Generic placeholder image

Current Respiratory Medicine Reviews

Editor-in-Chief

ISSN (Print): 1573-398X
ISSN (Online): 1875-6387

Mini-Review Article

Tuberculosis: Current Progress in Drug Targets, Potential Drugs and Therapeutic Impact

Author(s): Mukesh Masand*, Pramod Kumar Sharma, Vishal M. Balaramnavar and Deepti Mathpal

Volume 18, Issue 3, 2022

Published on: 04 August, 2022

Page: [165 - 170] Pages: 6

DOI: 10.2174/1573398X18666220503184459

Price: $65

Abstract

The World Health Organization (WHO) considers tuberculosis to be the most dangerous chronic communicable disease in the world, infecting two billion people or one-third of the world’s population. Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a leading cause of mortality worldwide into the 21st century. Tuberculosis is second only to AIDS among other infectious diseases causing deaths worldwide. The emergence of AIDS, multidrug-resistant TB (MDRTB), extensively drug-resistant tuberculosis (XDR-TB), the decline of socioeconomic standards, and a reduced emphasis on tuberculosis control programmers contribute to the disease’s resurgence in industrialized countries.

Keywords: Phthisis, white plague, drug resistance, multidrug-resistant TB (MDR-TB), extensively drug-resistant tuberculosis (XDR-TB), fluoroquinolones (FQ), topoisomerases, phototoxicity.

[1]
Cave AJE, Demonstrator A. The evidence for the incidence of the tuberculosis in ancient Egypt. British J Tuberculosis 1939; 33(3): 142-52.
[http://dx.doi.org/10.1016/S0366-0850(39)80016-3]
[2]
Daniel TM. The history of tuberculosis. Respir Med 2006; 100(11): 1862-70.
[http://dx.doi.org/10.1016/j.rmed.2006.08.006] [PMID: 16949809]
[3]
Kwan CK, Ernst JD. HIV and tuberculosis: a deadly human syndemic. Clin Microbiol Rev 2011; 24(2): 351-76.
[http://dx.doi.org/10.1128/CMR.00042-10] [PMID: 21482729]
[4]
World Health Organization. Global Tuberculosis control report. 2020. Available from: https://www.who.int/publications/i/item/9789240013131
[5]
Sharma SK, Mohan A. Multidrug-resistance tuberculosis. Chest 2006; 130(1): 261-72.
[http://dx.doi.org/10.1016/S0012-3692(15)50981-1] [PMID: 16840411]
[6]
[7]
Girling DJ. The hepatic toxicity of antituberculosis regimens containing isoniazid, rifampicin and pyrazinamide. Tubercle 1978; 59(1): 13-32.
[http://dx.doi.org/10.1016/0041-3879(77)90022-8] [PMID: 345572]
[8]
Azhar GS. DOTS for TB relapse in India: A systematic review. Lung India 2012; 29(2): 147-53.
[http://dx.doi.org/10.4103/0970-2113.95320] [PMID: 22628930]
[9]
WHO treatment guidelines for drug-resistant tuberculosis 2016 update WHO/HTM/TB 201604 Geneva. World Health Organization 2016.
[10]
Appelbaum PC, Hunter PA. The fluoroquinolone antibacterials: past, present and future perspectives. Int J Antimicrob Agents 2000; 16(1): 5-15.
[http://dx.doi.org/10.1016/S0924-8579(00)00192-8] [PMID: 11185413]
[11]
Di Perri G, Bonora S. Which agents should we use for the treatment of multidrug-resistant Mycobacterium tuberculosis? J Antimicrob Chemother 2004; 54(3): 593-602.
[http://dx.doi.org/10.1093/jac/dkh377] [PMID: 15282233]
[12]
Rubinstein E. History of quinolones and their side effects. Chemotherapy 2001; 47(Suppl. 3): 3-8.
[http://dx.doi.org/10.1159/000057838] [PMID: 11549783]
[13]
Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry 2014; 53(10): 1565-74.
[http://dx.doi.org/10.1021/bi5000564] [PMID: 24576155]
[14]
Gawad J, Bonde C. Current affairs, future perspectives of tuberculosis and antitubercular agents. Indian J Tuberc 2018; 65(1): 15-22.
[http://dx.doi.org/10.1016/j.ijtb.2017.08.011] [PMID: 29332642]
[15]
Jia L, Tomaszewski JE, Hanrahan C, et al. Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug. Br J Pharmacol 2005; 144(1): 80-7.
[http://dx.doi.org/10.1038/sj.bjp.0705984] [PMID: 15644871]
[16]
Lee RE, Protopopova M, Crooks E, Slayden RA, Terrot M, Barry CE III. Combinatorial lead optimization of [1,2]-diamines based on ethambutol as potential antituberculosis preclinical candidates. J Comb Chem 2003; 5(2): 172-87.
[http://dx.doi.org/10.1021/cc020071p] [PMID: 12625709]
[17]
Jia L, Tomaszewski JE, Noker PE, Gorman GS, Glaze E, Protopopova M. Simultaneous estimation of pharmacokinetic properties in mice of three anti-tubercular ethambutol analogs obtained from combinatorial lead optimization. J Pharm Biomed Anal 2005; 37(4): 793-9.
[http://dx.doi.org/10.1016/j.jpba.2004.11.036] [PMID: 15797803]
[18]
Lenaerts AJ, Gruppo V, Marietta KS, et al. Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuber-culosis in a series of in vitro and in vivo models. Antimicrob Agents Chemother 2005; 49(6): 2294-301.
[http://dx.doi.org/10.1128/AAC.49.6.2294-2301.2005] [PMID: 15917524]
[19]
Stover CK, Warrener P, VanDevanter DR, et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 2000; 405(6789): 962-6.
[http://dx.doi.org/10.1038/35016103] [PMID: 10879539]
[20]
Lewis JM, Sloan DJ. The role of delamanid in the treatment of drug-resistant tuberculosis. Ther Clin Risk Manag 2015; 11: 779-91.
[PMID: 25999726]
[21]
Shimokawa Y, Sasahara K, Koyama N, et al. Metabolic mechanism of delamanid, a new anti-tuberculosis drug, in human plasma. Drug Metab Dispos 2015; 43(8): 1277-83.
[http://dx.doi.org/10.1124/dmd.115.064550] [PMID: 26055621]
[22]
Sasahara K, Shimokawa Y, Hirao Y, et al. Pharmacokinetics and metabolism of delamanid, a novel anti-tuberculosis drug, in animals and humans: Importance of albumin metabolism in vivo. Drug Metab Dispos 2015; 43(8): 1267-76.
[http://dx.doi.org/10.1124/dmd.115.064527] [PMID: 26055620]
[23]
Mallikaarjun S, Wells C, Petersen C, et al. Delamanid coadministered with antiretroviral drugs or antituberculosis drugs shows no clinical-ly relevant drug‐drug interactions in healthy subjects. Antimicrob Agents Chemother 2016; 60(10): 5976-85.
[http://dx.doi.org/10.1128/AAC.00509-16] [PMID: 27458223]
[24]
Lin AH, Murray RW, Vidmar TJ, Marotti KR. The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with bind-ing of chloramphenicol and lincomycin. Antimicrob Agents Chemother 1997; 41(10): 2127-31.
[http://dx.doi.org/10.1128/AAC.41.10.2127] [PMID: 9333036]
[25]
Cynamon MH, Klemens SP, Sharpe CA, Chase S. Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model. Antimicrob Agents Chemother 1999; 43(5): 1189-91.
[http://dx.doi.org/10.1128/AAC.43.5.1189] [PMID: 10223934]
[26]
Douros A, Grabowski K, Stahlmann R. Drug-drug interactions and safety of linezolid, tedizolid, and other oxazolidinones. Expert Opin Drug Metab Toxicol 2015; 11(12): 1849-59.
[http://dx.doi.org/10.1517/17425255.2015.1098617] [PMID: 26457865]
[27]
Jadhavar PS, Vaja MD, Dhameliya TM, Chakraborti AK. Oxazolidinones as anti‐tubercular agents: discovery, development and future perspectives. Curr Med Chem 2015; 22(38): 4379-97.
[http://dx.doi.org/10.2174/0929867323666151106125759] [PMID: 26549430]
[28]
Thompson J, O’Connor M, Mills JA, Dahlberg AE. The protein synthesis inhibitors, oxazolidinones and chloramphenicol, cause exten-sive translational inaccuracy in vivo. J Mol Biol 2002; 322(2): 273-9.
[http://dx.doi.org/10.1016/S0022-2836(02)00784-2] [PMID: 12217690]
[29]
Kundu S, Biukovic G, Grüber G, Dick T. Bedaquiline targets the ε subunit of mycobacterial F‐ATP synthase. Antimicrob Agents Chemother 2016; 60(11): 6977-9.
[http://dx.doi.org/10.1128/AAC.01291-16] [PMID: 27620476]
[30]
Wolfson LJ, Walker A, Hettle R, et al. Cost-effectiveness of adding bedaquiline to drug regimens for the treatment of multidrug-resistant tuberculosis in the UK. PLoS One 2015; 10(3): e0120763.
[http://dx.doi.org/10.1371/journal.pone.0120763] [PMID: 25794045]
[31]
Brecik M, Centárová I, Mukherjee R, et al. DprE1 is a vulnerable tuberculosis drug target due to its cell wall localization. ACS Chem Biol 2015; 10(7): 1631-6.
[http://dx.doi.org/10.1021/acschembio.5b00237] [PMID: 25906160]
[32]
Richter A, Rudolph I, Möllmann U, et al. Novel insight into the reaction of nitro, nitroso and hydroxylamino benzothiazinones and of benzoxacinones with Mycobacterium tuberculosis DprE1. Sci Rep 2018; 8(1): 13473.
[http://dx.doi.org/10.1038/s41598-018-31316-6] [PMID: 30194385]
[33]
Shirude PS, Shandil R, Sadler C, et al. Azaindoles: Noncovalent DprE1 inhibitors from scaffold morphing efforts, kill Mycobacterium tuberculosis and are efficacious in vivo. J Med Chem 2013; 56(23): 9701-8.
[http://dx.doi.org/10.1021/jm401382v] [PMID: 24215368]
[34]
Piton J, Foo CS, Cole ST. Structural studies of Mycobacterium tuberculosis DprE1 interacting with its inhibitors. Drug Discov Today 2017; 22(3): 526-33.
[http://dx.doi.org/10.1016/j.drudis.2016.09.014] [PMID: 27666194]
[35]
Wilsey C, Gurka J, Toth D, Franco J. A large scale virtual screen of DprE1. Comput Biol Chem 2013; 47: 121-5.
[http://dx.doi.org/10.1016/j.compbiolchem.2013.08.006] [PMID: 24055764]
[36]
Sarathy JP, Ganapathy US, Zimmerman MD, Dartois V, Gengenbacher M, Dick T. TBAJ-876, a 3,5-dialkoxypyridine analogue of bedaq-uiline, is active against mycobacterium abscessus. Antimicrob Agents Chemother 2020; 64(4): e02404-19.
[http://dx.doi.org/10.1128/AAC.02404-19] [PMID: 31964791]
[37]
Xu J, Converse PJ, Upton AM, Mdluli K, Fotouhi N, Nuermberger EL. Comparative efficacy of the novel diarylquinoline TBAJ-587 and bedaquiline against a resistant Rv0678 mutant in a mouse model of tuberculosis. Antimicrob Agents Chemother 2021; 65(4): e02418-20.
[http://dx.doi.org/10.1128/AAC.02418-20] [PMID: 33526488]
[38]
Foti C, Piperno A, Scala A, Giuffrè O. Oxazolidinone antibiotics: chemical, biological and analytical aspects. Molecules 2021; 26(14): 4280.
[http://dx.doi.org/10.3390/molecules26144280] [PMID: 34299555]
[39]
Zhang Y, Zhu H, Fu L, et al. Identifying regimens containing TBI-166, a new drug candidate against mycobacterium tuberculosis in vitro and in vivo. Antimicrob Agents Chemother 2019; 63(7): e02496-18.
[http://dx.doi.org/10.1128/AAC.02496-18] [PMID: 31061157]
[40]
Xu J, Wang B, Fu L, et al. In vitro and in vivo Activities of the Riminophenazine TBI-166 against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63(5): e02155-18.
[http://dx.doi.org/10.1128/AAC.02155-18] [PMID: 30782992]
[41]
de Jager VR, Dawson R, van Niekerk C, et al. Telacebec (Q203), a new antituberculosis agent. N Engl J Med 2020; 382(13): 1280-1.
[http://dx.doi.org/10.1056/NEJMc1913327] [PMID: 32212527]
[42]
Stokes SS, Vemula R, Pucci MJ. Advancement of GyrB inhibitors for treatment of infections caused by mycobacterium tuberculosis and non-tuberculous mycobacteria. ACS Infect Dis 2020; 6(6): 1323-31.
[http://dx.doi.org/10.1021/acsinfecdis.0c00025] [PMID: 32183511]
[43]
Pennings LJ, Ruth MM, Wertheim HFL, van Ingen J. The benzimidazole SPR719 shows promising concentration-dependent activity and synergy against nontuberculous mycobacteria. Antimicrob Agents Chemother 2021; 65(4): e02469-20.
[http://dx.doi.org/10.1128/AAC.02469-20] [PMID: 33468478]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy