-18-crown-6 with neutral molecules. J. Org. Chem., 1984, 49(2), 347-353.
[http://dx.doi.org/10.1021/jo00176a025]
[74]
Bishop, M.M.; Lindoy, L.F.; Thorn-Seshold, O.T.; Piltz, R.O.; Turner, P. A supramolecular assembly containing an unusually short n-h…n hydrogen bond - an x-ray and neutron diffraction study. J. Heterocycl. Chem., 2001, 38(6), 1377-1382.
[http://dx.doi.org/10.1002/jhet.5570380620]
[75]
Chen, J.; Willis, P.G.; Parkin, S.; Cammers, A. In search of the weak, six-membered intramolecular hydrogen bond in the solution and solid states of guanidinobenzimidazole. Eur. J. Org. Chem., 2005, 2005(1), 171-178.
[http://dx.doi.org/10.1002/ejoc.200400448]
[76]
Bishop, M.M.; Lee, A.H.W.; Lindoy, L.F.; Turner, P. A comparative study of supramolecular assemblies containing N″-(5,6-dimethyl-1H-benzimidazol-2-yl)guanidi-ne, 2-guanidinobenzimidazole and their Ni(II) complexes. Polyhedron, 2003, 22(5), 735-743.
[http://dx.doi.org/10.1016/S0277-5387(02)01404-3]
[77]
Mohamed, S.K.; Horton, P.N.; El-Remaily, M.A.A.; Ng, S.W. 2-(1,3-Benzoxazol-2-yl)guanidinium chloride. Acta Crystallogr., 2011, E67, 3133.
[78]
Mohamed, S.K.; El-Remaily, M.A.A.; Soliman, A.M.; Gurbanov, A.V.; Ng, S.W. 2-(1,3-Benzothia-zol-2-yl)guanidine. Acta Crystallogr. Sect. E Struct. Rep. Online, 2011, 67(Pt 4), 786.
[http://dx.doi.org/10.1107/S160053681100732X] [PMID: 21754077]
[79]
Horton, P.N.; Coles, S.J.; Mohamed, S.K.; El-Remaily, M.A.A.; Soliman, A.M. 2-(1,3-Benzothiazol-2-yl)guanidin-2-ium acetate. Acta Crystallogr., 2011, E67, 2920.
[80]
Mohamed, S.K.; Horton, P.N.; El-Remaily, M.A.A.; Weng Ng, S.W. 2-(1,3-Benzothiazol-2-yl)guanidinium chloride. Acta Crystallogr., 2011, E67, 3132.
[81]
Li, J.H-Y.; Cragoe, E.J., Jr; Lindemann, B. Structure-activity relationship of amiloride analogs as blockers of epithelial Na channels: II. Side-chain modifications. J. Membr. Biol., 1987, 95(2), 171-185.
[http://dx.doi.org/10.1007/BF01869162] [PMID: 2437309]
[82]
Eskesen, K.; Ussing, H.H. The effect of amiloride and benzimidazoleguanidine added to the inside medium on electrolyte pathways in the frog skin glands. Acta Physiol. Scand., 1989, 136(4), 547-550.
[http://dx.doi.org/10.1111/j.1748-1716.1989.tb08700.x] [PMID: 2551128]
[83]
Pinelli, A.; Trivulzio, S.; Malvezzi, L.; Rossoni, G.; Beretta, L. 2-substituted derivatives of benzimidazole inhibiting gastric acid secretion in rats. Arzneimittelforschung, 1989, 39(4), 467-469.
[PMID: 2751732]
[84]
Murthy, G.R.; Reddy, V.M. New hypoglycemic agents. Part III. Synthesis and hypoglycemic activity of some new 1-(2-benzimidazolamidino-3-aryl/cyclohexyl-2-thioureas. Indian J. Pharm. Sci., 1987, 49, 175-177.
[85]
Serafin, B.; Borkowska, G. Główczyk, J.; Kowalska, I.; Rump, S. Potential antihypertensive benzimidazole derivatives. Pol. J. Pharmacol. Pharm., 1989, 41(1), 89-96.
[PMID: 2587441]
[86]
Hong, L.; Singh, V.; Wulff, H.; Tombola, F. Interrogation of the intersubunit interface of the open Hv1 proton channel with a probe of allosteric coupling. Sci. Rep., 2015, 5(1), 14077.
[http://dx.doi.org/10.1038/srep14077] [PMID: 26365828]
[87]
Lim, V.T.; Geragotelis, A.D.; Lim, N.M.; Freites, J.A.; Tombola, F.; Mobley, D.L.; Tobias, D.J. Insights on small molecule binding to the Hv1 proton channel from free energy calculations with molecular dynamics simulations. Sci. Rep., 2020, 10(1), 13587.
[http://dx.doi.org/10.1038/s41598-020-70369-4] [PMID: 32788614]
[88]
Ziegelbauer. Monatsh, 1896, 17, 653.
[89]
King, F.E.; Acheson, R.M.; Spensley, P.C. Benziminazole analogues of paludrine. J. Chem. Soc., 1948, 17, 1366-1371.
[http://dx.doi.org/10.1039/jr9480001366] [PMID: 18893616]
[90]
Curd, F.H.S.; Rose, F.L. A possible mode of action of paludrine. Nature, 1946, 158(4020), 707-708.
[http://dx.doi.org/10.1038/158707b0] [PMID: 20341171]
[91]
Smith, G.B.L.; Kane, J.H.; Mason, C.W.; Monoarylguanidines, I.I. Benzoxazoleguanidine. J. Am. Chem. Soc., 1929, 51(8), 2522-2527.
[http://dx.doi.org/10.1021/ja01383a036]
[92]
Smith, G.B.L.; Mason, C.W.; Carroll, R.H. Monoarylguanidines. III. Benzothiazoleguanidine. J. Am. Chem. Soc., 1931, 53(11), 4103-4109.
[http://dx.doi.org/10.1021/ja01362a027]
[93]
Aremu, J. A.; Durosinmi, L. M.; Oluyemi, E. A.; Ojo, I. A. O. Synthesis and Characterization of Guanidine derivatives of Benzothiazole and their Cobalt(II), Nickel(II), Zinc(II), Copper(II) and Iron(II) Complexes IOSR J. App. Chem. (IOSR-JAC),, 2018, 11, 53-71.
[94]
Dolzhenko, A.B.; Chui, W-K.; Anna, V.; Dolzhenko, A.B. Microwave-assisted synthesis of s-Triazino[2,1-b][1,3]benzoxazoles, s-Triazino[2,1-b][1,3]benzothiazoles, and s-Triazino[1,2-a]benzimidazoles. Synthesis, 2006, (4), 597-602.
[95]
Prajapat, P.; Yogi, P.; Talesara, G.L. Synthesis of biological significant new 1-(1,3-benzoxazol-2-yl)guanidine derivatives. J. Chem. and Cheml. Sci, 2015, 5, 670-681.
[96]
Prajapata, P.; Rathorea, K.K.; Hussainb, N.; Yogic, P.; Talesara, G.L. Synthesis of novel pyrimidines, pyrimidopyrimidines and their oxygen substituted hydroxylamine derivatives as potential pharmacological interest. Iran. J. Org. Chem, 2015, 7, 1605-1612.
[97]
Prajapat, P.; Talesara, G.L. Synthesis and anti-inflammatory screening of some mono and bis-alkoxyphthalimide linked benzimidazole and their quinazoline and pyrimidine derivatives. J. Heterocycl. Chem., 2016, 53(5), 1603-1610.
[http://dx.doi.org/10.1002/jhet.2471]
[98]
Soliman, A.M.; Mohamed, S.K.; El-Remaily, M.A.E.A.A.A.; Abdel-Ghany, H. Synthesis of pyrimidine dihydropirimidinone, and dihydroimidazole derivatives under free solvent conditions and their antibacterial evaluation. J. Heterocycl. Chem., 2014, 51(4), 1202-1209.
[http://dx.doi.org/10.1002/jhet.1657]
[99]
Mohamed, S.K.; Soliman, A.M.; El-Remaily, M.A.A.; Abdel-Ghany, H. Eco-friendly synthesis of pyrimidine and dihydropyrimidinone derivatives under solvent free condition and their anti-microbial activity. Chem. Sci. J., 2013, 110, 1-11.
[100]
Prajapat, P.; Talesara, G.L. Synthesis of novel benzothiazole based pyrimido[4,5-d]pyrimidines containing ethoxyphthalimide moiety. R.N.T. J. Current Dis. Chem, 2016, 1, 9-13.
[101]
Grytsai, O.; Druzhenko, T.; Demange, L.; Ronco, C.; Benhida, R. Cyanoguanidine as a versatile, eco-friendly and inexpensive reagent for the synthesis of 2-aminobenzoxazoles and 2-guanidinobenzoxazoles. Tetrahedron Lett., 2018, 59(17), 1642-1645.
[http://dx.doi.org/10.1016/j.tetlet.2018.03.036]
[102]
Kurzer, F.; Sanderson, P.M. Thiadiazoles. Part X. The synthesis and isomerisation of 2-aryl-5-arylamino-3-arylmino-Δ4-1,2,4- thiadiazolines. J. Chem. Soc., 1960, 3240-3249.
[http://dx.doi.org/10.1039/JR9600003240]
[103]
Pan, K.; Reitz, A.B. The synthesis of aminobenzothiazoles from 2,3-Biaryl-5-anilino-”3 -1,2,4-thiadiazolines. Synth. Commun., 2003, 33, 2053.
[http://dx.doi.org/10.1081/SCC-120021031]
[104]
Wilkins, D.J.; Bradley, P.A. Comprehensive Heterocyclic Chemistry IIElsevier Science, Pergamon: Oxford, 1996, 4, pp. 307.
[105]
Bhargava, P.N.; Lakhan, R. Synthesis of benzothiazolylguanidines as antituberculars and antibacterials. Agric. Biol. Chem., 1968, 32(11), 1392-1394.
[http://dx.doi.org/10.1080/00021369.1968.10859239]
[106]
Bhargava, P.N.; Singh, H. Synthesis of some new N-o-tolyl-N'-2-(substituted) benzothiazolylguanidines. J. Med. Chem., 1969, 12(3), 558-559.
[http://dx.doi.org/10.1021/jm00303a638] [PMID: 4977946]
[107]
Bhargava, P.N.; Choubey, V.N. Benzothiazolyl guanidines as antibacterials. Agric. Biol. Chem., 1970, 34(4), 644-647.
[http://dx.doi.org/10.1271/bbb1961.34.644]
[108]
Bhargava, P.N.; Singh, S.N. Substituted benzothiazolylguanidines. Curr. Sci., 1971, 40, 430-432.
[109]
Bhargava, P.N.; Shyam, R. Synthesis and spectral behaviour of some (substituted) benzothiazolylguanidines. Curr. Sci., 1974, 43, 33-36.
[110]
Lakhan, R.; Sharma, B.P.; Shukla, B.N. Synthesis and antimicrobial activity of 1-aryl-2-amino-3-(4-arylthiazol-2-yl)/(benzothiazol-2-yl)guanidines. Farmaco, 2000, 55(5), 331-337.
[http://dx.doi.org/10.1016/S0014-827X(00)00032-X] [PMID: 10983277]
[111]
Liu, Y-H.; Cao, L-H. Synthesis and bioactivity of novel methyl 6-deoxy-6-(N′-alkyl/aryl-N''-benzothiazol-2-yl)guanidino-α-D-glucopyranosides. Carbohydr. Res., 2008, 343(4), 615-625.
[http://dx.doi.org/10.1016/j.carres.2007.12.001] [PMID: 18194802]
[112]
Venkatesh, P.; Tiwari, V.S. Design and synthesis of quinazolinone, benzothiazole derivatives bearing guanidinopropanoic acid moiety and their schiff bases as cytotoxic and antimicrobial agents. Arab. J. Chem., 2016, 9, S914-S925.
[http://dx.doi.org/10.1016/j.arabjc.2011.09.004]
[113]
Bhat, M.; Belagali, S.L.; Shyamala, D.C. Synthesis of benzothiazolyl guanidinyl derivatives and their in-vitro antimicrobial and antioxidant activity. Nat. Prod. J., 2017, 7(4), 286-290.
[http://dx.doi.org/10.2174/2210315507666170530091940]
[114]
Anzini, M.; Chelini, A.; Mancini, A.; Cappelli, A.; Frosini, M.; Ricci, L.; Valoti, M.; Magistretti, J.; Castelli, L.; Giordani, A.; Makovec, F.; Vomero, S. Synthesis and biological evaluation of amidine, guanidine, and thiourea derivatives of 2-amino(6-trifluoromethoxy)benzothiazole as neuroprotective agents potentially useful in brain diseases. J. Med. Chem., 2010, 53(2), 734-744.
[http://dx.doi.org/10.1021/jm901375r] [PMID: 19950903]
[115]
Thomas, S.J.; Balónová, B.; Cinatl, J., Jr; Wass, M.N.; Serpell, C.J.; Blight, B.A.; Michaelis, M. Thiourea and guanidine compounds and their iridium complexes in drug-resistant cancer cell lines: Structure-activity relationships and direct luminescent imaging. ChemMedChem, 2020, 15(4), 349-353.
[http://dx.doi.org/10.1002/cmdc.201900591] [PMID: 31828886]
[116]
Blight, B.A.; Hunter, C.A.; Leigh, D.A.; McNab, H.; Thomson, P.I.T. An AAAA–DDDD quadruple hydrogen-bond array. Nat. Chem., 2011, 3(3), 244-248.
[http://dx.doi.org/10.1038/nchem.987] [PMID: 21336332]
[117]
Mukherjee, T.; Ganzmann, C.; Bhuvanesh, N.; Gladysz, J.A. Syntheses of enantiopure bifunctional 2-guanidinobenzimidazole cyclopentadienyl ruthenium complexes: Highly enantioselective organometallic hydrogen bond donor catalysts for carbon–carbon bond forming reactions. Organometallics, 2014, 33(23), 6723-6737.
[http://dx.doi.org/10.1021/om500705s]
[118]
Chikhale, R.; Thorat, S.; Choudhary, R.K.; Gadewal, N.; Khedekar, P. Design, synthesis and anticancer studies of novel aminobenzazolyl pyrimidines as tyrosine kinase inhibitors. Bioorg. Chem., 2018, 77, 84-100.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.008] [PMID: 29342447]
[119]
Cruz, A.; Padilla-Martínez, I.I.; García-Báez, E.V. A synthetic method to access symmetric and non-symmetric 2-(N,N′-disubstituted)guanidinebenzothiazoles. Molecules, 2012, 17(9), 10178-10191.
[http://dx.doi.org/10.3390/molecules170910178] [PMID: 22922286]
[120]
Karle, M.; Knecht, W.; Xue, Y. Discovery of benzothiazole guanidines as novel inhibitors of thrombin and trypsin IV. Bioorg. Med. Chem. Lett., 2012, 22(14), 4839-4843.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.046] [PMID: 22726924]
[121]
Zhang, W-X.; Nishiura, M.; Hou, Z. Catalytic addition of amine N-H bonds to carbodiimides by half-sandwich rare-earth metal complexes: Efficient synthesis of substituted guanidines through amine protonolysis of rare-earth metal guanidinates. Chemistry, 2007, 13(14), 4037-4051.
[http://dx.doi.org/10.1002/chem.200601383] [PMID: 17348047]
[122]
Watts, E.A. West German Patent No. 2267312 (1973); Chem. Abstr., 79, 53321.
[123]
Ruegg, R.; Ryser, G. West German Patent No. 2252805 (1973); Chem. Abstr., 79, 53325.
[124]
Bauer, V.J.; Safir, S.R. Bisethylenebiguanide. J. Heterocycl. Chem., 1964, 1(5), 288-289.
[http://dx.doi.org/10.1002/jhet.5570010518]
[125]
Witenbrook, L.S. The chemistry of n-cyanodithioimidocarbonic acid. iii an intermediate in heterocyclic synthesis. J. Heterocycl. Chem., 1975, 12(1), 37-42.
[http://dx.doi.org/10.1002/jhet.5570120107]
[126]
Webb, R.L.; Labaw, C.S. Diphenyl cyanocarbonimidate. A versatile synthon for the construction of heterocyclic systems. J. Heterocycl. Chem., 1982, 19(5), 1205-1206.
[http://dx.doi.org/10.1002/jhet.5570190543]
[127]
Elgemeie, G.H.; Mohamed, R.A. Application of dimethyl N-cyanodithioiminocarbonate in synthesis of fused heterocycles and in biological chemistry. Heterocycl. Commun., 2014, 20(6), 313-331.
[http://dx.doi.org/10.1515/hc-2014-0156]
[128]
Shestakov, A.S.; Gusakova, N.V.; Shikhaliev, Kh.S.; Timoshkina, A.G. Cyanamides in the synthesis of 1,3-Thiazole and 1,3-Thiazine derivatives. Russ. J. Org. Chem., 2007, 43(12), 1825-1829.
[http://dx.doi.org/10.1134/S1070428007120159]
[129]
Vercek, B.; Ogorevc, B.; Stanovnik, B.; Tisler, M. Cyanoamino compounds in synthesis syntheses of some heterocycles. Monatsh. Chem., 1983, 114(6-7), 789-798.
[http://dx.doi.org/10.1007/BF01134190]
[130]
Werbel, L.M.; Curry, A.; Elslager, E.F.; Hess, C. Synthesis and antimalarial effects of 5,6-dichloro-2-[(4-||4-(diethylamino)-i-methylbutyl] amino||-6-methyl-2-pyrirnidin-yl)amino]benzimidazole and related benzimidazoles and lH-imidazo[4,5-b] pyridines. J. Heterocycl. Chem., 1973, 10(3), 363-382.
[http://dx.doi.org/10.1002/jhet.5570100316]
[131]
Süleyman, S.; Murat, G.; Sinan, S. Influence of temperatures on the tautomerism of the n-(1h-imidazoline-2-yl)-1h-benzimidazol-2-amine and investigation of its electrochemical behaviour. Chin. J. Chem., 2012, 30(2), 400-404.
[http://dx.doi.org/10.1002/cjoc.201100103]
[132]
Servi, S.; Genc, M. Microwave-assisted synthesis of n-(1h-imidazoline-2-yl)-1h-benzimidazol-2-amine and its n-functionalized derivatives. Synth. Commun., 2012, 42(19), 2797-2805.
[http://dx.doi.org/10.1080/00397911.2011.567883]
[133]
Yüksektepe, C. Çalişkan, N.; Genç, M.; Servi, S. Synthesis, crystal structure, HF and DFT calculations of 1-(2-chlorobenzyl)-N-(1-(2-chlorobenzyl)-4,5-dihydro-1H-imidazol-2-yl)-1H-benzimidazol-2-amine. Crystallogr. Rep., 2010, 55(7), 1188-1193.
[http://dx.doi.org/10.1134/S106377451007014X]
[134]
Merchán, F.L.; Garín, J.; Meléndez, E.; Tejero, T. -(2-Benzimidazolylamino)-benzothiazoles and 2-(2-Imidazolidinyledenamino)-benzothiazoles. Synthesis, 1982, 1982(12), 1066-1067.
[http://dx.doi.org/10.1055/s-1982-30068]
[135]
Yıldırım, S.Ö.; Akkurt, M.; Servi, S.; Sekerci, M.; Fun, H-K. 1-[2-(1,3-Benzothiazol-2-ylimino)imidazolidin-1-yl]ethanone. Acta Crystallogr., 2006, E62, 1870-1871.
[136]
Mavrova, A.T.S.; Denkova, P.; Tsenov, Y.A.; Anichina, K.K.; Vutchev, D.I. Synthesis and antitrichinellosis activity of some bis(benzimidazol-2-yl)amines. Bioorg. Med. Chem., 2007, 15(18), 6291-6297.
[http://dx.doi.org/10.1016/j.bmc.2007.06.017] [PMID: 17600722]
[137]
Mavrova, A.T.; Wesselinova, D.; Tsenov, J.A.; Denkova, P. Cytotoxic effects of some n-substituted-2-amino-1h-benzimidazoles. J. Bioequiv. Availab., 2012, 4, 52-55.
[138]
Molina, P.; Lorenzo, A.; Aller, E. Iminophosphorane-mediated annulation of 1,3,5-triazine to benzimidazole: Synthesis of 1,3,5-triazino[1,2-a]benzimidazoles. Synthesis, 1992, 1992(3), 297-302.
[http://dx.doi.org/10.1055/s-1992-26096]
[139]
Hoesl, C.E.; Nefzi, A.; Houghten, R.A. Abnormal aza-Wittig reaction on the solid-phase:Chemoselectivity studies towards the parallel synthesis of3-aryl-2,4-dioxo-1,3,5-triazino[1,2-a]benzimidazoles. Tetrahedron Lett., 2003, 44(18), 3705-3708.
[http://dx.doi.org/10.1016/S0040-4039(03)00633-6]
[140]
Hoesl, C.E.; Nefzi, A.; Houghten, R.A. Parallel solid-phase synthesis of 2-imino-4-oxo-1,3,5-triazino[1,2-a]benzimidazoles via tandem aza-wittig/heterocumulene-mediated annulation reaction. J. Comb. Chem., 2003, 5(2), 155-160.
[http://dx.doi.org/10.1021/cc020077e] [PMID: 12625706]
[141]
Hoesl, C.E.; Nefzi, A.; Houghten, R.A. Halogenoalkyl isocyanates as bifunctional reagents in an Aza-Wittig/heterocyclization reaction on the solid phase: Efficient entry into new tetracyclic benzimidazole systems. J. Comb. Chem., 2004, 6(2), 220-223.
[http://dx.doi.org/10.1021/cc030036y] [PMID: 15002970]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy