Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Studies on the Anti-HBV Mechanism of Syringopicroside Based on Serum Metabolomics

Author(s): Xiwu Zhang, Yang Li, Jian Zhu, Yongji Li, Zhenqiang Liu, Zhenhua Lu and Jinjin Dou*

Volume 18, Issue 8, 2022

Published on: 18 August, 2022

Page: [795 - 814] Pages: 20

DOI: 10.2174/1573412918666220509144432

Price: $65

Abstract

Aims: Syringopicroside (SYR) is an iridoid monomer compound isolated from the leaves of clove. HBV is a hepatotropic virus that can cause severe liver diseases, including acute and chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Syringopicroside has a significant effect on anti-HBV, but its mechanism of action is still unclear.

Methods: A metabolomics approach based on UPLC-G2-Si-HDMS was performed to analyze the serum biomarkers from HBV transgenic mice to find the biomarkers affected by syringopicroside. Through the analysis of metabolic pathways, the key pathways of syringopicroside involved in a therapeutic action were explored to study its potential mechanism. Using network pharmacology, the "component-target-pathway" network of syringopicroside in the treatment of hepatitis B was constructed and combined with the results of metabolomics. Furthermore, the mechanism of action of syringopicroside against HBV was also discussed.

Results: Serum metabolomics identified a total of 42 HBV-related biomarkers, of which 8 returned to normal levels after syringopicroside treatment, involving a total of 6 metabolic pathways. Five biomarkers returned to normal levels after lamivudine treatment, involving 2 metabolic pathways. Network pharmacology analysis showed that syringopicroside in the treatment of hepatitis B mainly acts on 26 targets, including MMP9, MAPK1, and SLC29A1, involving 4 pathways.

Conclusion: This study elucidates the multi-target and multi-channel integration mechanism of syringopicroside against HBV, lays a foundation for an in-depth study of the anti-HBV mechanism of syringopicroside, and also provides support for the development of innovative traditional Chinese medicines for the treatment of hepatitis B.

Keywords: Syringopicroside, HBV, metabolomics, HBV transgenic mice, serum, network pharmacology.

[1]
Seto, W.K.; Lo, Y.R.; Pawlotsky, J.M.; Yuen, M.F. Chronic hepatitis B virus infection. Lancet, 2018, 392(10161), 2313-2324.
[http://dx.doi.org/10.1016/S0140-6736(18)31865-8] [PMID: 30496122]
[2]
Yuen, M.F.; Chen, D.S.; Dusheiko, G.M. Hepatitis B virus infection. Nat. Rev. Dis. Primers, 2018, 4, 18035.
[http://dx.doi.org/10.1038/nrdp.2018.35]
[3]
Chan, S.L.; Wong, V.W.; Qin, S.; Chan, H.L. Infection and cancer: The case of hepatitis B. J. Clin. Oncol., 2016, 34(1), 83-90.
[http://dx.doi.org/10.1200/JCO.2015.61.5724] [PMID: 26578611]
[4]
Tsai, K.N.; Kuo, C.F.; Ou, J.J. Mechanisms of hepatitis B virus persistence. Trends Microbiol., 2018, 26(1), 33-42.
[http://dx.doi.org/10.1016/j.tim.2017.07.006] [PMID: 28823759]
[5]
Fanning, G.C.; Zoulim, F.; Hou, J.; Bertoletti, A. Therapeutic strategies for hepatitis B virus infection: Towards a cure. Nat. Rev. Drug Discov., 2019, 18(11), 827-844.
[http://dx.doi.org/10.1038/s41573-019-0037-0] [PMID: 31455905]
[6]
Mücke, M.M.; Backus, L.I.; Mücke, V.T.; Coppola, N.; Preda, C.M.; Yeh, M.L.; Tang, L.S.Y.; Belperio, P.S.; Wilson, E.M.; Yu, M.L.; Zeuzem, S.; Herrmann, E.; Vermehren, J. Hepatitis B virus reactivation during direct-acting antiviral therapy for hepatitis C: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol., 2018, 3(3), 172-180.
[http://dx.doi.org/10.1016/S2468-1253(18)30002-5] [PMID: 29371017]
[7]
Mueller, H.; Wildum, S.; Luangsay, S.; Walther, J.; Lopez, A.; Tropberger, P.; Ottaviani, G.; Lu, W.; Parrott, N.J.; Zhang, J.D.; Schmucki, R.; Racek, T.; Hoflack, J.C.; Kueng, E.; Point, F.; Zhou, X.; Steiner, G.; Lütgehetmann, M.; Rapp, G.; Volz, T.; Dandri, M.; Yang, S.; Young, J.A.T.; Javanbakht, H. A novel orally available small molecule that inhibits hepatitis B virus expression. J. Hepatol., 2018, 68(3), 412-420.
[http://dx.doi.org/10.1016/j.jhep.2017.10.014] [PMID: 29079285]
[8]
Cai, M.Z.; Qin, G. Research advances in anti-hepatitis B virus drugs. Clin. Gastroenterol. Hepatol., 2019, 35(10), 2302-2307.
[9]
Xu, Z.C.; Zhao, K.T.; Jiang, Y.G.; Xia, Y.C. Research progress of antiviral drugs for hepatitis B. Chin. Sci. Bull., 2019, 64(30), 3123-3141.
[http://dx.doi.org/10.1360/TB-2019-0038]
[10]
Arbab, A.H.; Parvez, M.K.; Al-Dosari, M.S.; Al-Rehaily, A.J. In vitro evaluation of novel antiviral activities of 60 medicinal plants extracts against hepatitis B virus. Exp. Ther. Med., 2017, 14(1), 626-634.
[http://dx.doi.org/10.3892/etm.2017.4530] [PMID: 28672977]
[11]
Duan, Z.H.; Chen, X.M. Research progress on active ingredients of traditional Chinese medicine against hepatitis B virus. Liaoning Zhongyiyao Daxue Xuebao, 2016, 18(11), 112-115.
[12]
Yao, X.C.; Xiao, X.; Huang, B.K.; Xu, C.Y. Study on molecular docking and in vitro activity of the antiviral hepatitis B activity of C. vulgaris. Chin. J. Clin. Pharmacol., 2019, 35(5), 439-448.
[13]
Zhu, W.; Wang, Z.; Sun, Y.; Yang, B.; Wang, Q.; Kuang, H. Traditional uses, phytochemistry and pharmacology of genus Syringa: A comprehensive review. J. Ethnopharmacol., 2021, 266, 113465.
[http://dx.doi.org/10.1016/j.jep.2020.113465] [PMID: 33049343]
[14]
Asaka, Y.; Kamikawa, T.; Tokoroyama, T.; Kubota, T. The structure and absolute configuration of syringopicroside. A new iridoid glucoside from Syringa vulgaris L. Tetrahedron, 1970, 26(10), 2365-2370.
[http://dx.doi.org/10.1016/S0040-4020(01)92815-7] [PMID: 5419197]
[15]
Fang, J.; Zhang, X.W.; Li, Y.J. Li, Wang Y.H.; Wang, L. M. Experimental study on anti-duck hepatitis B virus of syringoprin. Information on Traditional Chinese Medicine, 2011, 28(03), 133-135.
[16]
Zhang, X.W.; Li, Y.J.; Fang, J.; Dou, J.J. Experimental study on anti-duck hepatitis B virus of syringomycin solid lipid nanoparticles. Information on Traditional Chinese Medicine, 2011, 28(02), 107-110.
[17]
Li, Y.J.; Lu, S.W. New pharmaceutical uses of syringoprin. CN Patent 102475711A, 2012.
[18]
Nicholson, J.K.; Lindon, J.C.; Holmes, E. ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 1999, 29(11), 1181-1189.
[http://dx.doi.org/10.1080/004982599238047] [PMID: 10598751]
[19]
Wishart, D.S. Metabolomics for investigating physiological and pathophysiological processes. Physiol. Rev., 2019, 99(4), 1819-1875.
[http://dx.doi.org/10.1152/physrev.00035.2018] [PMID: 31434538]
[20]
Xu, G.W.; Kong, H.W.; Wang, J.S.; Lu, X. Research on traditional Chinese medicine with systematic thinking: A summary of related research work in recent years. World Sci. Technol., 2009, 11(01), 107-119.
[21]
Nassar, A.F.; Wu, T.; Nassar, S.F.; Wisnewski, A.V. UPLC-MS for metabolomics: A giant step forward in support of pharmaceutical research. Drug Discov. Today, 2017, 22(2), 463-470.
[http://dx.doi.org/10.1016/j.drudis.2016.11.020] [PMID: 27919805]
[22]
Liu, W.; Fan, Y.; Tian, C.; Jin, Y.; Du, S.; Zeng, P.; Wang, A. Deciphering the molecular targets and mechanisms of HGWD in the treatment of rheumatoid arthritis via Network Pharmacology and molecular docking. Evid. Based Complement. Alternat. Med., 2020, 2020, 7151634.
[http://dx.doi.org/10.1155/2020/7151634] [PMID: 32908565]
[23]
Zhan, K.; Bai, Y.; Liao, S.; Chen, H.; Kuang, L.; Luo, Q.; Lv, L.; Qiu, L.; Mei, Z. Identification and validation of EPHX2 as a prognostic biomarker in hepatocellular carcinoma. Mol. Med. Rep., 2021, 24(3), 650.
[http://dx.doi.org/10.3892/mmr.2021.12289] [PMID: 34278494]
[24]
Wu, X.G.; Chen, M.; Li, Z.Y.; Guo, R. The association study between EPHX2 gene polymorphism and the genetic susceptibility of secondary epilepsy to cerebral infarction in Han population in Changsha area. Xiandai Shengwu Yixue Jinzhan, 2015, 15(25), 4805-4851.
[http://dx.doi.org/10.13241/j.cnki.pmb.2015.25.002]
[25]
Satoh, O.; Umeda, M.; Imai, H.; Tunoo, H.; Inoue, K. Lipid composition of hepatitis B virus surface antigen particles and the particle-producing human hepatoma cell lines. J. Lipid Res., 1990, 31(7), 1293-1300.
[http://dx.doi.org/10.1016/S0022-2275(20)42638-0] [PMID: 2169517]
[26]
Liu, M.Z. Research on the mechanism of glutamate regulation of brain CYPs-mediated arachidonic acid metabolism; Wuhan University, 2017.
[27]
Xiang, J.Y.; Xu, M.; Feng, Y. Research progress on the mechanism of action of anti-HBV natural compounds. Zhongguo Yaolixue Tongbao, 2021, 37(10), 1346-1351.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy