Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Research Article

Deep Eutectic Solvent (DES) Mediated Multicomponent Synthesis of 4- thiazolidinone-5-carboxylic Acid: A Green Chemistry Approach

Author(s): Majid Shaikh, Mujahed Shaikh, Devendra Wagare, Anis Ahmed Sheikh and Sayyad Sultan Kasim*

Volume 11, Issue 1, 2022

Published on: 15 July, 2022

Page: [65 - 70] Pages: 6

DOI: 10.2174/2211544711666220610163447

Price: $65

Abstract

Background: The 4-thiazolidinone-5-carboxylic acid and its derivatives have diverse applications in agriculture, industrial and pharmaceutical fields. Therefore, the synthesis of this heterocyclic compound attracted much attention from researchers with green chemistry protocols. In this research work, we have introduced the green protocol for the synthesis of 4-thiazolidinone- 5-carboxylic acid by keeping the parameters in mind like cost-effective, environmentally benign, short reaction time and easy work-up procedure.

Methods: Initially, we irradiated the mixture of substituted aldehyde, thiosemicarbazide and furan 2-5-dione in the presence of choline chloride-thiourea-based Deep Eutectic Solvent (DES) as a green medium. The reaction optimization was performed in different solvents like ethanol, glycerol, and PEG-400.

Results: The DES, which was used as a green solvent, produced an excellent result in context to short reaction time, yield, easy workup, mild reaction condition and cost-effective protocol. All the results are discussed.

Conclusion: The DES-mediated synthesis of 4-thiazolidinone-5-carboxylic acid is found to be an excellent protocol, which followed green chemistry principles. This method has specific features like mild reaction conditions, environmentally benign, cost-effective and easy workup procedure.

Keywords: Aromatic aldehyde, thiosemicarbazide, furan-2, 5-dione, Deep Eutectic Solvent (DES), microwave irradiation, 4- thiazolidinone-5-carboxylic acid.

Graphical Abstract
[1]
Sahiba, N.; Sethiya, A.; Soni, J.; Agarwal, D.K.; Agarwal, S. Saturated five-membered thiazolidines and their derivatives: From synthesis to biological applications. Top. Curr. Chem. (Cham), 2020, 378(2), 34.
[http://dx.doi.org/10.1007/s41061-020-0298-4] [PMID: 32206929]
[2]
Jain, A.K.; Vaidya, A.; Ravichandran, V.; Kashaw, S.K.; Agrawal, R.K. Recent developments and biological activities of thiazolidinone derivatives: A review. Bioorg. Med. Chem., 2012, 20(11), 3378-3395.
[http://dx.doi.org/10.1016/j.bmc.2012.03.069] [PMID: 22546204]
[3]
Haroun, M.; Tratrat, C.; Kositsi, K.; Tsolaki, E.; Petrou, A.; Aldhubiab, B.; Attimarad, M.; Harsha, S.; Geronikaki, A.; Venugopala, K.N.; Elsewedy, H.S.; Sokovic, M.; Glamoclija, J.; Ciric, A. New benzothiazole-based thiazolidinones as potent antimicrobial agents. Design, synthesis and biological evaluation. Curr. Top. Med. Chem., 2018, 18(1), 75-87.
[http://dx.doi.org/10.2174/1568026618666180206101814] [PMID: 29412109]
[4]
Havrylyuk, D.; Roman, O.; Lesyk, R. Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazoline-thiazolidine-based hybrids. Eur. J. Med. Chem., 2016, 113, 145-166.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.030] [PMID: 26922234]
[5]
Costa, V.; Foti, D.; Paonessa, F.; Chiefari, E.; Palaia, L.; Brunetti, G.; Gulletta, E.; Fusco, A.; Brunetti, A. The insulin receptor: A new anticancer target for peroxisome proliferator-activated receptor-gamma (PPARgamma) and thiazolidinedione-PPARgamma agonists. Endocr. Relat. Cancer, 2008, 15(1), 325-335.
[http://dx.doi.org/10.1677/ERC-07-0226] [PMID: 18310298]
[6]
Okumura, T. Mechanisms by which thiazolidinediones induce anti-cancer effects in cancers in digestive organs. J. Gastroenterol., 2010, 45(11), 1097-1102.
[http://dx.doi.org/10.1007/s00535-010-0310-9] [PMID: 20824291]
[7]
Afifi, O.S.; Shaaban, O.G.; Abd El Razik, H.A.; Shams El-Dine, S.E.A.; Ashour, F.A.; El-Tombary, A.A.; Abu-Serie, M.M. Synthesis and biological evaluation of purine-pyrazole hybrids incorporating thiazole, thiazolidinone or rhodanine moiety as 15-LOX inhibitors endowed with anticancer and antioxidant potential. Bioorg. Chem., 2019, 87, 821-837.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.076] [PMID: 30999135]
[8]
Hafez, H.N.; El-Gazzar, A.R.B. Synthesis and antitumor activity of substituted triazolo[4,3-a]pyrimidin-6-sulfonamide with an incorporated thiazolidinone moiety. Bioorg. Med. Chem. Lett., 2009, 19(15), 4143-4147.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.126] [PMID: 19540114]
[9]
Chand, K. Rajeshwari; Hiremathad, A.; Singh, M.; Santos, M.A.; Keri, R.S. A review on antioxidant potential of bioactive heterocycle benzofuran: Natural and synthetic derivatives. Pharmacol. Rep., 2017, 69(2), 281-295.
[http://dx.doi.org/10.1016/j.pharep.2016.11.007] [PMID: 28171830]
[10]
Nirwan, S.; Chahal, V.; Kakkar, R. Thiazolidinones: Synthesis, reactivity, and their biological applications. J. Heterocycl. Chem., 2019, 56(4), 1239-1253.
[http://dx.doi.org/10.1002/jhet.3514]
[11]
Saundane, A.R.; Yarlakatti, M.; Walmik, P.; Katkar, V. Synthesis, antioxidant and antimicrobial evaluation of thiazolidinone, azetidinone encompassing indolylthienopyrimidines. J. Chem. Sci., 2012, 124(2), 469-481.
[http://dx.doi.org/10.1007/s12039-011-0180-6]
[12]
Vicini, P.; Geronikaki, A.; Incerti, M.; Zani, F.; Dearden, J.; Hewitt, M. 2-Heteroarylimino-5-benzylidene-4-thiazolidinones analogues of 2-thiazolylimino-5-benzylidene-4-thiazolidinones with antimicrobial activity: Synthesis and structure-activity relationship. Bioorg. Med. Chem., 2008, 16(7), 3714-3724.
[http://dx.doi.org/10.1016/j.bmc.2008.02.001] [PMID: 18299196]
[13]
Kavitha, C.V. Basappa; Swamy, S.N.; Mantelingu, K.; Doreswamy, S.; Sridhar, M.A.; Shashidhara Prasad, J.; Rangappa, K.S. Synthesis of new bioactive venlafaxine analogs: Novel thiazolidin-4-ones as antimicrobials. Bioorg. Med. Chem., 2006, 14(7), 2290-2299.
[http://dx.doi.org/10.1016/j.bmc.2005.11.017] [PMID: 16338140]
[14]
El-Gaby, M.S.; El-Hag Ali, G.A.; El-Maghraby, A.A.; Abd El-Rahman, M.T.; Helal, M.H. Synthesis, characterization and in vitro antimicrobial activity of novel 2-thioxo-4-thiazolidinones and 4,4′-bis(2-thioxo-4-thiazolidinone-3-yl)diphenylsulfones. Eur. J. Med. Chem., 2009, 44(10), 4148-4152.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.005] [PMID: 19540629]
[15]
Shintre, S.A.; Ramjugernath, D.; Islam, M.S.; Mopuri, R.; Mocktar, C.; Koorbanally, N.A. Synthesis, in vitro antimicrobial, antioxidant, and antidiabetic activities of thiazolidine–quinoxaline derivatives with amino acid side chains. Med. Chem. Res., 2017, 26(9), 2141-2151.
[http://dx.doi.org/10.1007/s00044-017-1922-x]
[16]
Rocha-Roa, C.; Molina, D.; Cardona, N. A perspective on thiazolidinone scaffold development as a new therapeutic strategy for toxoplasmosis. Front. Cell. Infect. Microbiol., 2018, 8, 360.
[http://dx.doi.org/10.3389/fcimb.2018.00360] [PMID: 30386743]
[17]
Pandya, D.; Nair, K.B. Bridged bis(4-thiazolidinones) and related compounds with antibacterial activity. Pharmazie, 1993, 48(6), 414-417.
[PMID: 8341728]
[18]
Cushnie, T.P.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents, 2014, 44(5), 377-386.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.06.001] [PMID: 25130096]
[19]
Sachdeva, H.; Dwivedi, D.; Goyal, P. Green chemical synthesis and analgesic activity of fluorinated thiazolidinone, pyrazolidinone, and dioxanedione derivatives. Org. Chem. Int., 2013, Article Id 976032..
[http://dx.doi.org/10.1155/2013/976032]
[20]
Sharma, P.C.; Sinhmar, A.; Sharma, A.; Rajak, H.; Pathak, D.P. Medicinal significance of benzothiazole scaffold: An insight view. J. Enzyme Inhib. Med. Chem., 2013, 28(2), 240-266.
[http://dx.doi.org/10.3109/14756366.2012.720572] [PMID: 23030043]
[21]
Verma, A.; Saraf, S.K. 4-thiazolidinone--a biologically active scaffold. Eur. J. Med. Chem., 2008, 43(5), 897-905.
[http://dx.doi.org/10.1016/j.ejmech.2007.07.017] [PMID: 17870209]
[22]
Ergenc, N.; Capan, G. Synthesis and anticonvulsant activity of new 4-thiazolidone and 4-thiazoline derivatives Farmaco (Societa chimica italiana: 1989), 1994, 49(2), 133-135.
[23]
Prabhakar, Y.S.; Solomon, V.R.; Gupta, M.K.; Katti, S.B. QSAR studies on thiazolidines: A biologically privileged scaffold. In: QSAR and Molecular Modeling Studies in Heterocyclic Drugs II; Springer: Berlin, Heidelberg, 2006; pp. 161-249.
[http://dx.doi.org/10.1007/7081_021]
[24]
Bayoumi, W.A.; Abdel-Rhman, S.H.; Shaker, M.E. Synthesis and evaluation of new 2-Iminothiazolidin-4-one and Thiazolidin-2, 4-dione derivatives as antimicrobial and anti-inflammatory agents. Open Chem. J., 2014, 1(1), 33-38.
[http://dx.doi.org/10.2174/1874842201401010033]
[25]
Prasanna, P.; Balamurugan, K.; Perumal, S.; Yogeeswari, P.; Sriram, D. A regio- and stereoselective 1,3-dipolar cycloaddition for the synthesis of novel spiro-pyrrolothiazolyloxindoles and their antitubercular evaluation. Eur. J. Med. Chem., 2010, 45(12), 5653-5661.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.019] [PMID: 20932607]
[26]
Abdul‐Kader Saleh, N.; El‐Abd Saltani, H.; Abbas Al‐Issa, F. Evaluation of antifungal and antioxidant activity of newly synthesized 4‐Thiazolidinones. J. Chin. Chem. Soc. (Taipei), 2013, 60(11), 1353-1358.
[http://dx.doi.org/10.1002/jccs.201300048]
[27]
Kunzler, A.; Neuenfeldt, P.D. das Neves, A.M.; Pereira, C.M.; Marques, G.H.; Nascente, P.S.; Fernandes, M.H.; Hübner, S.O.; Cunico, W. Synthesis, antifungal and cytotoxic activities of 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidinones. Eur. J. Med. Chem., 2013, 64, 74-80.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.030] [PMID: 23644190]
[28]
Tripathi, A.C.; Gupta, S.J.; Fatima, G.N.; Sonar, P.K.; Verma, A.; Saraf, S.K. 4-Thiazolidinones: The advances continue…. Eur. J. Med. Chem., 2014, 72, 52-77.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.017] [PMID: 24355348]
[29]
Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 1-21.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
[30]
Barreca, M.L.; Chimirri, A.; De Luca, L.; Monforte, A.M.; Monforte, P.; Rao, A.; Zappalà, M.; Balzarini, J.; De Clercq, E.; Pannecouque, C.; Witvrouw, M. Discovery of 2,3-diaryl-1,3-thiazolidin-4-ones as potent anti-HIV-1 agents. Bioorg. Med. Chem. Lett., 2001, 11(13), 1793-1796.
[http://dx.doi.org/10.1016/S0960-894X(01)00304-3] [PMID: 11425562]
[31]
Tanaka, H.; Baba, M.; Hayakawa, H.; Sakamaki, T.; Miyasaka, T.; Ubasawa, M.; Takashima, H.; Sekiya, K.; Nitta, I.; Shigeta, S.; Walker, R.T. A new class of HIV-1-specific 6-substituted acyclouridine derivatives: Synthesis and anti-HIV-1 activity of 5- or 6-substituted analogues of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT). J. Med. Chem., 1991, 34(1), 349-357.
[http://dx.doi.org/10.1021/jm00105a055] [PMID: 1992136]
[32]
Liaras, K.; Fesatidou, M.; Geronikaki, A. Thiazoles and thiazolidinones as COX/LOX inhibitors. Molecules, 2018, 23(3), 685.
[http://dx.doi.org/10.3390/molecules23030685] [PMID: 29562646]
[33]
Shaikh, M.H.; Wagare, D.S.; Farooqui, M.A.; Durrani, A.N. Facile and green one-pot synthesis of 2-aminothiazoles in glycerol-water. Heterocyclic Letters, 2017, 7(4), 1061-1064.
[34]
Wagare, D.S.; Shaikh, M.; Farooqui, M.; Durrani, A. PEG-1500 in water: A green, recyclable catalyst for the one-pot synthesis of imidazo [1, 2-a] pyrimidines under microwave irradiation. Chem. Bio. Interf., 2016, 6(6), 405-409.
[35]
Wagare, D.S.; Farooqui, M.; Keche, T.D.; Durrani, A. Efficient and green microwave-assisted one-pot synthesis of azaindolizines in PEG-400 and water. Synth. Commun., 2016, 46(21), 1741-1746.
[http://dx.doi.org/10.1080/00397911.2016.1223314]
[36]
Wagare, D.S.; Netankar, P.D.; Shaikh, M.; Farooqui, M.; Durrani, A. Highly efficient microwave-assisted one-pot synthesis of 4-aryl-2-aminothiazoles in aqueous medium. Environ. Chem. Lett., 2017, 15(3), 475-479.
[http://dx.doi.org/10.1007/s10311-017-0619-1]
[37]
Shaikh, M.; Wagare, D.; Farooqui, M.; Durrani, A. Microwave assisted synthesis of novel schiff bases of Pyrazolyl Carbaldehyde and Triazole in PEG-400. Polycycl. Aromat. Compd., 2020, 40(5), 1315-1320.
[38]
Shaikh, M.; Wagare, D.; Farooqui, M.; Durrani, A. Rapid and environmentally benign protocol for the synthesis of pyrazolyl-4-thiazolidinone. Asian J. Pharm. Pharmacol., 2019, 5(3), 576-581.
[http://dx.doi.org/10.31024/ajpp.2019.5.3.21]
[39]
Biglari, M.; Shirini, F.; Mahmoodi, N.O.; Zabihzadeh, M.; Mashhadinezhad, M. A choline chloride-based deep eutectic solvent promoted three-component synthesis of tetrahydrobenzo [b] pyran and pyrano [2, 3-d] pyrimidinone (thione) derivatives. J. Mol. Struct., 2020, 1205, 127652.
[http://dx.doi.org/10.1016/j.molstruc.2019.127652]
[40]
Mujahed, S.; Sonone, A.; Farooqui, M.; Durrani, A. Trimethylsilyl chloride catalyzed highly efficient synthesis of schiff bases of thiazole in glycerol under microwave irradiation. Asian J. Organic Med. Chem., 2019, 4, 109-112.
[http://dx.doi.org/10.14233/ajomc.2019.AJOMC-P170]
[41]
Ebrahimi, S. One-pot synthesis of 1, 3-thiazolidin-4-one using ammonium persulfate as catalyst. J. Sulfur Chem., 2016, 37(6), 587-592.
[http://dx.doi.org/10.1080/17415993.2016.1223298]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy