Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

The Emerging Role of Marine Natural Products for the Treatment of Parkinson’s Disease

Author(s): N.P. Deepika, Md. H. Rahman, S. Chipurupalli, T.N. Shilpa and B. Duraiswamy*

Volume 22, Issue 6, 2023

Published on: 31 August, 2022

Page: [801 - 816] Pages: 16

DOI: 10.2174/1871527321666220511205231

Price: $65

conference banner
Abstract

Parkinson's Disease (PD), known as Parkinsonism, is a neurodegenerative disease that mainly affects the elderly and is characterized by an extensive and progressive loss of dopaminergic neurons in the Substantia Nigra pars compacta (SNpc). Owing to genetic, environmental, and lifestyle changes, the incidence of PD has recently risen among adults. The most widely used PD treatment strategies include the use of dopamine agonists, anticholinergics, and enzyme inhibitors. The aquatic flora and fauna have become the emerging source of novel, structurally diverse bioactive compounds and, at present, the researchers concentrate their efforts on isolating, characterizing, and identifying many secondary metabolites of different nature to treat various disorders, including, neuroprotective marine natural products (MNPs). The bioactive peptides, tannins, carotenoids, alkaloids, polyunsaturated fatty acids (PUFA), and sulfated polysaccharides from the MNP’s and their synthetic derivatives have demonstrated important neuroprotective activity in preclinical studies through multiple mechanisms. An extensive literature survey was carried out, and published articles from PubMed, Scifinder, Google Scholar, Web of Science, and Scopus were carefully reviewed to compile information on the MNPs to treat PD. This current review focus on neuroprotective MNPs and their probable biological pathways to treat PD based on their structure and bioactivities reported from 1990 to 2020.

Keywords: Parkinson’s disease, anti-inflammatory, antioxidants, cognition enhancers, enzyme inhibitors, marine natural products.

Graphical Abstract
[1]
Carte BK. Biomedical potential of marine natural products. Bioscience 1996; 46(4): 271-86.
[http://dx.doi.org/10.2307/1312834]
[2]
Altmann K-H. Drugs from the oceans: Marine natural products as leads for drug discovery. Chimia (Aarau) 2017; 71(10): 646-52.
[http://dx.doi.org/10.2533/chimia.2017.646] [PMID: 29070409]
[3]
Butler A, Carter-Franklin JN. The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Nat Prod Rep 2004; 21(1): 180-8.
[http://dx.doi.org/10.1039/b302337k] [PMID: 15039842]
[4]
Polotow TG, Poppe SC, Vardaris CV, et al. Redox status and neuro inflammation indexes in cerebellum and motor cortex of wistar rats supplemented with natural sources of omega-3 fatty acids and astaxanthin: Fish oil, krill oil, and algal biomass. Mar Drugs 2015; 13(10): 6117-37.
[http://dx.doi.org/10.3390/md13106117] [PMID: 26426026]
[5]
Choi D-Y, Choi H. Natural products from marine organisms with neuroprotective activity in the experimental models of Alzheimer’s disease, Parkinson’s disease and ischemic brain stroke: Their molecular targets and action mechanisms. Arch Pharm Res 2015; 38(2): 139-70.
[http://dx.doi.org/10.1007/s12272-014-0503-5] [PMID: 25348867]
[6]
Perry G. Promise from the Sea. Mar Drugs 2016; 14(10): 178.
[http://dx.doi.org/10.3390/md14100178] [PMID: 27735831]
[7]
Freitas AC, Pereira L, Rodrigues D. Marine Functional Foods. Springer Handbook of Marine Biotechnology. Berlin, Heidelberg: Springer Handbooks. Springer 2015; pp. 969-94.
[http://dx.doi.org/10.1007/978-3-642-53971-8_42]
[8]
Martinez A. Marine-derived drugs in neurology. Curr Opin Investig Drugs 2007; 8(7): 525-30.
[PMID: 17659472]
[9]
Ngo D-H, Wijesekara I, Vo T-S, Van Ta Q, Kim S-K. Marine food-derived functional ingredients as potential antioxidants in the food industry: An overview. Food Res Int 2011; 44(2): 523-9.
[http://dx.doi.org/10.1016/j.foodres.2010.12.030]
[10]
Lee J-C, Hou M-F, Huang H-W, et al. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int 2013; 13(1): 55.
[http://dx.doi.org/10.1186/1475-2867-13-55] [PMID: 23724847]
[11]
Kim S-K, Mendis E. Bioactive compounds from marine processing byproducts – A review. Food Res Int 2006; 39(4): 383-93.
[http://dx.doi.org/10.1016/j.foodres.2005.10.010]
[12]
Leirós M, Alonso E, Rateb ME, et al. Gracilins: Spongionella-derived promising compounds for Alzheimer disease. Neuropharmacology 2015; 93: 285-93.
[http://dx.doi.org/10.1016/j.neuropharm.2015.02.015] [PMID: 25724081]
[13]
Pangestuti R, Kim S-K. Neuroprotective effects of marine algae. Mar Drugs 2011; 9(5): 803-18.
[http://dx.doi.org/10.3390/md9050803] [PMID: 21673890]
[14]
Hwang O. Role of oxidative stress in Parkinson’s disease. Exp Neurobiol 2013; 22(1): 11-7.
[http://dx.doi.org/10.5607/en.2013.22.1.11] [PMID: 23585717]
[15]
Moosmann B, Behl C. Antioxidants as treatment for neurodegenerative disorders. Expert Opin Investig Drugs 2002; 11(10): 1407-35.
[http://dx.doi.org/10.1517/13543784.11.10.1407] [PMID: 12387703]
[16]
Sies H. Oxidative Stress. Amsterdam, Netherlands: Elsevier 2013.
[17]
Abele D, Vazquez-Medina JP, Zenteno-Savin T. Oxidative Stress in Aquatic Ecosystems. John Wiley & Sons 2011.
[http://dx.doi.org/10.1002/9781444345988]
[18]
Miyashita K. Marine antioxidants: Polyphenols and carotenoids from algae. Chemistry 2014.
[http://dx.doi.org/10.1002/9781118855102.ch8]
[19]
Barzkar N, Tamadoni Jahromi S, Poorsaheli HB, Vianello F. Metabolites from marine microorganisms, micro, and macroalgae: Immense scope for pharmacology. Mar Drugs 2019; 17(8): 464.
[http://dx.doi.org/10.3390/md17080464] [PMID: 31398953]
[20]
Lim CS, Jin D-Q, Sung J-Y, et al. Antioxidant and anti-inflammatory activities of the methanolic extract of Neorhodomela aculeate in hippocampal and microglial cells. Biol Pharm Bull 2006; 29(6): 1212-6.
[http://dx.doi.org/10.1248/bpb.29.1212] [PMID: 16755019]
[21]
Fallarero A, Loikkanen JJ, Männistö PT, Castañeda O, Vidal A. Effects of aqueous extracts of Halimeda incrassata (Ellis) Lamouroux and Bryothamnion triquetrum (S.G.Gmelim) Howe on hydrogen peroxide and methyl mercury-induced oxidative stress in GT1-7 mouse hypothalamic immortalized cells. Phytomedicine 2003; 10(1): 39-47.
[http://dx.doi.org/10.1078/094471103321648647] [PMID: 12622462]
[22]
Choi D-S, Athukorala Y, Jeon Y-J, Senevirathne M, Cho K-R, Kim S-H. Antioxidant activity of sulfated polysaccharides isolated from Sargassum fulvellum. Prev Nutr Food Sci 2007; 12(2): 65-73.
[http://dx.doi.org/10.3746/jfn.2007.12.2.065]
[23]
Badrinathan S, Shiju TM, Sharon Christa AS, Arya R, Pragasam V. Purification and structural characterization of sulfated polysaccharide from Sargassum myriocystum and its efficacy in scavenging free radicals. Indian J Pharm Sci 2012; 74(6): 549-55.
[http://dx.doi.org/10.4103/0250-474X.110600] [PMID: 23798781]
[24]
Seo YC, Choi WS, Park JH, Park JO, Jung KH, Lee HY. Stable isolation of phycocyanin from Spirulina platensis associated with high-pressure extraction process. Int J Mol Sci 2013; 14(1): 1778-87.
[http://dx.doi.org/10.3390/ijms14011778] [PMID: 23325046]
[25]
Piñero Estrada JE, Bermejo Bescós P, Villar del Fresno AM. Antioxidant activity of different fractions of Spirulina platensis protean extract. Farmaco 2001; 56(5-7): 497-500.
[http://dx.doi.org/10.1016/S0014-827X(01)01084-9] [PMID: 11482785]
[26]
Izadi M, Fazilati M. Extraction and purification of phycocyanin from Spirulina platensis and evaluating its antioxidant and anti- inflammatory activity. Asian J Green Chem 2018; 2: 364-79.
[http://dx.doi.org/10.22034/ajgc.2018.63597]
[27]
Li Y, Qian Z-J, Ryu B, Lee SH, Kim MM, Kim SK. Chemical components and its antioxidant properties in vitro: An edible marine brown alga, Ecklonia cava. Bioorg Med Chem 2009; 17(5): 1963-73.
[http://dx.doi.org/10.1016/j.bmc.2009.01.031] [PMID: 19201199]
[28]
Shibata T, Ishimaru K, Kawaguchi S, et al. Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. In: Borowitzka MA, Critchley AT, Kraan S, Eds. Proceedings of the 19th International Seaweed Symposium, held in Kobe Japan. Dordrecht: Springer Netherlands 2007; pp. 26-31.
[http://dx.doi.org/10.1007/978-1-4020-9619-8_32]
[29]
Heo S-J, Jeon Y-J. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J Photochem Photobiol B 2009; 95(2): 101-7.
[http://dx.doi.org/10.1016/j.jphotobiol.2008.11.011] [PMID: 19264501]
[30]
Sangeetha RK, Bhaskar N, Baskaran V. Comparative effects of β-carotene and fucoxanthin on retinol deficiency induced oxidative stress in rats. Mol Cell Biochem 2009; 331(1-2): 59-67.
[http://dx.doi.org/10.1007/s11010-009-0145-y] [PMID: 19421712]
[31]
Ravi Kumar S, Narayan B, Vallikannan B. Fucoxanthin restrains oxidative stress induced by retinol deficiency through modulation of Na(+)K(+)-ATPase [corrected] and antioxidant enzyme activities in rats. Eur J Nutr 2008; 47(8): 432-41.
[http://dx.doi.org/10.1007/s00394-008-0745-4] [PMID: 18853231]
[32]
Palozza P, Krinsky NI. Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch Biochem Biophys 1992; 297(2): 291-5.
[http://dx.doi.org/10.1016/0003-9861(92)90675-M] [PMID: 1497349]
[33]
Bian C, Wang J, Zhou X, Wu W, Guo R. Recent advances on marine alkaloids from sponges. Chem Biodivers 2020; 17(10): e2000186.
[http://dx.doi.org/10.1002/cbdv.202000186] [PMID: 32562510]
[34]
Wu R, Wu C, Liu D, et al. Overview of antioxidant peptides derived from marine resources: The sources, characteristic, purification, and evaluation methods. Appl Biochem Biotechnol 2015; 176(7): 1815-33.
[http://dx.doi.org/10.1007/s12010-015-1689-9] [PMID: 26041057]
[35]
Naqash SY, Nazeer RA. Antioxidant activity of hydrolysates and peptide fractions of Nemipterus japonicus and Exocoetus volitans muscle. J Aquat Food Prod Technol 2010; 19(3-4): 180-92.
[http://dx.doi.org/10.1080/10498850.2010.506256]
[36]
Qian Z-J, Jung W-K, Byun H-G, Kim S-K. Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage. Bioresour Technol 2008; 99(9): 3365-71.
[http://dx.doi.org/10.1016/j.biortech.2007.08.018] [PMID: 17904358]
[37]
Rajapakse N, Mendis E, Byun H-G, Kim S-K. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J Nutr Biochem 2005; 16(9): 562-9.
[http://dx.doi.org/10.1016/j.jnutbio.2005.02.005] [PMID: 16115545]
[38]
Sampath Kumar NS, Nazeer RA, Jaiganesh R. Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber). Amino Acids 2012; 42(5): 1641-9.
[http://dx.doi.org/10.1007/s00726-011-0858-6] [PMID: 21384132]
[39]
Chi C-F, Hu F-Y, Wang B, Ren XJ, Deng SG, Wu CW. Purification and characterization of three antioxidant peptides from protein hydrolyzate of croceine croaker (Pseudosciaena crocea) muscle. Food Chem 2015; 168: 662-7.
[http://dx.doi.org/10.1016/j.foodchem.2014.07.117] [PMID: 25172761]
[40]
Kim S-Y, Je J-Y, Kim S-K. Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. J Nutr Biochem 2007; 18(1): 31-8.
[http://dx.doi.org/10.1016/j.jnutbio.2006.02.006] [PMID: 16563720]
[41]
Kundeti LS, Ambati S, Srividya GS, Yadav JS, Kommu N. A review on chloro substituted marine natural product, chemical examination and biological activity. Curr Trends Biotechnol Pharm 2019; 13(1): 72-82.
[42]
Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener 2015; 4(1): 19.
[http://dx.doi.org/10.1186/s40035-015-0042-0] [PMID: 26464797]
[43]
Barbalace MC, Malaguti M, Giusti L, Lucacchini A, Hrelia S, Angeloni C. Anti-inflammatory activities of marine algae in neurodegenerative diseases. Int J Mol Sci 2019; 20(12): 3061.
[http://dx.doi.org/10.3390/ijms20123061] [PMID: 31234555]
[44]
Kim K-W, Kim HJ, Sohn JH, Yim JH, Kim YC, Oh H. Anti-neuroinflammatory effect of 6,8,1′-tri-O-methylaverantin, a metabolite from a marine-derived fungal strain Aspergillus sp., via upregulation of heme oxygenase-1 in lipopolysaccharide-activated microglia. Neurochem Int 2018; 113: 8-22.
[http://dx.doi.org/10.1016/j.neuint.2017.11.010] [PMID: 29174381]
[45]
Lee D-S, Ko W, Quang TH, et al. Penicillinolide A: A new anti-inflammatory metabolite from the marine fungus Penicillium sp. SF-5292. Mar Drugs 2013; 11(11): 4510-26.
[http://dx.doi.org/10.3390/md11114510] [PMID: 24225730]
[46]
Reddy MC, Subhashini J, Mahipal SVK,, et al. C-Phycocyanin, a selective cyclooxygenase-2 inhibitor, induces apoptosis in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biochem Biophys Res Commun 2003; 304(2): 385-92.
[http://dx.doi.org/10.1016/S0006-291X(03)00586-2] [PMID: 12711327]
[47]
Huang S-Y, Chen N-F, Chen W-F, et al. Sinularin from indigenous soft coral attenuates nociceptive responses and spinal neuroinflammation in carrageenan-induced inflammatory rat model. Mar Drugs 2012; 10(9): 1899-919.
[http://dx.doi.org/10.3390/md10091899] [PMID: 23118711]
[48]
Lee S, Youn K, Kim DH, et al. Anti-neuroinflammatory property of phlorotannins from Ecklonia cava on Aβ25-35-induced damage in PC12 cells. Mar Drugs 2018; 17(1): 7.
[http://dx.doi.org/10.3390/md17010007] [PMID: 30583515]
[49]
Jung W-K, Heo S-J, Jeon Y-J, et al. Inhibitory effects and molecular mechanism of dieckol isolated from marine brown alga on COX-2 and iNOS in microglial cells. J Agric Food Chem 2009; 57(10): 4439-46.
[http://dx.doi.org/10.1021/jf9003913] [PMID: 19408937]
[50]
Jung W-K, Ahn Y-W, Lee S-H, et al. Ecklonia cava ethanolic extracts inhibit lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression in BV2 microglia via the MAP kinase and NF-kappaB pathways. Food Chem Toxicol 2009; 47(2): 410-7.
[http://dx.doi.org/10.1016/j.fct.2008.11.041] [PMID: 19111593]
[51]
Cui Y-Q, Zhang L-J, Zhang T, et al. Inhibitory effect of fucoidan on nitric oxide production in lipopolysaccharide-activated primary microglia. Clin Exp Pharmacol Physiol 2010; 37(4): 422-8.
[http://dx.doi.org/10.1111/j.1440-1681.2009.05314.x] [PMID: 19843098]
[52]
Jin D-Q, Lim CS, Sung J-Y, Choi HG, Ha I, Han JS. Ulva conglobata, a marine algae, has neuroprotective and anti-inflammatory effects in murine hippocampal and microglial cells. Neurosci Lett 2006; 402(1-2): 154-8.
[http://dx.doi.org/10.1016/j.neulet.2006.03.068] [PMID: 16644126]
[53]
Verbaan D, Marinus J, Visser M, et al. Cognitive impairment in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2007; 78(11): 1182-7.
[http://dx.doi.org/10.1136/jnnp.2006.112367] [PMID: 17442759]
[54]
Tabassum N, Rasool S, Malik ZA, Ahmad F. Natural cognitive enhancers. J Pharm Res 2012; 5: 153-60.
[55]
Russo P, Kisialiou A, Lamonaca P, Moroni R, Prinzi G, Fini M. New drugs from marine organisms in Alzheimer’s disease. Mar Drugs 2015; 14(1): 5.
[http://dx.doi.org/10.3390/md14010005] [PMID: 26712769]
[56]
Kitagawa H, Takenouchi T, Azuma R, et al. Safety, pharmacokinetics, and effects on cognitive function of multiple doses of GTS-21 in healthy, male volunteers. Neuropsychopharmacology 2003; 28(3): 542-51.
[http://dx.doi.org/10.1038/sj.npp.1300028] [PMID: 12629535]
[57]
Kem W, Soti F, Wildeboer K, et al. The nemertine toxin anabaseine and its derivative DMXBA (GTS-21): Chemical and pharmacological properties. Mar Drugs 2006; 4(3): 255-73.
[http://dx.doi.org/10.3390/md403255]
[58]
Olincy A, Harris JG, Johnson LL, et al. Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry 2006; 63(6): 630-8.
[http://dx.doi.org/10.1001/archpsyc.63.6.630] [PMID: 16754836]
[59]
Arendash GW, Sengstock GJ, Sanberg PR, Kem WR. Improved learning and memory in aged rats with chronic administration of the nicotinic receptor agonist GTS-21. Brain Res 1995; 674(2): 252-9.
[http://dx.doi.org/10.1016/0006-8993(94)01449-R] [PMID: 7796104]
[60]
Kem WR. The brain α7 nicotinic receptor may be an important therapeutic target for the treatment of Alzheimer’s disease: Studies with DMXBA (GTS-21). Behav Brain Res 2000; 113(1-2): 169-81.
[http://dx.doi.org/10.1016/S0166-4328(00)00211-4] [PMID: 10942043]
[61]
Canhada S, Castro K, Perry IS, Luft VC. Omega-3 fatty acids’ supplementation in Alzheimer’s disease: A systematic review. Nutr Neurosci 2018; 21(8): 529-38.
[http://dx.doi.org/10.1080/1028415X.2017.1321813] [PMID: 28466678]
[62]
Pawełczyk T, Grancow M, Kotlicka-Antczak M, et al. Omega-3 fatty acids in first-episode schizophrenia - a randomized controlled study of efficacy and relapse prevention (OFFER): Rationale, design, and methods. BMC Psychiatry 2015; 15(1): 97.
[http://dx.doi.org/10.1186/s12888-015-0473-2] [PMID: 25934131]
[63]
Chang JP-C, Su K-P, Mondelli V, Pariante CM. Omega-3 polyunsaturated fatty acids in youths with attention deficit hyperactivity disorder: A systematic review and meta-analysis of clinical trials and biological studies. Neuropsychopharmacology 2018; 43(3): 534-45.
[http://dx.doi.org/10.1038/npp.2017.160] [PMID: 28741625]
[64]
Logan AC. Omega-3 fatty acids and major depression: A primer for the mental health professional. Lipids Health Dis 2004; 3(1): 25.
[http://dx.doi.org/10.1186/1476-511X-3-25] [PMID: 15535884]
[65]
Lim GP, Calon F, Morihara T, et al. A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci 2005; 25(12): 3032-40.
[http://dx.doi.org/10.1523/JNEUROSCI.4225-04.2005] [PMID: 15788759]
[66]
Rajput MS. Natural monoamine oxidase inhibitors: A review. J Pharm Res 2010; 3: 482-5.
[67]
Imada C. Enzyme inhibitors of marine microbial origin with pharmaceutical importance. Mar Biotechnol (NY) 2004; 6(3): 193-8.
[http://dx.doi.org/10.1007/s10126-003-0027-3] [PMID: 15129325]
[68]
Hong A, Tu LC, Yang I, Lim KM, Nam SJ. Marine natural products with monoamine oxidase (MAO) inhibitory activity. Pharm Biol 2020; 58(1): 716-20.
[http://dx.doi.org/10.1080/13880209.2020.1790618] [PMID: 32697127]
[69]
Lee HW, Jung WK, Kim HJ, et al. Inhibition of monoamine oxidase by anithiactins from Streptomyces sp. J Microbiol Biotechnol 2015; 25(9): 1425-8.
[http://dx.doi.org/10.4014/jmb.1505.05020] [PMID: 26032370]
[70]
Lee HW, Choi H, Nam S-J, Fenical W, Kim H. Potent inhibition of monoamine oxidase b by a piloquinone from marine-derived Streptomyces sp. CNQ-027. J Microbiol Biotechnol 2017; 27(4): 785-90.
[http://dx.doi.org/10.4014/jmb.1612.12025] [PMID: 28068665]
[71]
Lorenzo VP, Barbosa Filho JM, Scotti L, Scotti MT. Combined structure- and ligand-based virtual screening to evaluate caulerpin analogs with potential inhibitory activity against monoamine oxidase B. Rev Bras Farmacogn 2015; 25(6): 690-7.
[http://dx.doi.org/10.1016/j.bjp.2015.08.005]
[72]
Baird-Lambert J, Davis PA, Taylor KM. Methylaplysinopsin: A natural product of marine origin with effects on serotonergic neurotransmission. Clin Exp Pharmacol Physiol 1982; 9(2): 203-12.
[http://dx.doi.org/10.1111/j.1440-1681.1982.tb00798.x] [PMID: 6290119]
[73]
Ioffina DI, Volkovitskaya O, Gorkin VZ, Rebachuk NM, Utkina NK, Fedoreev SA. Aaptamine-new selective inhibitor of type a monoamine oxidases. Pharm Chem J 1990; 24(7): 456-8.
[http://dx.doi.org/10.1007/BF00764989]
[74]
Jha PK, Chaudhary N. Epidemiology of Parkinson’s disease in South Central India - A longitudinal cohort study. IAIM 2017; 4(7): 8-17.
[75]
Blesa J, Phani S, Jackson-Lewis V, Przedborski S. Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol 2012; 2012: 845618.
[http://dx.doi.org/10.1155/2012/845618] [PMID: 22536024]
[76]
Werner F-M, Coveñas R. Classical neurotransmitters and neuropeptides involved in generalized epilepsy in a multineurotransmitter system: How to improve the antiepileptic effect? Epilepsy Behav 2017; 71(Pt B):: 124-9.
[http://dx.doi.org/10.1016/j.yebeh.2015.01.038] [PMID: 25819950]
[77]
Lansbury PT Jr. Back to the future: The ‘old-fashioned’ way to new medications for neurodegeneration. Nat Med 2004; 10(S7): S51-7.
[http://dx.doi.org/10.1038/nrn1435] [PMID: 15298008]
[78]
Faria C, Jorge CD, Borges N, Tenreiro S, Outeiro TF, Santos H. Inhibition of formation of α-synuclein inclusions by mannosylglycerate in a yeast model of Parkinson’s disease. Biochim Biophys Acta 2013; 1830(8): 4065-72.
[http://dx.doi.org/10.1016/j.bbagen.2013.04.015] [PMID: 23608058]
[79]
Mena MA, Casarejos MJ, Solano R, et al. NP7 protects from cell death induced by oxidative stress in neuronal and glial midbrain cultures from parkin null mice. FEBS Lett 2009; 583(1): 168-74.
[http://dx.doi.org/10.1016/j.febslet.2008.11.051] [PMID: 19084014]
[80]
Lu X-L, Yao X-L, Liu Z, et al. Protective effects of xyloketal B against MPP+-induced neurotoxicity in Caenorhabditis elegans and PC12 cells. Brain Res 2010; 1332: 110-9.
[http://dx.doi.org/10.1016/j.brainres.2010.03.071] [PMID: 20347725]
[81]
Zhai A, Zhu X, Wang X, Chen R, Wang H. Secalonic acid A protects dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP+)-induced cell death via the mitochondrial apoptotic pathway. Eur J Pharmacol 2013; 713(1-3): 58-67.
[http://dx.doi.org/10.1016/j.ejphar.2013.04.029] [PMID: 23665112]
[82]
Kurobane I, Iwahashi S, Fukuda A. Cytostatic activity of naturally isolated isomers of secalonic acids and their chemically rearranged dimers. Drugs Exp Clin Res 1987; 13(6): 339-44.
[PMID: 3652923]
[83]
Yurchenko EA, Menchinskaya ES, Pislyagin EA, et al. Neuroprotective activity of some marine fungal metabolites in the 6-hydroxydopamin- and paraquat-induced Parkinson’s disease models. Mar Drugs 2018; 16(11): E457.
[http://dx.doi.org/10.3390/md16110457] [PMID: 30469376]
[84]
Kajimura Y, Aoki T, Kuramochi K, et al. Neoechinulin A protects PC12 cells against MPP+-induced cytotoxicity. J Antibiot (Tokyo) 2008; 61(5): 330-3.
[http://dx.doi.org/10.1038/ja.2008.48] [PMID: 18654001]
[85]
Akashi S, Kimura T, Takeuchi T, et al. Neoechinulin A impedes the progression of rotenone-induced cytotoxicity in PC12 cells. Biol Pharm Bull 2011; 34(2): 243-8.
[http://dx.doi.org/10.1248/bpb.34.243] [PMID: 21415535]
[86]
Chamorro G, Pérez-Albiter M, Serrano-García N, Mares-Sámano JJ, Rojas P. Spirulina maxima pretreatment partially protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Nutr Neurosci 2006; 9(5-6): 207-12.
[http://dx.doi.org/10.1080/10284150600929748] [PMID: 17263087]
[87]
Souza RB, Frota AF, Sousa RS, et al. Neuroprotective effects of sulphated agaran from marine alga Gracilaria cornea in rat 6-hydroxydopamine Parkinson’s disease model: Behavioural, neurochemical and transcriptional alterations. Basic Clin Pharmacol Toxicol 2017; 120(2): 159-70.
[http://dx.doi.org/10.1111/bcpt.12669] [PMID: 27612165]
[88]
Silva J, Alves C, Pinteus S, Mendes S, Pedrosa R. Neuroprotective effects of seaweeds against 6-hydroxidopamine-induced cell death on an in vitro human neuroblastoma model. BMC Complement Altern Med 2018; 18(1): 58.
[http://dx.doi.org/10.1186/s12906-018-2103-2] [PMID: 29444677]
[89]
Joana S, Celso A, Rui P. Protective effect of Codium tomentosum alga on SH-SY5Y model of neurotoxicity induced by 6-hydroxydopamine (6 – OHDA). Front Mar Sci 2014; Available from: https://www.frontiersin.org/10.3389/conf.FMARS.2014.02.00071/event_abstract
[http://dx.doi.org/10.3389/conf.FMARS.2014.02.00071]
[90]
Zhang L, Hao J, Zheng Y, et al. Fucoidan protects dopaminergic neurons by enhancing the mitochondrial function in a rotenone-induced rat model of Parkinson’s disease. Aging Dis 2018; 9(4): 590-604.
[http://dx.doi.org/10.14336/AD.2017.0831] [PMID: 30090649]
[91]
Luo D, Zhang Q, Wang H, et al. Fucoidan protects against dopaminergic neuron death in vivo and in vitro. Eur J Pharmacol 2009; 617(1-3): 33-40.
[http://dx.doi.org/10.1016/j.ejphar.2009.06.015] [PMID: 19545563]
[92]
Cui Y-Q, Jia Y-J, Zhang T, Zhang QB, Wang XM. Fucoidan protects against lipopolysaccharide-induced rat neuronal damage and inhibits the production of proinflammatory mediators in primary microglia. CNS Neurosci Ther 2012; 18(10): 827-33.
[http://dx.doi.org/10.1111/j.1755-5949.2012.00372.x] [PMID: 23006515]
[93]
Zhang F-L, He Y, Zheng Y, et al. Therapeutic effects of fucoidan in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease: Role of NADPH oxidase-1. CNS Neurosci Ther 2014; 20(12): 1036-44.
[http://dx.doi.org/10.1111/cns.12340] [PMID: 25399812]
[94]
Meenakshi S, Umayaparvathi S, Saravanan R, Manivasagam T, Balasubramanian T. Neuroprotective effect of fucoidan from Turbinaria decurrens in MPTP intoxicated Parkinsonic mice. Int J Biol Macromol 2016; 86: 425-33.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.025] [PMID: 26828289]
[95]
Wang J, Liu H, Jin W, Zhang H, Zhang Q. Structure-activity relationship of sulfated hetero/galactofucan polysaccharides on dopaminergic neuron. Int J Biol Macromol 2016; 82: 878-83.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.10.042] [PMID: 26484597]
[96]
Wang J, Liu H, Zhang X, et al. Sulfated hetero-polysaccharides protect SH-SY5Y cells from H2O2-induced apoptosis by affecting the PI3K/Akt signaling pathway. Mar Drugs 2017; 15(4): 110.
[http://dx.doi.org/10.3390/md15040110] [PMID: 28383489]
[97]
Ambati RR, Phang S-M, Ravi S, Aswathanarayana RG. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications-a review. Mar Drugs 2014; 12(1): 128-52.
[http://dx.doi.org/10.3390/md12010128] [PMID: 24402174]
[98]
Sachindra NM, Bhaskar N, Mahendrakar NS. Carotenoids in crabs from marine and fresh waters of India. Lebensm Wiss Technol 2005; 38(3): 221-5.
[http://dx.doi.org/10.1016/j.lwt.2004.06.003]
[99]
Liu X, Osawa T. Astaxanthin protects neuronal cells against oxidative damage and is a potent candidate for brain food. Forum Nutr 2009; 61: 129-35.
[http://dx.doi.org/10.1159/000212745] [PMID: 19367117]
[100]
Liu X, Shibata T, Hisaka S, Osawa T. Astaxanthin inhibits reactive oxygen species-mediated cellular toxicity in dopaminergic SH-SY5Y cells via mitochondria-targeted protective mechanism. Brain Res 2009; 1254: 18-27.
[http://dx.doi.org/10.1016/j.brainres.2008.11.076] [PMID: 19101523]
[101]
Ikeda Y, Tsuji S, Satoh A, Ishikura M, Shirasawa T, Shimizu T. Protective effects of astaxanthin on 6-hydroxydopamine-induced apoptosis in human neuroblastoma SH-SY5Y cells. J Neurochem 2008; 107(6): 1730-40.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05743.x] [PMID: 19014378]
[102]
Grkovic T, Pouwer RH, Vial M-L, et al. NMR fingerprints of the drug-like natural-product space identify iotrochotazine A: A chemical probe to study Parkinson’s disease. Angew Chem Int Ed Engl 2014; 53(24): 6070-4.
[http://dx.doi.org/10.1002/anie.201402239] [PMID: 24737726]
[103]
Chen W-F, Chakraborty C, Sung C-S, et al. Neuroprotection by marine-derived compound, 11-dehydrosinulariolide, in an in vitro Parkinson’s model: A promising candidate for the treatment of Parkinson’s disease. Naunyn Schmiedebergs Arch Pharmacol 2012; 385(3): 265-75.
[http://dx.doi.org/10.1007/s00210-011-0710-2] [PMID: 22119889]
[104]
Feng C-W, Hung H-C, Huang S-Y, et al. Neuroprotective effect of the marine-derived compound 11-dehydrosinulariolide through DJ-1-related pathway in in vitro and in vivo models of Parkinson’s disease. Mar Drugs 2016; 14(10): 187.
[http://dx.doi.org/10.3390/md14100187] [PMID: 27763504]
[105]
Kao C-J, Chen W-F, Guo B-L, et al. The 1-tosylpentan-3-one protects against 6-hydroxydopamine-induced neurotoxicity. Int J Mol Sci 2017; 18(5): 1096.
[http://dx.doi.org/10.3390/ijms18051096] [PMID: 28534853]
[106]
Chalorak P, Jattujan P, Nobsathian S, Poomtong T, Sobhon P, Meemon K. Holothuria scabra extracts exhibit anti-Parkinson potential in C. elegans: A model for anti-Parkinson testing. Nutr Neurosci 2018; 21(6): 427-38.
[http://dx.doi.org/10.1080/1028415X.2017.1299437] [PMID: 28276260]
[107]
Schengrund C-L. Gangliosides: Glycosphingolipids essential for normal neural development and function. Trends Biochem Sci 2015; 40(7): 397-406.
[http://dx.doi.org/10.1016/j.tibs.2015.03.007] [PMID: 25941169]
[108]
Wang X, Cong P, Liu Y, et al. Neuritogenic effect of sea cucumber glucocerebrosides on NGF-induced PC12 cells via activation of the TrkA/CREB/BDNF signalling pathway. J Funct Foods 2018; 46: 175-84.
[http://dx.doi.org/10.1016/j.jff.2018.04.035]
[109]
Luchtman DW, Meng Q, Song C. Ethyl-eicosapentaenoate (E-EPA) attenuates motor impairments and inflammation in the MPTP-probenecid mouse model of Parkinson’s disease. Behav Brain Res 2012; 226(2): 386-96.
[http://dx.doi.org/10.1016/j.bbr.2011.09.033] [PMID: 21971013]
[110]
Ozsoy O, Tanriover G, Derin N, et al. The effect of docosahexaenoic Acid on visual evoked potentials in a mouse model of Parkinson’s disease: The role of cyclooxygenase-2 and nuclear factor kappa-B. Neurotox Res 2011; 20(3): 250-62.
[http://dx.doi.org/10.1007/s12640-011-9238-y] [PMID: 21234736]
[111]
Miyake Y, Fukushima W, Tanaka K, et al. Dietary intake of antioxidant vitamins and risk of Parkinson’s disease: A case-control study in Japan. Eur J Neurol 2011; 18(1): 106-13.
[http://dx.doi.org/10.1111/j.1468-1331.2010.03088.x] [PMID: 20491891]
[112]
de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol 2006; 5(6): 525-35.
[http://dx.doi.org/10.1016/S1474-4422(06)70471-9] [PMID: 16713924]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy