Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Ten Years of Progress in the Synthesis of 2-Pyridone Derivatives via Three / Four Component Reaction

Author(s): Kebaili Asmaa, Belhadj Fatima*, Kibou Zahira and Choukchou-Braham Noureddine

Volume 20, Issue 4, 2023

Published on: 15 August, 2022

Page: [358 - 371] Pages: 14

DOI: 10.2174/1570193X19666220519090636

Price: $65

Abstract

2-pyridones represents ubiquitous scaffolds often present in both natural products and pharmaceutical compounds. Due to their wide applications in medicinal chemistry, it is not surprising that the synthesis of 2-pyridone derivatives has attracted organic chemists for many years. This mini review focuses on the recent development in the multi-component synthesis of 2-pyridones for the period 2011 to 2021, particularly those that involve the three/four component reactions of activated methylene, aldehyde or ketone withdifferent intermediate materials under different conditions.

Keywords: Organic chemistry, heterocyclic compounds, 2-pyridone, one-pot synthesis, three/four component reaction, green synthesis.

Graphical Abstract
[1]
Saini, M.S.; Kumar, A.; Dwivedi, J.; Singh, R. A review: Biological significances of heterocyclic compounds. Int. J. Pharm. Sci. Res., 2013, 4(3), 66-77.
[2]
Bhattacherjee, D.; Zyryanov, G.V.; Das, P. Recent advances in the synthetic approaches to 2-pyridones (microreview). Chem. Heterocycl. Compd., 2020, 56(9), 1152-1154.
[http://dx.doi.org/10.1007/s10593-020-02789-z]
[3]
Kaur, N. Ruthenium catalysis in six-membered O-heterocycles synthesis. Synth. Commun., 2018, 48(13), 1551-1587.
[http://dx.doi.org/10.1080/00397911.2018.1457698]
[4]
Al-Mulla, A. A review: Biological importance of heterocyclic compounds. Der. Pharma Chem., 2017, 9(13), 141-147.
[5]
Li, X.; He, L.; Chen, H.; Wu, W.; Jiang, H. Copper-catalyzed aerobic C(sp2)-H functionalization for C-N bond formation: Synthesis of pyrazoles and indazoles. J. Org. Chem., 2013, 78(8), 3636-3646.
[http://dx.doi.org/10.1021/jo400162d] [PMID: 23547954]
[6]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[7]
Kumari, S.; Kishore, D.; Paliwal, S.; Chauhan, R.; Dwivedi, J.; Mishra, A. Transition metal-free one-pot synthesis of nitrogen-containing heterocycles. Mol. Divers., 2016, 20(1), 185-232.
[http://dx.doi.org/10.1007/s11030-015-9596-0] [PMID: 26055184]
[8]
Heravi, M.M.; Hamidi, H. Recent advances in synthesis of 2-pyridones: A key heterocycle is revisited. J. Iran. Chem. Soc., 2013, 10(2), 265-273.
[http://dx.doi.org/10.1007/s13738-012-0155-7]
[9]
Amer, M.M.; Aziz, M.A.; Shehab, W.S.; Abdellattif, M.H.; Mouneir, S.M. Recent advances in chemistry and pharmacological aspects of 2-pyridone scaffolds. J. Saudi Chem. Soc., 2021, 25(6), 101259.
[http://dx.doi.org/10.1016/j.jscs.2021.101259]
[10]
Hirano, K.; Miura, M. A lesson for site-selective C-H functionalization on 2-pyridones: Radical, organometallic, directing group and steric controls. Chem. Sci. (Camb.), 2017, 9(1), 22-32.
[http://dx.doi.org/10.1039/C7SC04509C] [PMID: 29629070]
[11]
Hamama, W.S.; Waly, M.; El-Hawary, I.; Zoorob, H.H. Developments in the chemistry of 2-pyridone. Synth. Commun., 2014, 44(12), 1730-1759.
[http://dx.doi.org/10.1080/00397911.2013.862836]
[12]
Hagar, M.; Chaieb, K.; Parveen, S.; Ahmed, H.; Alnoman, R. N-alkyl 2-pyridone versus O-alkyl 2-pyridol: Ultrasonic synthesis, DFT, docking studies and their antimicrobial evaluation. J. Mol. Struct., 2020, 1199, 126926.
[http://dx.doi.org/10.1016/j.molstruc.2019.126926]
[13]
Ran, X.; Zhou, Q.; Zhang, J.; Wang, S.; Wang, G.; Yang, H.; Liu, X.; Wang, Z.; Yu, X. A solvent-free and efficient synthesis of bicyclic 2-pyridone derivatives for endoplasmic reticulum imaging. Org. Chem. Front., 2021, 8, 3631-3638.
[http://dx.doi.org/10.1039/D1QO00350J]
[14]
Kamauchi, H.; Kimura, Y.; Ushiwatari, M.; Suzuki, M.; Seki, T.; Takao, K.; Sugita, Y. Synthesis and antifungal activity of polycyclic pyridone derivatives with anti-hyphal and biofilm formation activity against Candida albicans. Bioorg. Med. Chem. Lett., 2021, 37, 127845.
[http://dx.doi.org/10.1016/j.bmcl.2021.127845] [PMID: 33571649]
[15]
Gonçalves, D.S. de S Melo, S.M.; Jacomini, A.P.; J V da Silva, M.; Pianoski, K.E.; Ames, F.Q.; Aguiar, R.P.; Oliveira, A.F.; Volpato, H.; Bidóia, D.L.; Nakamura, C.V.; Bersani-Amado, C.A.; Back, D.F.; Moura, S.; Paula, F.R.; Rosa, F.A. Synthesis of novel 3,5,6-trisubstituted 2-pyridone derivatives and evaluation for their anti-inflammatory activity. Bioorg. Med. Chem., 2020, 28(12), 115549.
[http://dx.doi.org/10.1016/j.bmc.2020.115549] [PMID: 32503692]
[16]
Kornsakulkarn, J.; Pruksatrakul, T.; Surawatanawong, P.; Thangsrikeattigun, C.; Komwijit, S.; Boonyuen, N.; Thongpanchang, C. Antimicrobial, antimalarial, and cytotoxic substances from the insect pathogenic fungus Beauveria asiatica BCC 16812. Phytochem. Lett., 2021, 43, 8-15.
[http://dx.doi.org/10.1016/j.phytol.2021.03.003]
[17]
Andrioli, W.J.; Lopes, A.A.; Cavalcanti, B.C.; Pessoa, C.; Nanayakkara, N.P.D.; Bastos, J.K. Isolation and characterization of 2-pyridone alkaloids and alloxazines from Beauveria bassiana. Nat. Prod. Res., 2017, 31(16), 1920-1929.
[http://dx.doi.org/10.1080/14786419.2016.1269091] [PMID: 28032511]
[18]
Ito, S.; Uchida, A.; Isobe, Y.; Hasegawa, Y. Responsiveness to bronchodilator procaterol in COPD as assessed by forced oscillation technique. Respir. Physiol. Neurobiol., 2017, 240, 41-47.
[http://dx.doi.org/10.1016/j.resp.2017.02.012] [PMID: 28238903]
[19]
Si, L.; Zhang, X.; Shin, S.J.; Fan, Y.; Lin, C-C.; Kim, T.M.; Dechaphunkul, A.; Maneechavakajorn, J.; Wong, C.S.; Ilankumaran, P.; Lee, D.Y.; Gasal, E.; Li, H.; Guo, J. Open-label, phase IIa study of dabrafenib plus trametinib in East Asian patients with advanced BRAF V600-mutant cutaneous melanoma. Eur. J. Cancer, 2020, 135, 31-38.
[http://dx.doi.org/10.1016/j.ejca.2020.04.044] [PMID: 32534242]
[20]
Campeau, L-C.; Chen, Q.; Gauvreau, D.; Girardin, M.; Belyk, K.; Maligres, P.; Zhou, G.; Gu, C.; Zhang, W.; Tan, L. A robust kilo-scale synthesis of doravirine. Org. Process Res. Dev., 2016, 20(8), 1476-1481.
[http://dx.doi.org/10.1021/acs.oprd.6b00163]
[21]
Azzam, R.A.; Elboshi, H.A.; Elgemeie, G.H. Novel synthesis and antiviral evaluation of new benzothiazole-bearing N-sulfonamide 2-pyridone derivatives as USP7 enzyme inhibitors. ACS Omega, 2020, 5(46), 30023-30036.
[http://dx.doi.org/10.1021/acsomega.0c04424] [PMID: 33251438]
[22]
Rooney, T.; Barrack, R.L.; Clohisy, J.C.; Nunley, R.M.; Lawrie, C.M. Is apixaban safe and effective for venous thromboembolism prophylaxis after primary total hip and total knee arthroplasties? J. Arthroplasty, 2021, 36(7S), S328-S331.
[http://dx.doi.org/10.1016/j.arth.2021.03.030] [PMID: 33888386]
[23]
Rai, S.K.; Khanam, S.; Khanna, R.S.; Tewari, A.K. Cascade synthesis of 2-pyridones using acrylamides and ketones. RSC Advances, 2014, 4(83), 44141-44145.
[http://dx.doi.org/10.1039/C4RA06619G]
[24]
Dogar, O.; Keding, A.; Gabe, R.; Marshall, A-M.; Huque, R.; Barua, D.; Fatima, R.; Khan, A.; Zahid, R.; Mansoor, S.; Kotz, D.; Boeckmann, M.; Elsey, H.; Kralikova, E.; Parrott, S.; Li, J.; Readshaw, A.; Sheikh, A.; Siddiqi, K. Cytisine for smoking cessation in patients with tuberculosis: A multicentre, randomised, double-blind, placebo-controlled phase 3 trial. Lancet Glob. Health, 2020, 8(11), e1408-e1417.
[http://dx.doi.org/10.1016/S2214-109X(20)30312-0] [PMID: 33069301]
[25]
Lv, Z.; Sheng, C.; Wang, T.; Zhang, Y.; Liu, J.; Feng, J.; Sun, H.; Zhong, H.; Niu, C.; Li, K. Design, synthesis, and antihepatitis B virus activities of novel 2-pyridone derivatives. J. Med. Chem., 2010, 53(2), 660-668.
[http://dx.doi.org/10.1021/jm901237x] [PMID: 20000776]
[26]
Jung, S-H.; Sung, D-B.; Park, C-H.; Kim, W-S. Copper-catalyzed N-arylation of 2-pyridones employing diaryliodonium salts at room temperature. J. Org. Chem., 2016, 81(17), 7717-7724.
[http://dx.doi.org/10.1021/acs.joc.6b01415] [PMID: 27484240]
[27]
Chand, K.; Alsoghier, H.M.; Chaves, S.; Santos, M.A. Tacrine-(hydroxybenzoyl-pyridone) hybrids as potential multifunctional anti-Alzheimer’s agents: AChE inhibition, antioxidant activity and metal chelating capacity. J. Inorg. Biochem., 2016, 163, 266-277.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.05.005] [PMID: 27235273]
[28]
Seifirad, S. Pirfenidone: A novel hypothetical treatment for COVID-19. Med. Hypotheses, 2020, 144, 110005.
[http://dx.doi.org/10.1016/j.mehy.2020.110005] [PMID: 32575019]
[29]
Forrestall, K.L.; Burley, D.E.; Cash, M.K.; Pottie, I.R.; Darvesh, S. 2-Pyridone natural products as inhibitors of SARS-CoV-2 main protease. Chem. Biol. Interact., 2021, 335, 109348.
[http://dx.doi.org/10.1016/j.cbi.2020.109348] [PMID: 33278462]
[30]
Zhou, S.; Liu, D-Y.; Wang, S.; Tian, J-S.; Loh, T-P. An efficient method for the synthesis of 2-pyridones via C-H bond functionalization. Chem. Commun. (Camb.), 2020, 56(95), 15020-15023.
[http://dx.doi.org/10.1039/D0CC06834A] [PMID: 33185645]
[31]
Afsharnezhad, M.; Bayat, M.; Hosseini, F.S. Efficient synthesis of new functionalized 2-(alkylamino)-3-nitro-4-(aryl)-4H-benzo[g]-chromene-5,10-dione. Mol. Divers., 2020, 24(2), 379-389.
[http://dx.doi.org/10.1007/s11030-019-09959-y] [PMID: 31093836]
[32]
Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Tavakoli-Hoseini, N.; Khashi, M. Highly efficient, one-pot, solvent-free synthesis of 2, 4, 6-triarylpyridines using a Brønsted-acidic ionic liquid as reusable catalyst. Monatsh. Chem., 2010, 141(8), 867-870.
[http://dx.doi.org/10.1007/s00706-010-0329-x]
[33]
Choudhury, L.H.; Parvin, T. Recent advances in the chemistry of imine-based multicomponent reactions (MCRs). Tetrahedron, 2011, 67(43), 8213-8228.
[http://dx.doi.org/10.1016/j.tet.2011.07.020] [PMID: 32287421]
[34]
Bayat, M.; Nasri, S.; Notash, B. Synthesis of new 3-cyanoacetamide pyrrole and 3-acetonitrile pyrrole derivatives. Tetrahedron, 2017, 73(11), 1522-1527.
[http://dx.doi.org/10.1016/j.tet.2017.02.005]
[35]
Nunes, P.S.G.; Vidal, H.D.A.; Corrêa, A.G. Recent advances in catalytic enantioselective multicomponent reactions. Org. Biomol. Chem., 2020, 18(39), 7751-7773.
[http://dx.doi.org/10.1039/D0OB01631D] [PMID: 32966520]
[36]
Climent, M.J.; Corma, A.; Iborra, S. Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Advances, 2012, 2(1), 16-58.
[http://dx.doi.org/10.1039/C1RA00807B]
[37]
Kibou, Z.; Cheikh, N.; Choukchou-Braham, N.; Mostefa-Kara, B.; Benabdellah, M.; Villemin, D. New methodology for the synthesis of 2-pyridones using basic Al2O3 as catalyst. Org. React., 2011, 2(3), 293-298.
[38]
Yavari, I.; Bayat, M.J. An efficient organocatalytic method for tandem synthesis of functionalized 2-pyridones. Tetrahedron Lett., 2011, 52(49), 6649-6651.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.029]
[39]
Pradhan, K.; Bhattacharyya, P.; Paul, S.; Das, A.R. Synthesis of 3, 4-dihydropyridin-2-one derivatives in convergent mode applying bio catalyst vitamin B1 and polymer supported catalyst PEG–SO3H from two different sets of building blocks. Tetrahedron Lett., 2012, 53(44), 5840-5844.
[http://dx.doi.org/10.1016/j.tetlet.2012.08.030]
[40]
Seifi, M.; Rabori, M.K.; Sheibani, H. Efficient method for synthesis of N-amino-2-pyridone derivatives in the presence of catalysts such as magnesium oxide (MgO) and bismuth (III) nitrate pentahydrate Bi(NO3)3•5H2O. MRC, 2013, 2, 8-12.
[41]
Khokhani, K.; Khatri, T.; Patel, P. One pot synthesis of bioactive novel cyanopyridones. J. Korean Chem. Soc., 2013, 57(4), 476-482.
[http://dx.doi.org/10.5012/jkcs.2013.57.4.476]
[42]
Mehrparvar, S.; Balalaie, S.; Rabbanizadeh, M.; Ghabraie, E.; Rominger, F. An efficient tandem approach for the synthesis of functionalized 2-pyridone-3-carboxylic acids using three-component reaction in aqueous media. Mol. Divers., 2014, 18(3), 535-543.
[http://dx.doi.org/10.1007/s11030-014-9522-x] [PMID: 24792225]
[43]
Sarkar, R.; Mukhopadhyay, C. L-Proline catalyzed expeditious multicomponent protocol for the synthesis of fused N-substituted-2-pyridone derivatives in aqueous medium. Tetrahedron Lett., 2014, 55(16), 2618-2624.
[http://dx.doi.org/10.1016/j.tetlet.2014.02.123]
[44]
Samzadeh-Kermani, A. Heteropolyacid-catalyzed one-pot synthesis of 2-pyridone derivatives. Synlett, 2016, 27(03), 461-464.
[http://dx.doi.org/10.1055/s-0035-1560824]
[45]
Mahesh, B.; Reddy, K.M.K.; Reddy, G.R.; Reddy, N.M.; Reddy, C.S. Synthesis of ester functionalized 2-pyridone derivatives using KF/Alumina as a catalyst. Org. Commun., 2016, 9(1), 15-22.
[46]
Kshiar, B.; Shangpliang, O.; Myrboh, B. A three component one-pot synthesis of N-amino-2-pyridone derivatives catalyzed by KF-Al2O3. Synth. Commun., 2018, 48(14), 1816-1827.
[http://dx.doi.org/10.1080/00397911.2018.1468467]
[47]
Mondal, P.; Bhaumik, A.; Chatterjee, S.; Mukhopadhyay, C. Fabrication of ionic-liquid-embedded ZnO nanoparticles: Application of a synergistic catalytic effect to thiol-induced 2-pyridone synthesis. Asian J. Org. Chem., 2018, 7(5), 964-976.
[http://dx.doi.org/10.1002/ajoc.201700610]
[48]
Hosseini, H.; Bayat, M. An efficient and ecofriendly synthesis of highly functionalized pyridones via a one-pot three-component reaction. RSC Advances, 2018, 8(48), 27131-27143.
[http://dx.doi.org/10.1039/C8RA05690K]
[49]
Vala, R.M.; Patel, D.M.; Sharma, M.G.; Patel, H.M. Impact of an aryl bulky group on a one-pot reaction of aldehyde with malononitrile and N-substituted 2-cyanoacetamide. RSC Advances, 2019, 9(49), 28886-28893.
[http://dx.doi.org/10.1039/C9RA05975J]
[50]
Liu, S.; Li, J.; Lin, J.; Liu, F.; Liu, T.; Huang, C. Substituent-controlled chemoselective synthesis of multi-substituted pyridones via a one-pot three-component cascade reaction. Org. Biomol. Chem., 2020, 18(6), 1130-1134.
[http://dx.doi.org/10.1039/C9OB02456E] [PMID: 31956881]
[51]
Tan, J-F.; Bormann, C.T.; Severin, K.; Cramer, N. Alkynyl triazenes as fluoroalkyne surrogates: Regioselective access to 4-fluoro-2-pyridones by a Rh (III)-catalyzed C–H activation-Lossen rearrangement-Wallach reaction. ACS Catal., 2020, 10(6), 3790-3796.
[http://dx.doi.org/10.1021/acscatal.0c00499]
[52]
Mehiaoui, N.; Kibou, Z.; Berrichi, A.; Bachir, R.; Choukchou-Braham, N. Novel synthesis of 3-cyano-2-pyridones derivatives catalyzed by Au-Co/TiO2. Rev. Chem. Intermed., 2020, 46(12), 5263-5280.
[http://dx.doi.org/10.1007/s11164-020-04261-1]
[53]
Mirzaei, F.; Bayat, M.; Nasri, S. A one-pot synthesis of piperidinium spirooxindoline-pyridineolates and indole-substituted pyridones in aqueous or ethanol medium. Mol. Divers., 2021, 1-10.
[http://dx.doi.org/10.1007/s11030-021-10313-4] [PMID: 34528212]
[54]
Hossaini, Z.; Rostami-Charati, F.; Hajinasiri, R.; Khalilzadeh, M.A. Solvent-free one-pot synthesis of 2-pyridone derivatives. Chin. Chem. Lett., 2012, 23(5), 512-514.
[http://dx.doi.org/10.1016/j.cclet.2012.01.018]
[55]
Pathak, S.; Kundu, A.; Pramanik, A. Regioselective synthesis of two types of highly substituted 2-pyridones through similar multicomponent reactions. Tetrahedron Lett., 2012, 53(24), 3030-3034.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.010]
[56]
Zhou, Q.; Chu, X.; Tang, W.; Lu, T. An efficient one-pot synthesis of 1, 4-disubstituted 3-amino-2-pyridone derivatives via three-component reactions of alkynyl aldehydes and amines with ethyl 2-((diphenylmethylene) amino) acetate. Tetrahedron, 2012, 68(22), 4152-4158.
[http://dx.doi.org/10.1016/j.tet.2012.03.106]
[57]
Ashkar, S.M.; El-Apasery, M.A.; Touma, M.M.; Elnagdi, M.H. Synthesis of some novel biologically active disperse dyes derived from 4-methyl-2,6-dioxo-1-propyl-1,2,5,6-tetrahydro-pyridine-3-carbonitrile as coupling component and their colour assessment on polyester fabrics. Molecules, 2012, 17(8), 8822-8831.
[http://dx.doi.org/10.3390/molecules17088822] [PMID: 22832883]
[58]
Poudel, T.N.; Lee, Y.R.; Kim, S.H. Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst-and solvent-free thermal multicomponent domino reaction. Green Chem., 2015, 17(9), 4579-4586.
[http://dx.doi.org/10.1039/C5GC01526J]
[59]
Kibou, Z.; Cheikh, N.; Villemin, D.; Choukchou-Braham, N. A rapid synthesis of highly functionalized 2-pyridones and 2-aminopyridines via a microwave-assisted multicomponent reaction. J. Mater. Environ. Sci., 2016, 7, 3061-3067.
[60]
Maezono, S.M.B.; Poudel, T.N.; Xia, L.; Lee, Y.R. A green synthetic approach to synthesizing diverse 2-pyridones for their exceptional UV shielding functions. RSC Advances, 2016, 6(85), 82321-82329.
[http://dx.doi.org/10.1039/C6RA18661K]
[61]
Hagimori, M.; Shigemitsu, Y.; Murakami, R.; Yokota, K.; Nishimura, Y.; Mizuyama, N.; Wang, B-C.; Tai, C-K.; Wang, S-L.; Shih, T-L. 2-Pyridone-based fluorophores containing 4-dialkylamino-phenyl group: Synthesis and fluorescence properties in solutions and in solid state. Dyes Pigments, 2016, 124, 196-202.
[http://dx.doi.org/10.1016/j.dyepig.2015.09.017]
[62]
Mekheimer, R.A.; Al-Sheikh, M.A.; Medrasi, H.Y.; Alsofyani, N.H.H. A novel synthesis of highly functionalized pyridines by a one-pot, three-component tandem reaction of aldehydes, malononitrile and N-alkyl-2-cyanoacetamides under microwave irradiation. Molecules, 2018, 23(3), 619.
[http://dx.doi.org/10.3390/molecules23030619] [PMID: 29522435]
[63]
Pandit, A.B.; Savant, M.M.; Ladva, K.D. An efficient one-pot synthesis of highly substituted pyridone derivatives and their antimicrobial and antifungal activity. J. Heterocycl. Chem., 2018, 55(4), 983-987.
[http://dx.doi.org/10.1002/jhet.3128]
[64]
Bai, H.; Sun, R.; Chen, X.; Yang, L.; Huang, C. Microwave-assisted, solvent-free, three-component domino protocol: Efficient synthesis of polysubstituted-2-pyridone derivatives. ChemistrySelect, 2018, 3(17), 4635-4638.
[http://dx.doi.org/10.1002/slct.201800606]
[65]
Hu, G.; Xu, J.; Li, P. Synthesis of N-alkylated 2-pyridones through Pummerer type reactions of activated sulfoxides and 2-fluoropyridine derivatives. Org. Biomol. Chem., 2018, 16(22), 4151-4158.
[http://dx.doi.org/10.1039/C8OB00860D] [PMID: 29785444]
[66]
Firsov, A.; Chupakhin, E.; Dar’in, D.; Bakulina, O.; Krasavin, M. Three-component castagnoli-cushman reaction of 3-arylglutaconic acids with aromatic aldehydes and amines delivers rare 4,6-diaryl-1,6-dihydropyridin-2(3 H)-ones. Org. Lett., 2019, 21(6), 1637-1640.
[http://dx.doi.org/10.1021/acs.orglett.9b00171] [PMID: 30794425]
[67]
Lv, N.; Tian, Y-Q.; Zhang, F-G.; Ma, J-A. One-pot sequential multistep transformation of α, β-unsaturated trifluoromethyl ketones: Facile synthesis of trifluoromethylated 2-pyridones. Synlett, 2019, 30(05), 605-609.
[http://dx.doi.org/10.1055/s-0037-1612077]
[68]
Jayarajan, R.; Satheeshkumar, R.; Kottha, T.; Subbaramanian, S.; Sayin, K.; Vasuki, G. Water mediated synthesis of 6-amino-5-cyano-2-oxo-N-(pyridin-2-yl)-4-(p-tolyl)-2H-[1,2′-bipyridine]-3-carboxamide and 6-amino-5-cyano-4-(4-fluorophenyl)-2-oxo-N-(pyridin-2-yl)-2H-[1,2′-bipyridine]-3-carboxamide - An experimental and computational studies with non-linear optical (NLO) and molecular docking analyses. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 229, 117861.
[http://dx.doi.org/10.1016/j.saa.2019.117861] [PMID: 31806479]
[69]
Menon, P.K.; Krishnaraj, K.; Anabha, E.; Devaky, K.; Thomas, S.P. Synthesis, crystal structure and electron density analysis of a sulfanyl 2-pyridone analogue: Tautomeric preference and conformation locking by S••• O chalcogen bonding. J. Mol. Struct., 2020, 1222, 128798.
[http://dx.doi.org/10.1016/j.molstruc.2020.128798]
[70]
Keshk, R.M.; Garavelli, M.; El–Tahawy, M.M. Synthesis, physicochemical and vibrational spectral properties of 2–pyridone and 2–aminopyridine derivatives: An experimental and theoretical study. J. Mol. Struct., 2021, 1225, 129136.
[http://dx.doi.org/10.1016/j.molstruc.2020.129136]
[71]
Safaei-Ghomi, J.; Shahbazi-Alavi, H.; Saberi-Moghadam, M.R.; Ziarati, A. ZrP2O7 NPs: A recyclable, efficient heterogeneous catalyst for the synthesis of 1, 6-diamino-2-oxo-4-phenyl-1, 2-dihydropyridine-3, 5-dicarbonitrile derivatives via a multi-component reaction. Iran. J. Catal., 2014, 4(4), 289-294.
[72]
Safaei-Ghomi, J.; Saberi-Moghadam, M.R.; Shahbazi-Alavi, H.; Asgari-Kheirabadi, M. An efficient method for the synthesis of N-amino-2-pyridones using reusable catalyst ZnO nanoparticles. J. Chem. Res., 2014, 38(10), 583-585.
[http://dx.doi.org/10.3184/174751914X14109743944636]
[73]
Safaei-Ghomi, J.; Shahbazi-Alavi, H.; Ziarati, A. A comparative screening of the catalytic activity of nanocrystalline M II Zr4 (PO4) 6 ceramics in the one-pot synthesis of 1, 6-diamino-4-aryl-2-oxo-1, 2-dihydropyridine-3, 5-dicarbonitrile derivatives. Rev. Chem. Intermed., 2017, 43(1), 91-101.
[http://dx.doi.org/10.1007/s11164-016-2608-6]
[74]
Safaei-Ghomi, J.; Shahbazi-Alavi, H. Synthesis of 2-oxo-pyridines catalyzed by biosynthesized CuO nanoparticles. PAH, 2020, 40(5), 1534-1538.
[http://dx.doi.org/10.1080/10406638.2018.1559206]
[75]
Safaei-Ghomi, J.; Esmaili, S.; Teymuri, R.; Shahbazi-Alavi, H. Nano-Co3S4 as a retrievable and robust catalyst for the synthesis of 2-oxo-pyridines and 5-oxo-[1, 2, 4] triazolo [2, 3-a] pyridines. Org. Prep. Proced. Int., 2019, 51(4), 388-396.
[http://dx.doi.org/10.1080/00304948.2019.1615365]
[76]
Ziarani, G. M.; Mousavi, S.; Lashgari, N.; Badiei, A. Mesostructured SBA-15-Pr-SO3H: An efficient solid acid catalyst for one-pot and solvent-free synthesis of 3, 4-dihydro-2-pyridone derivatives. SCI, 2013, 125(6), 1359-1364.
[77]
Hakimi, A.M.; Lashgari, N.; Mahernia, S.; Ziarani, G.M.; Amanlou, M. Facile one-pot four-component synthesis of 3,4-dihydro-2-pyridone derivatives: Novel urease inhibitor scaffold. Res. Pharm. Sci., 2017, 12(5), 353-363.
[http://dx.doi.org/10.4103/1735-5362.213980] [PMID: 28974973]
[78]
Yang, J.; Li, Q.; Zhang, J.; Lin, W.; Wang, J.; Wang, Y.; Huang, Z.; Shi, D. Ultrasound-promoted one-pot, four-component synthesis of pyridin-2(1H)-one derivatives. Molecules, 2013, 18(12), 14519-14528.
[http://dx.doi.org/10.3390/molecules181214519] [PMID: 24287988]
[79]
Nordmann, J.; Breuer, N.; Müller, T.J. Efficient consecutive four-component synthesis of 5-acylpyrid-2-ones initiated by copper-free alkynylation. Eur. J. Org. Chem., 2013, 2013(20), 4303-4310.
[http://dx.doi.org/10.1002/ejoc.201300235]
[80]
Radi, M.; Vallerini, G.P.; Petrelli, A.; Vincetti, P.; Costantino, G. A one-pot two-step microwave-assisted synthesis of N1-substituted 5, 6-ring-fused 2-pyridones. Tetrahedron Lett., 2013, 54(50), 6905-6908.
[http://dx.doi.org/10.1016/j.tetlet.2013.10.054]
[81]
Wang, Y.; Liu, G.; Reyes, J.C.P.; Duverna, R. One-pot synthesis of 3-cyano-2-pyridones. J. Heterocycl. Chem., 2015, 52(4), 1185-1191.
[http://dx.doi.org/10.1002/jhet.2227]
[82]
Ladraa, S.; Chioua, M.; Belfaitah, A. A simple and ecofriendly one-pot synthesis of highly substituted 3-cyanopyridine-quinoline hybrids via a triphenyphosphine-catalyzed multicomponent reaction under mild conditions. J. Heterocycl. Chem., 2017, 54(1), 603-609.
[http://dx.doi.org/10.1002/jhet.2631]
[83]
Keshavarz, N.; Behbahani, F.K. Synthesis of 4-aryl-6-phenyl-3-cyano-2-pyridones using l-proline as an organocatalyst. Chem.Afr., 2018, 1(3), 113-117.
[http://dx.doi.org/10.1007/s42250-018-0021-9]
[84]
Babaee, S.; Zarei, M.; Sepehrmansourie, H.; Zolfigol, M.A.; Rostamnia, S. Synthesis of metal–organic frameworks MIL-101 (Cr)-NH2 containing phosphorous acid functional groups: Application for the synthesis of N-Amino-2-pyridone and pyrano [2, 3-c] pyrazole derivatives via a cooperative vinylogous anomeric-based oxidation. ACS Omega, 2020, 5(12), 6240-6249.
[http://dx.doi.org/10.1021/acsomega.9b02133] [PMID: 32258858]
[85]
Ruiz, E.; Rodríguez, H.; Coro, J.; Salfrán, E.; Suárez, M.; Martínez-Alvarez, R.; Martín, N. Ultrasound-assisted one-pot, four component synthesis of 4-aryl 3,4-dihydropyridone derivatives. Ultrason. Sonochem., 2011, 18(1), 32-36.
[http://dx.doi.org/10.1016/j.ultsonch.2010.04.009] [PMID: 20510640]
[86]
El-Sayed, H.A.; Ouf, N.H.; Moustafa, A.H. An efficient and facile multicomponent synthesis of 4, 6-diarylpyridine derivatives under solvent-free conditions. Rev. Chem. Intermed., 2014, 40(1), 407-412.
[http://dx.doi.org/10.1007/s11164-012-0972-4]
[87]
Balalaie, S.; Hashemi, M.M.; Khezri, S.H.; Rominger, F.; Ghabraie, E.; Oeser, T. Efficient one-pot four-component synthesis and X-ray crystallographic structure of 2-pyridone derivatives. J. Heterocycl. Chem., 2013, 50(6), 1272-1280.
[http://dx.doi.org/10.1002/jhet.1632]
[88]
Ibrahim, M. One-pot synthesis, characterization and antimicrobial activity of new 3-cyano-4-alkyl-6-(2, 5-dichlorothiophen-3-yl)-2 (1H)-pyridones. JJC, 2015, 10(2), 98-107.
[http://dx.doi.org/10.12816/0026450]
[89]
Aiube, Z.H.; Al-rawi, M.S.; Ebrahem, A.K. Solvent-free one-pot multicomponent, synthesis, characterization and anti-bacterial activity, of some 2 substituted-3-cyano-pyridine derivatives. Ibn al-Haitham J. Pure Appl. Sci., 2017, 28(2), 126-135.
[90]
Zangouei, M.; Esmaeili, A.A.; Mague, J.T. An unexpected diastereoselective synthesis of novel substituted pyridines via one-pot, four-component reaction. Synlett, 2016, 27(11), 1669-1673.
[http://dx.doi.org/10.1055/s-0035-1561429]
[91]
Bai, H.; Sun, R.; Liu, S.; Yang, L.; Chen, X.; Huang, C. Construction of fully substituted 2-pyridone derivatives via four-component branched domino reaction utilizing microwave irradiation. J. Org. Chem., 2018, 83(20), 12535-12548.
[http://dx.doi.org/10.1021/acs.joc.8b01788] [PMID: 30230328]
[92]
EL-Hashash, M.A.; Shaban, S.S.; Ali, R. S. Synthesis of 3-cyano-2-pyridone derivative and its utility in the synthesis of some heterocyclic compounds with expecting antimicrobial activity. J. Heterocycl. Chem., 2021, 58(1), 329-339.
[http://dx.doi.org/10.1002/jhet.4175]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy