Generic placeholder image

Recent Advances in Anti-Infective Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-4344
ISSN (Online): 2772-4352

Research Article

A Study on the Bio-responses of a Freshwater Snail (Biomphalaria alexandrina) to Fungal-derived Compounds

Author(s): Amal A.I. Mekawey, Ahmed M. Salah and Mohammed Yosri*

Volume 17, Issue 2, 2022

Published on: 02 September, 2022

Page: [139 - 153] Pages: 15

DOI: 10.2174/2772434417666220610110226

Price: $65

Abstract

Background: Biomphalaria alexandrina snails, as transitional hosts of schistosomiasis, plays an essential part in the spread of the illness. Control of these snails by the substance molluscicides antagonistically influences the oceanic climate, causing poisonous and cancer-causing consequences for non-target life forms.

Objective: Looking for new naturally safe substances that can treat schistosomiasis disease with minimal side effects on the environment and plants, fish wealth and do not affect vital human functions.

Methods: Fifty fungal species were used to evaluate their activity against Biomphalaria alexandrina. Study the effect of the fungal extract on vital functions of Biomphalaria alexandrina and fish wealth. Purification of active substances and identification of their chemical structures.

Results: Cladosporium nigrellum and Penicillium aurantiogresium metabolites were effective against B. alexandrina snails, and the effects of promising fungal extracts sublethal concentrations (IC10 & IC25) on the levels of steroid sex hormones, liver enzymes, total protein, lipids, albumin and glucose were determined. Chemical analyses of this filtrate separated a compound effective against snails; it was identified. Protein electrophoresis showed that fungal filtrate affects the protein pattern of snails’ haemolymph. Little or no mortality of Daphnia pulex individuals was observed after their exposure to sublethal concentrations of each treatment.

Conclusion: Certain compounds from fungal cultures could be safely used for biological control of Biomphalaria alexandrina snails.

Keywords: Biomphalaria alexandrina, fungi, bioactive compounds, Daphnia pulex, biological control, fungal derived compoung.

Graphical Abstract
[1]
Mawa, P.A.; Kincaid-Smith, J.; Tukahebwa, E.M.; Webster, J.P.; Wilson, S. Schistosomiasis morbidity hotspots: Roles of the human host, the parasite and their interface in the development of severe morbidity. Front. Immunol., 2021, 12, 635869.
[http://dx.doi.org/10.3389/fimmu.2021.635869]
[2]
Verjee, M.A. Schistosomiasis: Still a cause of significant morbidity and mortality. Res. Rep. Trop. Med., 2019, 10, 153-163.
[http://dx.doi.org/10.2147/RRTM.S204345] [PMID: 32099508]
[3]
Barakat, R.M. Epidemiology of Schistosomiasis in Egypt: Travel through time :Review. J. Adv. Res., 2013, 4(5), 425-432.
[http://dx.doi.org/10.1016/j.jare.2012.07.003] [PMID: 25685449]
[4]
Costain, A.H.; MacDonald, A.S.; Smits, H.H. Schistosome egg migration: Mechanisms, pathogenesis and host immune responses. Front. Immunol., 2018, 9, 3042.
[http://dx.doi.org/10.3389/fimmu.2018.03042] [PMID: 30619372]
[5]
Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol., 2014, 7(2), 60-72.
[http://dx.doi.org/10.2478/intox-2014-0009] [PMID: 26109881]
[6]
de Carvalho Augusto, R.; Mello Silva, M.C.C. Phytochemical molluscicides and schistosomiasis: What we know and what we still need to learn. Vet. Sci., 2018, 5(4), 94.
[http://dx.doi.org/10.3390/vetsci5040094] [PMID: 30404145]
[7]
Al-Wasify, R.S.; Ali, M.N.; Hamed, S.R. Biodegradation of dairy wastewater using bacterial and fungal local isolates. Water Sci. Technol., 2017, 76(11-12), 3094-3100.
[http://dx.doi.org/10.2166/wst.2017.481] [PMID: 29210695]
[8]
Curry, E.C.; Hart, R.G.; Habtu, D.Y.; Chamberlain, N.R. Detection and partial characterization of extracellular inducers of persistence in Staphylococcus epidermidis and Staphylococcus aureus. J. Med. Microbiol., 2021, 70(6), 001392.
[http://dx.doi.org/10.1099/jmm.0.001392] [PMID: 34170218]
[9]
Yazici, A.; Örtücü, S. Taşkin M. Screening and characterization of a novel antibiofilm polypeptide derived from filamentous fungi. J. Proteomics, 2021, 233, 104075.
[http://dx.doi.org/10.1016/j.jprot.2020.104075]
[10]
Gavanji, S.; Larki, B. Comparative effect of propolis of honey bee and some herbal extracts on Candida albicans. Chin. J. Integr. Med., 2017, 23(3), 201-207.
[http://dx.doi.org/10.1007/s11655-015-2074-9] [PMID: 26149083]
[11]
Millot, M.; Girardot, M.; Dutreix, L.; Mambu, L.; Imbert, C. Antifungal and anti-biofilm activities of acetone lichen extracts against Candida albicans. Molecules, 2017, 22(4), 651.
[http://dx.doi.org/10.3390/molecules22040651]
[12]
Zhang, Y.; Liu, R.; Liu, C.; Li, S.; Tsao, R. Development of ultrasound-assisted mixture extraction and online extraction solution concentration coupled with countercurrent chromatography for the preparation of pure phytochemicals from Phellinus vaninii. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2021, 1171, 122619.
[13]
Kiros, G.; Erko, B.; Giday, M.; Mekonnen, Y. Laboratory assessment of molluscicidal and cercariacidal effects of Glinus lotoides fruits. BMC Res. Notes, 2014, 7(7), 220.
[http://dx.doi.org/10.1186/1756-0500-7-220] [PMID: 24713133]
[14]
He, P.; Wang, W.; Sanogo, B. Molluscicidal activity and mechanism of toxicity of a novel salicylanilide ester derivative against Biomphalaria species. Parasit. Vectors, 2017, 10(1), 383.
[http://dx.doi.org/10.1186/s13071-017-2313-3] [PMID: 28793917]
[15]
Hebat-Allah, A.S.; Mohamed, A.E.; Hanan, S.M.; Tarek, A.E.; Magdy, T.K. Impact of carbamide perhydrate on the snail Bulinus truncatus, the intermediate host of Schistosoma haematobium. Egypt J Aquat Biol Fish, 2021, 25(3), 85-99.
[http://dx.doi.org/10.21608/ejabf.2021.172770]
[16]
Trease, G.E.; Evans, W.C. Pharmacognosy; Alden Press: Oxford, 1996, pp. 213-232.
[17]
Mekawey, A.A.I.; El-Metwally, M.M. Impact of nanoencapsulated natural bioactive phenolic metabolites on chitosan nanoparticles as aflatoxins inhibitor. J. Basic Microbiol., 2019, 59(6), 599-608.
[http://dx.doi.org/10.1002/jobm.201800481] [PMID: 30900741]
[18]
Yosri, M.; Amin, B.H.; Abed, N.N.; Elithy, A.S.; Kareem, S.M.; Sidkey, N.M. Identification of novel bioactive compound derived from Rheum officinalis against Campylobacter jejuni NCTC11168. Sci World J, 2020, 2020, 3591276.
[http://dx.doi.org/10.1155/2020/3591276] [PMID: 32665768]
[19]
Yoshino, T.P.; Wu, X.J.; Gonzalez, L.A.; Hokke, C.H. Circulating Biomphalaria glabrata hemocyte subpopulations possess shared schistosome glycans and receptors capable of binding larval glycoconjugates. Exp. Parasitol., 2013, 133(1), 28-36.
[http://dx.doi.org/10.1016/j.exppara.2012.10.002] [PMID: 23085445]
[20]
Mir, A.H.; Qamar, A.; Qadir, I.; Naqvi, A.H.; Begum, R. Accumulation and trafficking of zinc oxide nanoparticles in an invertebrate model, Bombyx mori, with insights on their effects on immuno-competent cells. Sci. Rep., 2020, 10(1), 1617.
[http://dx.doi.org/10.1038/s41598-020-58526-1] [PMID: 32005898]
[21]
Dalirsefat, S.B.; da Silva Meyer, A.; Mirhoseini, S.Z. Comparison of similarity coefficients used for cluster analysis with amplified fragment length polymorphism markers in the silkworm, Bombyx mori. J. Insect Sci., 2009, 9, 1-8.
[http://dx.doi.org/10.1673/031.009.7101] [PMID: 20050782]
[22]
Brock, T.C.; Van Wijngaarden, R.P. Acute toxicity tests with Daphnia magna, Americamysis bahia, Chironomus riparius and Gammarus pulex and implications of new EU requirements for the aquatic effect assessment of insecticides. Environ. Sci. Pollut. Res. Int., 2012, 19(8), 3610-3618.
[http://dx.doi.org/10.1007/s11356-012-0930-0] [PMID: 22562347]
[23]
Vukov, O.; Smith, D.S.; McGeer, J.C. Acute dysprosium toxicity to Daphnia pulex and Hyalella azteca and development of the biotic ligand approach. Aquat. Toxicol., 2016, 170, 142-151.
[http://dx.doi.org/10.1016/j.aquatox.2015.10.016] [PMID: 26655658]
[24]
Foudhaili, T.; Jaidi, R.; Neculita, C.M. Effect of the electrocoagulation process on the toxicity of gold mine effluents: A comparative assessment of Daphnia magna and Daphnia pulex. Sci. Total Environ., 2020, 708, 134739.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134739] [PMID: 31784179]
[25]
Lee, S.; Lee, D.K. What is the proper way to apply the multiple comparison test? Korean J. Anesthesiol., 2018, 71(5), 353-360.
[http://dx.doi.org/10.4097/kja.d.18.00242] [PMID: 30157585]
[26]
El-Nassery, S.M.; Abou-El-Naga, I.F.; Allam, S.R.; Shaat, E.A.; Mady, R.F. Genetic variation between Biomphalaria alexandrina snails susceptible and resistant to Schistosoma mansoni infection. BioMed Res. Int., 2013, 2013, 160320.
[http://dx.doi.org/10.1155/2013/160320] [PMID: 23878796]
[27]
Abdel-Hamid, H.; Mekawey, A.A. Biological and hematological responses of Biomphalaria alexandrina to mycobiosynthsis silver nanoparticles. J. Egypt. Soc. Parasitol., 2014, 44(3), 627-637.
[http://dx.doi.org/10.12816/0007866] [PMID: 25643504]
[28]
Abd El-Ghany, A.M.; Salama, A.; Abd El-Ghany, N.M.; Gharieb, R.M.A. New approach for controlling snail host of Schistosoma mansoni, Biomphalaria alexandrina with cyanobacterial strains-derived C-phycocyanin. Vector Borne Zoonotic Dis., 2018, 18(9), 464-468.
[http://dx.doi.org/10.1089/vbz.2018.2274] [PMID: 29920163]
[29]
A Gohar A, T Maatooq G, R Gadara S, S Aboelmaaty W, M El-Shazly A. Molluscicidal activity of the methanol extract of Callistemon viminalis (sol. ex gaertner) g.don ex loudon fruits, bark and leaves against Biomphalaria alexandrina snails. Iran. J. Pharm. Res., 2014, 13(2), 505-514.
[PMID: 25237345]
[30]
Jia, T.W.; Wang, W.; Sun, L.P. Molluscicidal effectiveness of Luo-Wei, a novel plant-derived molluscicide, against Oncomelania hupensis, Biomphalaria alexandrina and Bulinus truncatus. Infect. Dis. Poverty, 2019, 8(1), 27.
[http://dx.doi.org/10.1186/s40249-019-0535-7]
[31]
Ibrahim, A.M.; Ghoname, S.I. Molluscicidal impacts of Anagallis arvensis aqueous extract on biological, hormonal, histological and molecular aspects of Biomphalaria alexandrina snails. Exp. Parasitol., 2018, 192, 36-41.
[http://dx.doi.org/10.1016/j.exppara.2018.07.014] [PMID: 30040958]
[32]
Ibrahim, A.M.; Bakry, F.A. Assessment of the molluscicidal impact of extracted chlorophyllin on some biochemical parameters in the nervous tissue and histological changes in Biomphalaria alexandrina and Lymnaea natalensis snails. Invert. Neurosci., 2019, 19(3), 7.
[http://dx.doi.org/10.1007/s10158-019-0230-1]
[33]
OECD protocol n° 202: daphnia sp., acute immobilisation test and reproduction, test organisation for economic co-operation and development, Paris. 2004. Available from: https://www.oecd-ilibrary.org/environment/test-no-202-daphnia-sp-acute-immobilisation-test_9789264069947-en
[34]
Andreu, V.; Levert, A.; Amiot, A.; Cousin, A.; Aveline, N.; Bertrand, C. Chemical composition and antifungal activity of plant extracts traditionally used in organic and biodynamic farming. Environ. Sci. Pollut. Res. Int., 2018, 25(30), 29971-29982.
[http://dx.doi.org/10.1007/s11356-018-1320-z] [PMID: 29516419]
[35]
Nguegang, B.; Sibanda, T.; Tekere, M. Cultivable bacterial diversity, physicochemical profiles, and toxicity determination of car wash effluents. Environ. Monit. Assess., 2019, 191(8), 478.
[http://dx.doi.org/10.1007/s10661-019-7600-3]
[36]
Pawlik-Skowrońska B, Toporowska M, Mazur-Marzec H. Effects of secondary metabolites produced by different cyanobacterial populations on the freshwater zooplankters Brachionus calyciflorus and Daphnia pulex. Environ. Sci. Pollut. Res. Int., 2019, 26(12), 11793-11804.
[http://dx.doi.org/10.1007/s11356-019-04543-1] [PMID: 30815809]
[37]
Bakry, F.A.; El-Hommossany, K.; Abd El-Atti, M.; Ismail, S.M. Alterations in the fatty acid profile, antioxidant enzymes and protein pattern of Biomphalaria alexandrina snails exposed to the pesticides diazinon and profenfos. Toxicol. Ind. Health, 2016, 32(4), 666-676.
[http://dx.doi.org/10.1177/0748233713506770] [PMID: 24215063]
[38]
El-Deeb, F.A.A.; Marie, M.A.S.; Wafaa, S.H.; Rehab, M.A.H.; Sara, S.M.S. Biomarkers of oxidative stress in Biomphalaria alexandrina snails for assessing the effects of certain inorganic fertilizers. Molluscan Res., 2017, 37(4), 289-294.
[http://dx.doi.org/10.1080/13235818.2017.1357783]
[39]
Rizk, M.Z.; Metwally, N.S.; Hamed, M.A.; Mohamed, A.M. Correlation between steroid sex hormones, egg laying capacity and cercarial shedding in Biomphalaria alexandrina snails after treatment with Haplophyllum tuberculatum. Exp. Parasitol., 2012, 132(2), 171-179.
[http://dx.doi.org/10.1016/j.exppara.2012.06.011] [PMID: 22771439]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy