Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis and Potential Antidiabetic Properties of Curcumin-Based Derivatives: An In Vitro and In Silico Study of α-Glucosidase and α-Amylase Inhibition

Author(s): Mohammad Ezati, Fahimeh Ghavamipour, Narges Khosravi, Reza H. Sajedi, Maryam Chalabi, Alireza Farokhi, Hadi Adibi* and Reza Khodarahmi*

Volume 19, Issue 1, 2023

Published on: 25 August, 2022

Page: [99 - 117] Pages: 19

DOI: 10.2174/1573406418666220509101854

Price: $65

conference banner
Abstract

Background: Over the past twenty years, the prevalence of diabetes as one of the most common metabolic diseases has become a public health problem worldwide. Blood glucose control is important in delaying the onset and progression of diabetes-related complications. α-Glycosidase (α- Glu) and α-amylase (α-Amy) are important enzymes in glucose metabolism. Diabetic control through the inhibition of carbohydrate hydrolyzing enzymes is established as an effective strategy.

Methods: In this study, curcumin-based benzaldehyde derivatives with high stability, bioavailability, and favorable efficiency were synthesized.

Results: The results showed that L13, L8, and L11 derivatives have the highest inhibitory effect on α-Glu with IC50 values of 18.65, 20.6, and 31.7 μM and, also L11, L13, and L8 derivatives have the highest inhibitory effect on α-Amy with IC50 value of 14.8, 21.8, and 44.9 μM respectively. Furthermore, enzyme inhibitory kinetic characterization was also performed to understand the mechanism of enzyme inhibition.

Conclusion: L13, compared to the other compounds, exhibited acceptable inhibitory activity against both enzymes. The L13 derivative could be an appropriate candidate for further study through the rational drug design to the exploration of a new class of powerful anti-diabetic drugs considering the antioxidant properties of the synthesized compounds. The derivative helps reduce the glycemic index and limits the activity of the major reactive oxygen species (ROS) producing pathways.

Keywords: Curcumin derivatives, antidiabetic agents, antioxidant activity, α-amylase, α-glucosidase, diabetes.

Graphical Abstract
[1]
Avogaro, A.; Fadini, G.P. The effects of dipeptidyl peptidase-4 inhibition on microvascular diabetes complications. Diabetes Care, 2014, 37(10), 2884-2894.
[http://dx.doi.org/10.2337/dc14-0865] [PMID: 25249673]
[2]
Danaei, G.; Finucane, M.M.; Lu, Y.; Singh, G.M.; Cowan, M.J.; Paciorek, C.J.; Lin, J.K.; Farzadfar, F.; Khang, Y.H.; Stevens, G.A.; Rao, M.; Ali, M.K.; Riley, L.M.; Robinson, C.A.; Ezzati, M. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet, 2011, 378(9785), 31-40.
[http://dx.doi.org/10.1016/S0140-6736(11)60679-X] [PMID: 21705069]
[3]
Vyas, B.; Singh, M.; Kaur, M.; Bahia, M.S.; Jaggi, A.S.; Silakari, O.; Singh, B. Aldose reductase inhibitors for diabetic complications: Receptor induced atom-based 3D-QSAR analysis, synthesis and biological evaluation. J. Mol. Graph. Model., 2015, 59, 59-71.
[http://dx.doi.org/10.1016/j.jmgm.2015.03.005] [PMID: 25911954]
[4]
Hanefeld, M.; Temelkova-Kurktschiev, T. Control of post-prandial hyperglycemia-an essential part of good diabetes treatment and prevention of cardiovascular complications. Nutr. Metab. Cardiovasc. Dis., 2002, 12(2), 98-107.
[PMID: 12189909]
[5]
Rasouli, H.; Hosseini-Ghazvini, S.M.-B.; Adibi, H.; Khodarahmi, R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes. Food Funct., 2017, 8(5), 1942-1954.
[http://dx.doi.org/10.1039/C7FO00220C] [PMID: 28470323]
[6]
Taylor, J.R.N.; Emmambux, M.N.; Kruger, J. Developments in modulating glycaemic response in starchy cereal foods. Stärke, 2015, 67(1-2), 79-89.
[http://dx.doi.org/10.1002/star.201400192]
[7]
Sales, P.M.; Souza, P.M.; Simeoni, L.A.; Silveira, D.; Silveira, D. α-Amylase inhibitors: A review of raw material and isolated compounds from plant source. J. Pharm. Pharm. Sci., 2012, 15(1), 141-183.
[http://dx.doi.org/10.18433/J35S3K] [PMID: 22365095]
[8]
Tan, Y.; Chang, S.K.C.; Zhang, Y. Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chem., 2017, 214, 259-268.
[http://dx.doi.org/10.1016/j.foodchem.2016.06.100] [PMID: 27507474]
[9]
Poovitha, S.; Parani, M. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complement. Altern. Med., 2016, 16(1)(Suppl. 1), 185.
[http://dx.doi.org/10.1186/s12906-016-1085-1] [PMID: 27454418]
[10]
Shahidpour, S.; Panahi, F.; Yousefi, R.; Nourisefat, M.; Nabipoor, M.; Khalafi-Nezhad, A. Design and synthesis of new antidiabetic α-glucosidase and α-amylase inhibitors based on pyrimidine-fused heterocycles. Med. Chem. Res., 2015, 24(7), 3086-3096.
[http://dx.doi.org/10.1007/s00044-015-1356-2]
[11]
Bachhawat, J.A.; Shihabudeen, M.S.; Thirumurugan, K. Screening of fifteen Indian ayurvedic plants for alpha-glucosidase inhibitory activity and enzyme kinetics. Int. J. Pharm. Pharm. Sci., 2011, 3(4), 267-274.
[12]
Standl, E.; Schnell, O. Alpha-glucosidase inhibitors 2012 - cardiovascular considerations and trial evaluation. Diab. Vasc. Dis. Res., 2012, 9(3), 163-169.
[http://dx.doi.org/10.1177/1479164112441524] [PMID: 22508699]
[13]
Zhang, L.; Hogan, S.; Li, J.; Sun, S.; Canning, C.; Zheng, S.J.; Zhou, K. Grape skin extract inhibits mammalian intestinal α-glucosidase activity and suppresses postprandial glycemic response in streptozocin-treated mice. Food Chem., 2011, 126(2), 466-471.
[http://dx.doi.org/10.1016/j.foodchem.2010.11.016]
[14]
Jiang, Z.-Y.; Woollard, A.C.S.; Wolff, S.P. Hydrogen peroxide production during experimental protein glycation. FEBS Lett., 1990, 268(1), 69-71.
[http://dx.doi.org/10.1016/0014-5793(90)80974-N] [PMID: 2384174]
[15]
Lee, H.B.; Ha, H.; King, G.L. Reactive oxygen species and diabetic nephropathy. Am. Soc. Nephrol., 2003, 14(Suppl. 3), S209-S210.
[http://dx.doi.org/10.1097/01.ASN.0000077403.06195.D2]
[16]
Zielinski, H. Low molecular weight antioxidants in the cereal grains-a review. Polish J food Nutr. Sci., 2002, 1, 11-52.
[17]
Matés, J.M.; Pérez-Gómez, C.; Núñez de Castro, I. Antioxidant enzymes and human diseases. Clin. Biochem., 1999, 32(8), 595-603.
[http://dx.doi.org/10.1016/S0009-9120(99)00075-2] [PMID: 10638941]
[18]
Cardullo, N.; Muccilli, V.; Pulvirenti, L.; Cornu, A.; Pouységu, L.; Deffieux, D.; Quideau, S.; Tringali, C. C-glucosidic ellagitannins and galloylated glucoses as potential functional food ingredients with anti-diabetic properties: A study of α-glucosidase and α-amylase inhibition. Food Chem., 2020, 313, 126099.
[http://dx.doi.org/10.1016/j.foodchem.2019.126099] [PMID: 31927321]
[19]
Esmaeili, S.; Ghobadi, N.; Nazari, D.; Pourhossein, A.; Rasouli, H.; Adibi, H. Curcumin-based antioxidant and glycohydrolase inhibitor compounds: Synthesis and in vitro appraisal of the dual activity against diabetes. Med. Chem., 2021, 17(7), 677-698.
[PMID: 32370719]
[20]
Konya, H.; Miuchi, M.; Konishi, K.; Nagai, E.; Ueyama, T.; Kusunoki, Y.; Kimura, Y.; Nakamura, Y.; Ishikawa, T.; Inokuchi, C.; Katsuno, T.; Hamaguchi, T.; Miyagawa, J.; Namba, M. Pleiotropic effects of mitiglinide in type 2 diabetes mellitus. J. Int. Med. Res., 2009, 37(6), 1904-1912.
[http://dx.doi.org/10.1177/147323000903700628] [PMID: 20146890]
[21]
Yagi, S.; Drouart, N.; Bourgaud, F.; Henry, M.; Chapleur, Y.; Laurain-Mattar, D. Antioxidant and antiglycation properties of Hydnora johannis roots. S. Afr. J. Bot., 2013, 84, 124-127.
[http://dx.doi.org/10.1016/j.sajb.2012.10.006]
[22]
Kowluru, R.A.; Kanwar, M. Effects of curcumin on retinal oxidative stress and inflammation in diabetes. Nutr. Metab. (Lond.), 2007, 4(1), 8.
[http://dx.doi.org/10.1186/1743-7075-4-8] [PMID: 17437639]
[23]
Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218.
[http://dx.doi.org/10.1208/s12248-012-9432-8] [PMID: 23143785]
[24]
Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. In: The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Advances in Experimental Medicine and Biology; Aggarwal, B.B.; Surh, Y.J.; Shishodia, S., Eds.; Springer: Boston, MA, 2007; pp. 105-125.
[http://dx.doi.org/10.1007/978-0-387-46401-5_3]
[25]
Aziz, M.T.; El-Asmar, M.F.; Rezq, A.M.; Wassef, M.A.; Fouad, H.; Roshdy, N.K.; Ahmed, H.H.; Rashed, L.A.; Sabry, D.; Taha, F.M.; Hassouna, A. Effects of a novel curcumin derivative on insulin synthesis and secretion in streptozotocin-treated rat pancreatic islets in vitro. Chin. Med., 2014, 9(1), 3.
[http://dx.doi.org/10.1186/1749-8546-9-3] [PMID: 24422903]
[26]
Zhang, D.; Fu, M.; Gao, S.-H.; Liu, J.-L. Curcumin and diabetes: A systematic review. Evid. Based Complement. Altern. Med., 2013, 2013, 636053.
[27]
Arjomandi, O.K.; Almasi, S.; Hosseinzadeh, L.; Kavoosi, M.; Adibi, H. Preparation, characterization and in-vitro biological evaluation of novel curcumin derivatives as cytotoxic and apoptosis-inducing agents. Anticancer. Agents Med. Chem., 2021, 21(10), 1309-1322.
[PMID: 33006540]
[28]
Yousefi, A.; Yousefi, R.; Panahi, F.; Sarikhani, S.; Zolghadr, A.R.; Bahaoddini, A.; Khalafi-Nezhad, A. Novel curcumin-based pyrano[2,3-d]pyrimidine anti-oxidant inhibitors for α-amylase and α-glucosidase: Implications for their pleiotropic effects against diabetes complications. Int. J. Biol. Macromol., 2015, 78, 46-55.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.03.060] [PMID: 25843662]
[29]
Hasaninezhad, F.; Tavaf, Z.; Panahi, F.; Nourisefat, M.; Khalafi-Nezhad, A.; Yousefi, R. The assessment of antidiabetic properties of novel synthetic curcumin analogues: α-amylase and α-glucosidase as the target enzymes. J. Diabetes Metab. Disord., 2020, 19(2), 1505-1515.
[http://dx.doi.org/10.1007/s40200-020-00685-z] [PMID: 33553036]
[30]
Maltais, A.; Remondetto, G.E.; Subirade, M. Soy protein cold-set hydrogels as controlled delivery devices for nutraceutical compounds. Food Hydrocoll., 2009, 23(7), 1647-1653.
[http://dx.doi.org/10.1016/j.foodhyd.2008.12.006]
[31]
Tapal, A.; Tiku, P.K. Complexation of curcumin with soy protein isolate and its implications on solubility and stability of curcumin. Food Chem., 2012, 130(4), 960-965.
[http://dx.doi.org/10.1016/j.foodchem.2011.08.025]
[32]
Feder, D.; Hussein, W.M.; Clayton, D.J.; Kan, M.W.; Schenk, G.; McGeary, R.P.; Guddat, L.W. Identification of purple acid phosphatase inhibitors by fragment-based screening: Promising new leads for osteoporosis therapeutics. Chem. Biol. Drug Des., 2012, 80(5), 665-674.
[http://dx.doi.org/10.1111/cbdd.12001] [PMID: 22943065]
[33]
Choughule, K.V.; Barr, J.T.; Jones, J.P. Evaluation of rhesus monkey and guinea pig hepatic cytosol fractions as models for human aldehyde oxidase. Drug Metab. Dispos., 2013, 41(10), 1852-1858.
[http://dx.doi.org/10.1124/dmd.113.052985] [PMID: 23918666]
[34]
Siah, M.; Farzaei, M.H.; Ashrafi-Kooshk, M.R.; Adibi, H.; Arab, S.S.; Rashidi, M.R.; Khodarahmi, R. Inhibition of guinea pig aldehyde oxidase activity by different flavonoid compounds: An in vitro study. Bioorg. Chem., 2016, 64, 74-84.
[http://dx.doi.org/10.1016/j.bioorg.2015.12.004] [PMID: 26722818]
[35]
Pirouzpanah, S.; Rashidi, M.R.; Delazar, A.; Razavieh, S.V.; Hamidi, A. Inhibitory effects of Ruta graveolens L. extract on guinea pig liver aldehyde oxidase. Chem. Pharm. Bull. (Tokyo), 2006, 54(1), 9-13.
[http://dx.doi.org/10.1248/cpb.54.9] [PMID: 16394541]
[36]
Lalegani, S.; Ahmadi Gavlighi, H.; Azizi, M.H.; Amini Sarteshnizi, R. Inhibitory activity of phenolic-rich pistachio green hull extract-enriched pasta on key type 2 diabetes relevant enzymes and glycemic index. Food Res. Int., 2018, 105, 94-101.
[http://dx.doi.org/10.1016/j.foodres.2017.11.003] [PMID: 29433292]
[37]
Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol., 1995, 28(1), 25-30.
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]
[38]
Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[39]
Wang, H.; Wang, J.; Liu, Y.; Ji, Y.; Guo, Y.; Zhao, J. Interaction mechanism of carnosic acid against glycosidase (α-amylase and α-glucosidase). Int. J. Biol. Macromol., 2019, 138, 846-853.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.179] [PMID: 31356939]
[40]
Esmaeili, S.; Azizian, S.; Shahmoradi, B.; Moradi, S.; Shahlaei, M.; Khodarahmi, R. Dipyridamole inhibits α-amylase/α-glucosidase at sub-micromolar concentrations; in-vitro, in-vivo and theoretical studies. Bioorg. Chem., 2019, 88, 102972.
[http://dx.doi.org/10.1016/j.bioorg.2019.102972] [PMID: 31078769]
[41]
Miao, M.; Jiang, B.; Jiang, H.; Zhang, T.; Li, X. Interaction mechanism between green tea extract and human α-amylase for reducing starch digestion. Food Chem., 2015, 186, 20-25.
[http://dx.doi.org/10.1016/j.foodchem.2015.02.049] [PMID: 25976786]
[42]
Mehrabi, M.; Esmaeili, S.; Ezati, M.; Abassi, M.; Rasouli, H.; Nazari, D.; Adibi, H.; Khodarahmi, R. Antioxidant and glycohydrolase inhibitory behavior of curcumin-based compounds: Synthesis and evaluation of anti-diabetic properties in vitro. Bioorg. Chem., 2021, 110, 104720.
[http://dx.doi.org/10.1016/j.bioorg.2021.104720] [PMID: 33662896]
[43]
Wang, Y.-J.; Pan, M.-H.; Cheng, A.-L.; Lin, L.-I.; Ho, Y.-S.; Hsieh, C.-Y.; Lin, J.K. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal., 1997, 15(12), 1867-1876.
[http://dx.doi.org/10.1016/S0731-7085(96)02024-9] [PMID: 9278892]
[44]
Mayur, B.; Sancheti, S.; Shruti, S.; Sung-Yum, S. Antioxidant and-glucosidase inhibitory properties of Carpesium abrotanoides L. J. Med. Plants Res., 2010, 4(15), 1547-1553.
[45]
Noh, J.S.; Park, C.H.; Yokozawa, T. Treatment with oligonol, a low-molecular polyphenol derived from lychee fruit, attenuates diabetes-induced hepatic damage through regulation of oxidative stress and lipid metabolism. Br. J. Nutr., 2011, 106(7), 1013-1022.
[http://dx.doi.org/10.1017/S0007114511001322] [PMID: 21477406]
[46]
Yousefi, R.; Alavian-Mehr, M-M.; Mokhtari, F.; Panahi, F.; Mehraban, M.H.; Khalafi-Nezhad, A. Pyrimidine-fused heterocycle derivatives as a novel class of inhibitors for α-glucosidase. J. Enzyme Inhib. Med. Chem., 2013, 28(6), 1228-1235.
[http://dx.doi.org/10.3109/14756366.2012.727812] [PMID: 23043430]
[47]
Aggarwal, B.B.; Sundaram, C.; Malani, N.; Ichikawa, H. Curcumin: The Indian solid gold. In: The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease; Aggarwal, B.B.; Surh, Y.J.; Shishodia, S., Eds.; Springer: Boston, MA, 2007; p. 595.
[http://dx.doi.org/10.1007/978-0-387-46401-5_1]
[48]
Chuengsamarn, S.; Rattanamongkolgul, S.; Luechapudiporn, R.; Phisalaphong, C.; Jirawatnotai, S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care, 2012, 35(11), 2121-2127.
[http://dx.doi.org/10.2337/dc12-0116] [PMID: 22773702]
[49]
Kim, K.Y.; Nam, K.A.; Kurihara, H.; Kim, S.M. Potent α-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry, 2008, 69(16), 2820-2825.
[http://dx.doi.org/10.1016/j.phytochem.2008.09.007] [PMID: 18951591]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy