Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Mechanistic Insight and Possible Mechanism of Seizure in Covid-19: The Nuances and Focal Points

Author(s): Hayder M. Al-Kuraishy, Ali I. Al-Gareeb, Abdur Rauf, Fahad A. Alhumaydhi, Małgorzata Kujawska* and Gaber El-Saber Batiha*

Volume 22, Issue 6, 2023

Published on: 10 August, 2022

Page: [875 - 883] Pages: 9

DOI: 10.2174/1871527321666220517115227

Price: $65

conference banner
Abstract

Coronavirus disease 2019 (COVID-19) is a primary respiratory disease with an alarming impact worldwide. COVID-19 is caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and presents various neurological symptoms, including seizures. SARS-CoV-2 shows neuroinvasive and neurotropic capabilities through a neuronal angiotensin-converting enzyme 2 (ACE2), which is also highly expressed in both neuronal and glial cells. Therefore, SARS-CoV-2 can trigger neuroinflammation and neuronal hyperexcitability, increasing the risk of seizures. Olfactory neurons could be an exceptional neuronal pathway for the neuroinvasion of respiratory viruses to access the central nervous system (CNS) from the nasal cavity, leading to neuronal injury and neuroinflammation. Although neuronal ACE2 has been widely studied, other receptors for SARS-CoV-2 in the brain have been proposed to mediate viral-neuronal interactions with subsequent neurological squeals. Thus, the objective of the present critical review was to find the association and mechanistic insight between COVID-19 and the risk of seizures.

Keywords: SARS-CoV-2, seizure, cytokine storm, ALI, ARDS, epilepsy.

Graphical Abstract
[1]
Al-Kuraishy HM, Al-Gareeb AI, Al-Niemi MS, Al-Buhadily AK, Al-Harchan NA, Lugnier C. COVID-19 and phosphodiesterase enzyme type 5 inhibitors. J Microsc Ultrastruct 2020; 8(4): 141-5.
[http://dx.doi.org/10.4103/JMAU.JMAU_63_20] [PMID: 33623736]
[2]
Al-Kuraishy H, Hussien N, Al-Naimi M, Al-Buhadily A, Al-Gareeb A, Lungnier C. Renin–Angiotensin system and fibrinolytic pathway in COVID-19: One-way skepticism. Biomed Biotechnol Res J 2020; 4: 33-40.
[http://dx.doi.org/10.4103/bbrj.bbrj_105_20]
[3]
Al-Kuraishy HM, Al-Gareeb AI, Alblihed M, Cruz-Martins N, Batiha GE. COVID-19 and risk of acute ischemic stroke and acute lung injury in patients with type ii diabetes mellitus: The anti-inflammatory role of metformin. Front Med (Lausanne) 2021; 8: 644295.
[http://dx.doi.org/10.3389/fmed.2021.644295] [PMID: 33718411]
[4]
Al-kuraishy H. Responsibility of peroxisome proliferator activated receptor-α (PPAR-α) in epilepsy. J Stroke Epilepsy 2017; 145: 193-216.
[5]
Terrone G, Pinelli M, Bernardo P, et al. Intrafamilial variability in SPTAN1-related disorder: From benign convulsions with mild gastroenteritis to developmental encephalopathy. Eur J Paediatr Neurol 2020; 28: 237-9.
[http://dx.doi.org/10.1016/j.ejpn.2020.07.008] [PMID: 32811770]
[6]
Al-Kuraishy HM, Al-Gareeb AI, Qusti S, Alshammari EM, Gyebi GA, Batiha GE. Covid-19-Induced dysautonomia: A menace of sympathetic storm. ASN Neuro 2021; 13: 17590914211057635.
[http://dx.doi.org/10.1177/17590914211057635] [PMID: 34755562]
[7]
Yachou Y, El Idrissi A, Belapasov V, Ait Benali S. Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: Understanding the neurological manifestations in COVID-19 patients. Neurol Sci 2020; 41(10): 2657-69.
[http://dx.doi.org/10.1007/s10072-020-04575-3] [PMID: 32725449]
[8]
Hung EC, Chim SS, Chan PK, et al. Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clin Chem 2003; 49(12): 2108-9.
[http://dx.doi.org/10.1373/clinchem.2003.025437] [PMID: 14633896]
[9]
Hepburn M, Mullaguri N, George P, et al. Acute symptomatic seizures in critically ill patients with COVID-19: Is there an association? Neurocrit Care 2021; 34(1): 139-43.
[http://dx.doi.org/10.1007/s12028-020-01006-1] [PMID: 32462412]
[10]
Galanopoulou AS, Ferastraoaru V, Correa DJ, et al. EEG findings in acutely ill patients investigated for SARS-CoV-2/COVID-19: A small case series preliminary report. Epilepsia Open 2020; 5(2): 314-24.
[http://dx.doi.org/10.1002/epi4.12399] [PMID: 32537529]
[11]
Lambrecq V, Hanin A, Munoz-Musat E, et al. Cohort COVID-19 neurosciences (CoCo Neurosciences) study group. Association of clinical, biological, and brain magnetic resonance imaging findings with electroencephalographic findings for patients with COVID-19. JAMA Netw Open 2021; 4(3): e211489.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.1489] [PMID: 33720371]
[12]
Chen CC, Chiang PC, Chen TH. The biosafety and risk management in preparation and processing of cerebrospinal fluid and other neurological specimens with potential coronavirus infection. Front Neurol 2021; 11: 613552.
[http://dx.doi.org/10.3389/fneur.2020.613552] [PMID: 33551970]
[13]
Kubota T, Gajera PK, Kuroda N. Meta-analysis of EEG findings in patients with COVID-19. Epilepsy Behav 2021; 115: 107682.
[http://dx.doi.org/10.1016/j.yebeh.2020.107682] [PMID: 33342709]
[14]
Hwang ST, Ballout AA, Mirza U, et al. Acute seizures occurring in association with SARS-CoV-2. Front Neurol 2020; 11: 576329.
[http://dx.doi.org/10.3389/fneur.2020.576329] [PMID: 33224090]
[15]
Bhatta S, Sayed A, Ranabhat B, Bhatta RK, Acharya Y. New-onset seizure as the only presentation in a child with COVID-19. Cureus 2020; 12(6): e8820.
[http://dx.doi.org/10.7759/cureus.8820] [PMID: 32742835]
[16]
Chung B, Wong V. Relationship between five common viruses and febrile seizure in children. Arch Dis Child 2007; 92(7): 589-93.
[http://dx.doi.org/10.1136/adc.2006.110221] [PMID: 17284480]
[17]
Millichap JG, Millichap JJ. Role of viral infections in the etiology of febrile seizures. Pediatr Neurol 2006; 35(3): 165-72.
[http://dx.doi.org/10.1016/j.pediatrneurol.2006.06.004] [PMID: 16939854]
[18]
Theodore WH. Epilepsy and viral infections. Epilepsy Curr 2014; 14(1) (Suppl.): 35-42.
[http://dx.doi.org/10.5698/1535-7511-14.s2.35] [PMID: 24955074]
[19]
Bakal JA, Charlton CL, Hlavay B, Jansen GH, Svenson LW, Power C. Progressive multifocal leukoencephalopathy and Creutzfeldt-Jakob disease: Population-wide incidences, comorbidities, costs of care, and outcomes. J Neurovirol 2021; 27(3): 476-81.
[http://dx.doi.org/10.1007/s13365-021-00983-z] [PMID: 33978904]
[20]
Ekstrand JJ, Herbener A, Rawlings J, et al. Heightened neurologic complications in children with pandemic H1N1 influenza. Ann Neurol 2010; 68(5): 762-6.
[http://dx.doi.org/10.1002/ana.22184] [PMID: 20865762]
[21]
Murthy JM. Neurological complication of dengue infection. Neurol India 2010; 58(4): 581-4.
[http://dx.doi.org/10.4103/0028-3886.68654] [PMID: 20739796]
[22]
Wipfler P, Dunn N, Beiki O, Trinka E, Fogdell-Hahn A. The viral hypothesis of mesial temporal lobe epilepsy - is human herpes virus-6 the missing link? A systematic review and meta-analysis. Seizure 2018; 54: 33-40.
[http://dx.doi.org/10.1016/j.seizure.2017.11.015] [PMID: 29195226]
[23]
Kellinghaus C, Engbring C, Kovac S, et al. Frequency of seizures and epilepsy in neurological HIV-infected patients. Seizure 2008; 17(1): 27-33.
[http://dx.doi.org/10.1016/j.seizure.2007.05.017] [PMID: 17618132]
[24]
Modi M, Mochan A, Modi G. New onset seizures in HIV-seizure semiology, CD4 counts, and viral loads. Epilepsia 2009; 50(5): 1266-9.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01942.x] [PMID: 19374659]
[25]
Asadi-Pooya AA, Simani L. Central nervous system manifestations of COVID-19: A systematic review. J Neurol Sci 2020; 413: 116832.
[http://dx.doi.org/10.1016/j.jns.2020.116832] [PMID: 32299017]
[26]
Asadi-Pooya AA. Seizures associated with coronavirus infections. Seizure 2020; 79: 49-52.
[http://dx.doi.org/10.1016/j.seizure.2020.05.005] [PMID: 32416567]
[27]
Sarubbo F, El Haji K, Vidal-Balle A, Bargay Lleonart J. Neurological consequences of COVID-19 and brain related pathogenic mechanisms: A new challenge for neuroscience. Brain Behav Immun Health 2022; 19: 100399.
[http://dx.doi.org/10.1016/j.bbih.2021.100399] [PMID: 34870247]
[28]
Burks SM, Rosas-Hernandez H, Alejandro Ramirez-Lee M, Cuevas E, Talpos JC. Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier? Brain Behav Immun 2021; 95: 7-14.
[http://dx.doi.org/10.1016/j.bbi.2020.12.031] [PMID: 33412255]
[29]
Llano M, Vanegas M, Fregoso O, et al. LEDGF/p75 determines cellular trafficking of diverse lentiviral but not murine oncoretroviral integrase proteins and is a component of functional lentiviral preintegration complexes. J Virol 2004; 78(17): 9524-37.
[http://dx.doi.org/10.1128/JVI.78.17.9524-9537.2004] [PMID: 15308744]
[30]
Desforges MF, Brison Dominique J, Élodie Desjardins, et al. Human coronaviruses respiratory pathogens revisited as infectious neuroinvasive, neurotropic, and neurovirulent agents. In: Singh SK, Ruzek D, Eds. Neuroviral Infections- RNA Viruses and Retroviruses. Boca Raton, FL: CRCPress 2022; pp. 93-121.
[http://dx.doi.org/10.1201/b13908-6]
[31]
Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 2008; 82(15): 7264-75.
[http://dx.doi.org/10.1128/JVI.00737-08] [PMID: 18495771]
[32]
Fenrich M, Mrdenovic S, Balog M, et al. SARS-CoV-2 Dissemination through peripheral nerves explains multiple organ injury. Front Cell Neurosci 2020; 14: 229.
[http://dx.doi.org/10.3389/fncel.2020.00229] [PMID: 32848621]
[33]
Bulfamante G, Bocci T, Falleni M, et al. Brainstem neuropathology in two cases of COVID-19: SARS-CoV-2 trafficking between brain and lung. J Neurol 2021; 268(12): 4486-91.
[http://dx.doi.org/10.1007/s00415-021-10604-8] [PMID: 34003372]
[34]
Al-Buhadily AK, Hussien NR, Al-Niemi MS, Al-Kuraishy HM, Al-Gareeb AI. Misfortune and spy story in the neurological manifestations of Covid-19. J Pak Med Assoc 2021; 71 (Suppl. 8): S157-60.
[35]
Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med 2005; 202(3): 415-24.
[http://dx.doi.org/10.1084/jem.20050828] [PMID: 16043521]
[36]
Xu J, Zhong S, Liu J, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: Potential role of the chemokine mig in pathogenesis. Clin Infect Dis 2005; 41(8): 1089-96.
[http://dx.doi.org/10.1086/444461] [PMID: 16163626]
[37]
McQuaid C, Brady M, Deane R. SARS-CoV-2: Is there neuroinvasion? Fluids Barriers CNS 2021; 18(1): 32.
[http://dx.doi.org/10.1186/s12987-021-00267-y] [PMID: 34261487]
[38]
Bostancıklıoğlu M. SARS-CoV2 entry and spread in the lymphatic drainage system of the brain. Brain Behav Immun 2020; 87: 122-3.
[http://dx.doi.org/10.1016/j.bbi.2020.04.080] [PMID: 32360606]
[39]
Hmazzou R, Marc Y, Flahault A, Gerbier R, De Mota N, Llorens-Cortes C. Brain ACE2 activation following brain aminopeptidase A blockade by firibastat in salt-dependent hypertension. Clin Sci (Lond) 2021; 135(6): 775-91.
[http://dx.doi.org/10.1042/CS20201385] [PMID: 33683322]
[40]
Choi JY, Lee HK, Park JH, et al. Altered COVID-19 receptor ACE2 expression in a higher risk group for cerebrovascular disease and ischemic stroke. Biochem Biophys Res Commun 2020; 528(3): 413-9.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.203] [PMID: 32513532]
[41]
Kanberg N, Ashton NJ, Andersson LM, et al. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology 2020; 95(12): e1754-9.
[http://dx.doi.org/10.1212/WNL.0000000000010111] [PMID: 32546655]
[42]
Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med 2020; 382(23): 2268-70.
[http://dx.doi.org/10.1056/NEJMc2008597] [PMID: 32294339]
[43]
Petrou P, Gothelf Y, Argov Z, et al. Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: Results of phase 1/2 and 2a clinical trials. JAMA Neurol 2016; 73(3): 337-44.
[http://dx.doi.org/10.1001/jamaneurol.2015.4321] [PMID: 26751635]
[44]
Masre SF, Jufri NF, Ibrahim FW, Abdul Raub SH. Classical and alternative receptors for SARS-CoV-2 therapeutic strategy. Rev Med Virol 2021; 31(5): 1-9.
[http://dx.doi.org/10.1002/rmv.2207] [PMID: 33368788]
[45]
Pilotto A, Odolini S, Masciocchi S, et al. Steroid-responsive encephalitis in coronavirus disease 2019. Ann Neurol 2020; 88(2): 423-7.
[http://dx.doi.org/10.1002/ana.25783] [PMID: 32418288]
[46]
Kothur K, Bandodkar S, Wienholt L, et al. Etiology is the key determinant of neuroinflammation in epilepsy: Elevation of cerebrospinal fluid cytokines and chemokines in febrile infection-related epilepsy syndrome and febrile status epilepticus. Epilepsia 2019; 60(8): 1678-88.
[http://dx.doi.org/10.1111/epi.16275] [PMID: 31283843]
[47]
Chen S, Zeng X, Zong W, et al. Aucubin alleviates seizures activity in li-pilocarpine-induced epileptic mice: Involvement of inhibition of neuroinflammation and regulation of neurotransmission. Neurochem Res 2019; 44(2): 472-84.
[http://dx.doi.org/10.1007/s11064-018-2700-y] [PMID: 30666488]
[48]
Hao X, Zhou D, Li Z, et al. Severe psychological distress among patients with epilepsy during the COVID-19 outbreak in southwest China. Epilepsia 2020; 61(6): 1166-73.
[http://dx.doi.org/10.1111/epi.16544] [PMID: 32353184]
[49]
Mukerjee S, Gao H, Xu J, Sato R, Zsombok A, Lazartigues E. ACE2 and ADAM17 interaction regulates the activity of presympathetic neurons. Hypertension 2019; 74(5): 1181-91.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.13133] [PMID: 31564162]
[50]
Jin S, Dai J, Teng X, Wu YM. Adverse effects of sympathetic activation should not be neglected during the coronavirus disease 2019 pandemic. Chin Med J (Engl) 2020; 134(4): 413-4.
[http://dx.doi.org/10.1097/CM9.0000000000001106] [PMID: 32941242]
[51]
Palau V, Riera M, Soler MJ. ADAM17 inhibition may exert a protective effect on COVID-19. Nephrol Dial Transplant 2020; 35(6): 1071-2.
[http://dx.doi.org/10.1093/ndt/gfaa093] [PMID: 32291449]
[52]
Alquisiras-Burgos I, Peralta-Arrieta I, Alonso-Palomares LA, Zacapala-Gómez AE, Salmerón-Bárcenas EG, Aguilera P. Neurological complications associated with the blood-brain barrier damage induced by the inflammatory response during SARS-CoV-2 infection. Mol Neurobiol 2021; 58(2): 520-35.
[http://dx.doi.org/10.1007/s12035-020-02134-7] [PMID: 32978729]
[53]
Bozzi Y, Borrelli E. The role of dopamine signaling in epileptogenesis. Front Cell Neurosci 2013; 7: 157.
[http://dx.doi.org/10.3389/fncel.2013.00157] [PMID: 24062645]
[54]
Nataf S. An alteration of the dopamine synthetic pathway is possibly involved in the pathophysiology of COVID-19. J Med Virol 2020; 92(10): 1743-4.
[http://dx.doi.org/10.1002/jmv.25826] [PMID: 32246784]
[55]
Al-Dalahmah O, Thakur KT, Nordvig AS, et al. Neuronophagia and microglial nodules in a SARS-CoV-2 patient with cerebellar hemorrhage. Acta Neuropathol Commun 2020; 8(1): 147.
[http://dx.doi.org/10.1186/s40478-020-01024-2] [PMID: 32847628]
[56]
Somera-Molina KC, Nair S, Van Eldik LJ, Watterson DM, Wainwright MS. Enhanced microglial activation and proinflammatory cytokine upregulation are linked to increased susceptibility to seizures and neurologic injury in a ‘two-hit’ seizure model. Brain Res 2009; 1282: 162-72.
[http://dx.doi.org/10.1016/j.brainres.2009.05.073] [PMID: 19501063]
[57]
Park D, Kim S, Kim H, Shin J, Jung H, Um JW. Seizure progression triggered by IQSEC3 loss is mitigated by reducing activated microglia in mice. Glia 2020; 68(12): 2661-73.
[http://dx.doi.org/10.1002/glia.23876] [PMID: 32645240]
[58]
Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci USA 2012; 109(4): E197-205.
[http://dx.doi.org/10.1073/pnas.1111098109] [PMID: 22167804]
[59]
Al-Kuraishy HM, Al-Gareeb AI, Qusty N, Cruz-Martins N, El-Saber Batiha G. Sequential doxycycline and colchicine combination therapy in Covid-19: The salutary effects. Pulm Pharmacol Ther 2021; 67: 102008.
[http://dx.doi.org/10.1016/j.pupt.2021.102008] [PMID: 33727066]
[60]
Al-Kuraishy HM, Al-Gareeb AI, Almulaiky YQ, Cruz-Martins N, El-Saber Batiha G. Role of leukotriene pathway and montelukast in pulmonary and extrapulmonary manifestations of Covid-19: The enigmatic entity. Eur J Pharmacol 2021; 904: 174196.
[http://dx.doi.org/10.1016/j.ejphar.2021.174196] [PMID: 34004207]
[61]
Iroegbu JD, Ifenatuoha CW, Ijomone OM. Potential neurological impact of coronaviruses: Implications for the novel SARS-CoV-2. Neurol Sci 2020; 41(6): 1329-37.
[http://dx.doi.org/10.1007/s10072-020-04469-4] [PMID: 32424503]
[62]
Al-Kuraishy HM, Al-Gareeb AI, Naji MT. Statin therapy associated with decreased neuronal injury measured by serum S100β levels in patients with acute ischemic stroke. Int J Crit Illn Inj Sci 2021; 11(4): 246-52.
[http://dx.doi.org/10.4103/IJCIIS.IJCIIS_7_20] [PMID: 35070915]
[63]
Grobe JL, Xu D, Sigmund CD. An intracellular renin-angiotensin system in neurons: Fact, hypothesis, or fantasy. Physiology (Bethesda) 2008; 23(4): 187-93.
[http://dx.doi.org/10.1152/physiol.00002.2008] [PMID: 18697992]
[64]
Ramos AJ. Brain angiotensin system: A new promise in the management of epilepsy? Clin Sci (Lond) 2021; 135(6): 725-30.
[http://dx.doi.org/10.1042/CS20201296] [PMID: 33729497]
[65]
Chen Q, Pan HL. Signaling mechanisms of angiotensin II-induced attenuation of GABAergic input to hypothalamic presympathetic neurons. J Neurophysiol 2007; 97(5): 3279-87.
[http://dx.doi.org/10.1152/jn.01329.2006] [PMID: 17287434]
[66]
Singh MR, Vigh J, Amberg GC. Angiotensin-II modulates GABAergic neurotransmission in the mouse substantia nigra. eNeuro 2021; 8((2): ENEURO.0090-21.)
[http://dx.doi.org/10.1523/ENEURO.0090-21.2021] [PMID: 33771900]
[67]
Fasano A, Cavallieri F, Canali E, Valzania F. First motor seizure as presenting symptom of SARS-CoV-2 infection. Neurol Sci 2020; 41(7): 1651-3.
[http://dx.doi.org/10.1007/s10072-020-04460-z] [PMID: 32417987]
[68]
Samland H, Huitron-Resendiz S, Masliah E, Criado J, Henriksen SJ, Campbell IL. Profound increase in sensitivity to glutamatergic- but not cholinergic agonist-induced seizures in transgenic mice with astrocyte production of IL-6. J Neurosci Res 2003; 73(2): 176-87.
[http://dx.doi.org/10.1002/jnr.10635] [PMID: 12836160]
[69]
Reynolds JL, Mahajan SD. SARS-COV2 Alters blood brain barrier integrity contributing to neuro-inflammation. J Neuroimmune Pharmacol 2021; 16(1): 4-6.
[http://dx.doi.org/10.1007/s11481-020-09975-y] [PMID: 33405097]
[70]
Sewal RK, Modi M, Saikia UN, Chakrabarti A, Medhi B. Increase in seizure susceptibility in sepsis like condition explained by spiking cytokines and altered adhesion molecules level with impaired blood brain barrier integrity in experimental model of rats treated with lipopolysaccharides. Epilepsy Res 2017; 135: 176-86.
[http://dx.doi.org/10.1016/j.eplepsyres.2017.05.012] [PMID: 28797776]
[71]
Marchi N, Tierney W, Alexopoulos AV, Puvenna V, Granata T, Janigro D. The etiological role of blood-brain barrier dysfunction in seizure disorders. Cardiovasc Psychiatry Neurol 2011; 2011: 482415.
[http://dx.doi.org/10.1155/2011/482415] [PMID: 21541221]
[72]
Ala-Kurikka T, Pospelov A, Summanen M, et al. A physiologically validated rat model of term birth asphyxia with seizure generation after, not during, brain hypoxia. Epilepsia 2021; 62(4): 908-19.
[http://dx.doi.org/10.1111/epi.16790] [PMID: 33338272]
[73]
McNally MA, Chavez-Valdez R, Felling RJ, Flock DL, Northington FJ, Stafstrom CE. Seizure susceptibility correlates with brain injury in male mice treated with hypothermia after neonatal hypoxia-ischemia. Dev Neurosci 2019. Epub ahead of print
[http://dx.doi.org/10.1159/000496468] [PMID: 30820019]
[74]
Bonaventura A, Vecchié A, Dagna L, et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol 2021; 21(5): 319-29.
[http://dx.doi.org/10.1038/s41577-021-00536-9] [PMID: 33824483]
[75]
Crunfli F, Carregari VC, Veras FP, et al. SARS-CoV-2 infects brain astrocytes of COVID-19 patients and impairs neuronal viability. medRxiv 2021; 2021; 20207464.
[http://dx.doi.org/10.1101/2020.10.09.20207464]
[76]
Naji M, Al-kuraishy H, Al-Gareeb A. Differential effects of statins on Matrix Metalloproteinase-9 (MMP-9) in patients with acute ischaemic stroke: A potential for salutary. J Pak Med Assoc 2021; 71((Suppl 8)(12)): S82-7.
[77]
Batiha GE, Al-Gareeb DAI, Qusti S, et al. Common NLRP3 inflammasome inhibitors and Covid-19: Divide and conquer. Sci Afr 2021; e01084.
[http://dx.doi.org/10.1016/j.sciaf.2021.e01084]
[78]
Meng XF, Tan L, Tan MS, et al. Inhibition of the NLRP3 inflammasome provides neuroprotection in rats following amygdala kindling-induced status epilepticus. J Neuroinflammation 2014; 11(1): 212.
[http://dx.doi.org/10.1186/s12974-014-0212-5] [PMID: 25516224]
[79]
Shen K, Jiang W, Zhang C, et al. Molecular mechanism of a specific NLRP3 inhibitor to alleviate seizure severity induced by pentylenetetrazole. Curr Mol Pharmacol 2021; 14(4): 579-86.
[http://dx.doi.org/10.2174/1874467213666200810140749] [PMID: 32778044]
[80]
Lin WS, Hsu TR. Hypothesis: Febrile infection-related epilepsy syndrome is a microglial NLRP3 inflammasome/IL-1 axis-driven autoinflammatory syndrome. Clin Transl Immunology 2021; 10(6): e1299.
[http://dx.doi.org/10.1002/cti2.1299] [PMID: 34141434]
[81]
Al-Kuraishy HM, Al-Gareeb AI, Alqarni M, Cruz-Martins N, El-Saber Batiha G. Pleiotropic effects of tetracyclines in the management of COVID-19: Emerging perspectives. Front Pharmacol 2021; 12: 642822.
[http://dx.doi.org/10.3389/fphar.2021.642822] [PMID: 33967777]
[82]
Mukhtar I. Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy: From pathogenesis to treatment target. Seizure 2020; 82: 65-79.
[http://dx.doi.org/10.1016/j.seizure.2020.09.015] [PMID: 33011590]
[83]
Wang M, Chen Y. Inflammation: A network in the pathogenesis of status epilepticus. Front Mol Neurosci 2018; 11: 341.
[http://dx.doi.org/10.3389/fnmol.2018.00341] [PMID: 30344475]
[84]
Shetty AK. Promise of resveratrol for easing status epilepticus and epilepsy. Pharmacol Ther 2011; 131(3): 269-86.
[http://dx.doi.org/10.1016/j.pharmthera.2011.04.008] [PMID: 21554899]
[85]
Vezzani A, Friedman A. Brain inflammation as a biomarker in epilepsy. Biomarkers Med 2011; 5(5): 607-14.
[http://dx.doi.org/10.2217/bmm.11.61] [PMID: 22003909]
[86]
Nass RD, Wagner M, Surges R, Holdenrieder S. Time courses of HMGB1 and other inflammatory markers after generalized convulsive seizures. Epilepsy Res 2020; 162: 106301.
[http://dx.doi.org/10.1016/j.eplepsyres.2020.106301] [PMID: 32126476]
[87]
Al-Kuraishy HM, Al-Gareeb AI, Al-Hussaniy HA, Al-Harcan NAH, Alexiou A, Batiha GE. Neutrophil Extracellular Traps (NETs) and Covid-19: A new frontiers for therapeutic modality. Int Immunopharmacol 2022; 104: 108516.
[http://dx.doi.org/10.1016/j.intimp.2021.108516] [PMID: 35032828]
[88]
Alzahrani AS, Mukhtar N, Aljomaiah A, et al. The Impact of COVID-19 viral infection on the hypothalamic-pituitary-adrenal axis. Endocr Pract 2021; 27(2): 83-9.
[http://dx.doi.org/10.1016/j.eprac.2020.10.014] [PMID: 33554871]
[89]
Pal R. COVID-19, hypothalamo-pituitary-adrenal axis and clinical implications. Endocrine 2020; 68(2): 251-2.
[http://dx.doi.org/10.1007/s12020-020-02325-1] [PMID: 32346813]
[90]
Finamor FE, Finamor LP, Mancuso FJN, et al. Refractory arterial hypotension in a patient with COVID-19: Could the hypothalamic-pituitary-adrenal axis be involved? Case report and mini review. Adv Infect Dis 2020; 10(3): 160-7.
[http://dx.doi.org/10.4236/aid.2020.103016]
[91]
Rivest S. How circulating cytokines trigger the neural circuits that control the hypothalamic-pituitary-adrenal axis. Psychoneuroendocrinology 2001; 26(8): 761-88.
[http://dx.doi.org/10.1016/S0306-4530(01)00064-6] [PMID: 11585678]
[92]
Zhao Q, Shen Y, Li R, et al. Cardiac arrest and resuscitation activates the hypothalamic-pituitary-adrenal axis and results in severe immunosuppression. J Cereb Blood Flow Metab 2021; 41(5): 1091-102.
[http://dx.doi.org/10.1177/0271678X20948612] [PMID: 32787543]
[93]
Mattos Dos Santos R. Isolation, social stress, low socioeconomic status and its relationship to immune response in Covid-19 pandemic context. Brain Behav Immun Health 2020; 7: 100103.
[http://dx.doi.org/10.1016/j.bbih.2020.100103] [PMID: 32835298]
[94]
O’Toole KK, Hooper A, Wakefield S, Maguire J. Seizure-induced disinhibition of the HPA axis increases seizure susceptibility. Epilepsy Res 2014; 108(1): 29-43.
[http://dx.doi.org/10.1016/j.eplepsyres.2013.10.013] [PMID: 24225328]
[95]
Hooper A, Paracha R, Maguire J. Seizure-induced activation of the HPA axis increases seizure frequency and comorbid depression-like behaviors. Epilepsy Behav 2018; 78: 124-33.
[http://dx.doi.org/10.1016/j.yebeh.2017.10.025] [PMID: 29186699 ]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy