Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Research Progress on Indoor VOC Pollution and Control

Author(s): Xiang Li*, Rui Cui, Baojun Yang, ShiYu Xie, Guoming Zeng, Hengwei Zheng and Huaili Zheng

Volume 20, Issue 2, 2023

Published on: 09 June, 2022

Page: [124 - 135] Pages: 12

DOI: 10.2174/1570193X19666220331162733

Price: $65

Abstract

Nowadys, indoor air pollution is harming human health and has become a global problem. Therefore, research on indoor air pollution is necessary. This paper systematically reviews the research progress of indoor air pollution in recent years, mainly including indoor pollutant types and sources, indoor pollutant detection methods and equipment, pollutant release simulation models and quality standards, indoor air treatment technologies, and points out the problems that exist in current researches. Furthermore, it proposes the direction of future research work.

Keywords: Indoor air pollution, volatile organics, air purification, emission models, air quality, human health.

Graphical Abstract
[1]
Boor, B.E.; Spilak, M.P.; Laverge, J.; Novoselac, A.; Xu, Y. Human exposure to indoor air pollutants in sleep microenvironments: A literature review. Build. Environ., 2017, 125, 528-555.
[http://dx.doi.org/10.1016/j.buildenv.2017.08.050]
[2]
Brilli, F.; Fares, S.; Ghirardo, A.; de Visser, P.; Calatayud, V.; Muñoz, A.; Annesi-Maesano, I.; Sebastiani, F.; Alivernini, A.; Varriale, V.; Menghini, F. Plants for sustainable improvement of indoor air quality. Trends Plant Sci., 2018, 23(6), 507-512.
[http://dx.doi.org/10.1016/j.tplants.2018.03.004] [PMID: 29681504]
[3]
Ye, W.; Zhang, X.; Gao, J.; Cao, G.; Zhou, X.; Su, X. Indoor air pollutants, ventilation rate determinants and potential control strategies in Chinese dwellings: A literature review. Sci. Total Environ., 2017, 586, 696-729.
[http://dx.doi.org/10.1016/j.scitotenv.2017.02.047] [PMID: 28215812]
[4]
Yu, S.; Yu, Z.; Ma, X.; Zhang, G.; Feng, G. Study on the influence of pollution source location on indoor pollutant distribution under different air supply. Procedia Eng., 2017, 205, 2623-2630.
[http://dx.doi.org/10.1016/j.proeng.2017.10.204]
[5]
Goodman, N.B.; Steinemann, A.; Wheeler, A.J.; Paevere, P.J.; Cheng, M.; Brown, S.K. Volatile organic compounds within indoor environments in Australia. Build. Environ., 2017, 122, 116-125.
[http://dx.doi.org/10.1016/j.buildenv.2017.05.033]
[6]
Gałęzowska, G.; Chraniuk, M.; Wolska, L. In vitro assays as a tool for determination of VOCs toxic effect on respiratory system: A critical review. Trends Analyt. Chem., 2016, 77, 14-22.
[http://dx.doi.org/10.1016/j.trac.2015.10.012]
[7]
Norbäck, D.; Hashim, J.H.; Hashim, Z.; Ali, F. Volatile organic compounds (VOC), formaldehyde and nitrogen dioxide (NO2) in schools in Johor Bahru, Malaysia: Associations with rhinitis, ocular, throat and dermal symptoms, headache and fatigue. Sci. Total Environ., 2017, 592, 153-160.
[http://dx.doi.org/10.1016/j.scitotenv.2017.02.215] [PMID: 28319702]
[8]
Mazzatenta, A.; Pokorski, M.; Sartucci, F.; Domenici, L.; Di Giulio, C. Volatile organic compounds (VOCs) fingerprint of Alzheimer’s disease. Respir. Physiol. Neurobiol., 2015, 209, 81-84.
[http://dx.doi.org/10.1016/j.resp.2014.10.001] [PMID: 25308706]
[9]
Saalberg, Y.; Wolff, M. VOC breath biomarkers in lung cancer. Clin. Chim. Acta, 2016, 459, 5-9.
[http://dx.doi.org/10.1016/j.cca.2016.05.013] [PMID: 27221203]
[10]
Sun, X.; He, J.; Yang, X. Human breath as a source of VOCs in the built environment, Part I: A method for sampling and detection species. Build. Environ., 2017, 125, 565-573.
[http://dx.doi.org/10.1016/j.buildenv.2017.06.038]
[11]
Huang, B.; Lei, C.; Wei, C.; Zeng, G. Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies. Environ. Int., 2014, 71, 118-138.
[http://dx.doi.org/10.1016/j.envint.2014.06.013] [PMID: 25016450]
[12]
Pohl, H.R.; Scinicariello, F. The impact of CYP2E1 genetic variability on risk assessment of VOC mixtures. Regul. Toxicol. Pharmacol., 2011, 59(3), 364-374.
[http://dx.doi.org/10.1016/j.yrtph.2011.01.013] [PMID: 21295098]
[13]
Lucattini, L.; Poma, G.; Covaci, A.; de Boer, J.; Lamoree, M.H.; Leonards, P.E.G. A review of semi-volatile organic compounds (SVOCs) in the indoor environment: occurrence in consumer products, indoor air and dust. Chemosphere, 2018, 201, 466-482.
[http://dx.doi.org/10.1016/j.chemosphere.2018.02.161] [PMID: 29529574]
[14]
Huang, H-L.; Lee, W.G.; Wu, F-S. Emissions of air pollutants from indoor charcoal barbecue. J. Hazard. Mater., 2016, 302, 198-207.
[http://dx.doi.org/10.1016/j.jhazmat.2015.09.048] [PMID: 26476306]
[15]
Mo, F.; Chi, C.; Guo, M.; Chu, X.; Li, Y.; Shen, X. Characteristics of selected indoor air pollutants from moxibustion. J. Hazard. Mater., 2014, 270, 53-60.
[http://dx.doi.org/10.1016/j.jhazmat.2014.01.042] [PMID: 24548885]
[16]
Azuma, K.; Uchiyama, I.; Uchiyama, S.; Kunugita, N. Assessment of inhalation exposure to indoor air pollutants: Screening for health risks of multiple pollutants in Japanese dwellings. Environ. Res., 2016, 145, 39-49.
[http://dx.doi.org/10.1016/j.envres.2015.11.015] [PMID: 26618504]
[17]
Yuan, Y.; Luo, Z.; Liu, J.; Wang, Y.; Lin, Y. Health and economic benefits of building ventilation interventions for reducing indoor PM2.5 exposure from both indoor and outdoor origins in urban Beijing, China. Sci. Total Environ., 2018, 626, 546-554.
[http://dx.doi.org/10.1016/j.scitotenv.2018.01.119] [PMID: 29353793]
[18]
Thevenet, F.; Debono, O.; Rizk, M.; Caron, F.; Verriele, M.; Locoge, N. VOC uptakes on gypsum boards: Sorption performances and impact on indoor air quality. Build. Environ., 2018, 137, 138-146.
[http://dx.doi.org/10.1016/j.buildenv.2018.04.011]
[19]
Zhou, C.; Zhan, Y.; Chen, S.; Xia, M.; Ronda, C.; Sun, M.; Chen, H.; Shen, X. Combined effects of temperature and humidity on indoor VOCs pollution: Intercity comparison. Build. Environ., 2017, 121, 26-34.
[http://dx.doi.org/10.1016/j.buildenv.2017.04.013]
[20]
Rösch, C.; Kohajda, T.; Röder, S.; Bergen, M.; Schlink, U. Relationship between sources and patterns of VOCs in indoor air. Atmos. Pollut. Res., 2014, 5(1), 129-137.
[http://dx.doi.org/10.5094/APR.2014.016]
[21]
Dai, H.; Jing, S.; Wang, H.; Ma, Y.; Li, L.; Song, W.; Kan, H. VOC characteristics and inhalation health risks in newly renovated residences in Shanghai, China. Sci. Total Environ., 2017, 577, 73-83.
[http://dx.doi.org/10.1016/j.scitotenv.2016.10.071] [PMID: 27817926]
[22]
Bensch, K.; Groenewald, J.Z.; Meijer, M.; Dijksterhuis, J. Jurjević Ž.; Andersen, B.; Houbraken, J.; Crous, P.W.; Samson, R.A. Cladosporium species in indoor environments. Stud. Mycol., 2018, 89, 177-301.
[PMID: 29681671]
[23]
Zhai, Y.; Li, X.; Wang, T.; Wang, B.; Li, C.; Zeng, G. A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors. Environ. Int., 2018, 113, 74-90.
[http://dx.doi.org/10.1016/j.envint.2018.01.007] [PMID: 29421410]
[24]
Bennett, G.F. Sampling and Analysis of Indoor Microorganisms, C.S. Yang, P. Heinsohn (Eds.), John Wiley & Sons Inc., Hoboken, NJ (2007), 289 pp., US$ 80.00, ISBN: 0-471-73093-9.J. Hazard. Mater; , 2007, 147, p. (3)1079.
[http://dx.doi.org/10.1016/j.jhazmat.2007.04.033]
[25]
Stetzenbach, L.D. Microorganisms and indoor air quality. Clin. Microbiol. Newsl., 1998, 20(19), 157-161.
[http://dx.doi.org/10.1016/S0196-4399(00)88651-1]
[26]
Qu, Y.; Wang, H.; Zhu, L.; Ji, J. Concentration distribution and control strategy of indoor PM2.5. Procedia Eng., 2017, 205, 1606-1611.
[http://dx.doi.org/10.1016/j.proeng.2017.10.288]
[27]
Luo, R.; Han, Y.; Liu, Z. The current status and factors of indoor PM2.5 in Tangshan, China. Procedia Eng., 2017, 205, 3824-3829.
[http://dx.doi.org/10.1016/j.proeng.2017.10.086]
[28]
Wu, Y.; Chen, C.; Du, Y.; Chen, Z.; Li, Y. Investigation of indoor and outdoor pm2.5 pollution situation in Beijing. Procedia Eng., 2017, 205, 1223-1229.
[http://dx.doi.org/10.1016/j.proeng.2017.10.358]
[29]
Kwon, K.D.; Jo, W.K.; Lim, H.J.; Jeong, W.S. Characterization of emissions composition for selected household products available in Korea. J. Hazard. Mater., 2007, 148(1-2), 192-198.
[http://dx.doi.org/10.1016/j.jhazmat.2007.02.025] [PMID: 17376591]
[30]
Jo, W.K.; Lee, J.H.; Kim, M.K. Head-space, small-chamber and in-vehicle tests for volatile organic compounds (VOCs) emitted from air fresheners for the Korean market. Chemosphere, 2008, 70(10), 1827-1834.
[http://dx.doi.org/10.1016/j.chemosphere.2007.08.021] [PMID: 17889253]
[31]
Rahman, M.M.; Kim, K.H. Potential hazard of volatile organic compounds contained in household spray products. Atmos. Environ., 2014, 85, 266-274.
[http://dx.doi.org/10.1016/j.atmosenv.2013.12.001]
[32]
Dinh, T.V.; Kim, S.Y.; Son, Y.S.; Choi, I.Y.; Park, S.R.; Sunwoo, Y.; Kim, J.C. Emission characteristics of VOCs emitted from consumer and commercial products and their ozone formation potential. Environ. Sci. Pollut. Res. Int., 2015, 22(12), 9345-9355.
[http://dx.doi.org/10.1007/s11356-015-4092-8] [PMID: 25601614]
[33]
Kim, J.H.; Kim, T.; Yoon, H.; Jo, A.; Lee, D.; Kim, P.; Seo, J. Health risk assessment of dermal and inhalation exposure to deodorants in Korea. Sci. Total Environ., 2018, 625, 1369-1379.
[http://dx.doi.org/10.1016/j.scitotenv.2017.12.282] [PMID: 29996434]
[34]
Lee, M.; Kim, J.H.; Lee, D.; Kim, J.; Lim, H.; Seo, J.; Park, Y.K. Health risk assessment on hazardous ingredients in household deodorizing products. Int. J. Environ. Res. Public Health, 2018, 15(4), 1-12.
[http://dx.doi.org/10.3390/ijerph15040744] [PMID: 29652814]
[35]
Kim, J.H.; Lee, D.; Lim, H.; Kim, T.; Suk, K.; Seo, J. Risk assessment to human health: Consumer exposure to ingredients in air fresheners. Regul. Toxicol. Pharmacol., 2018, 98, 31-40.
[http://dx.doi.org/10.1016/j.yrtph.2018.05.015] [PMID: 29857116]
[36]
Kawakami, T.; Isama, K.; Tanaka-Kagawa, T. Analysis of glycols, glycol ethers, and other volatile organic compounds present in household water-based hand pump sprays. J. Environ. Sci. Health, Part A - Toxic/Hazardous Substances & Environmental Engineering, 2017, 52(13), 1204-1210.
[http://dx.doi.org/10.1080/10934529.2017.1356198]
[37]
Huang, Y.; Ho, S.S.H.; Ho, K.F.; Lee, S.C.; Gao, Y.; Cheng, Y.; Chan, C.S. Characterization of biogenic volatile organic compounds (BVOCs) in cleaning reagents and air fresheners in Hong Kong. Atmos. Environ., 2011, 45(34), 6191-6196.
[http://dx.doi.org/10.1016/j.atmosenv.2011.08.012]
[38]
Fu, X.X.; Wang, X.M.; Bernard, F. Composition of volatile organic compounds in air fresheners and their potential effects on indoor air quality. Environ. Chem., 2012, 31(2), 243-248.
[39]
Zhu, J.; Cao, X.L.; Beauchamp, R. Determination of 2-butoxyethanol emissions from selected consumer products and its application in assessment of inhalation exposure associated with cleaning tasks. Environ. Int., 2001, 26(7-8), 589-597.
[http://dx.doi.org/10.1016/S0160-4120(01)00046-0] [PMID: 11485228]
[40]
Singer, B.C.; Destaillats, H.; Hodgson, A.T.; Nazaroff, W.W. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids. Indoor Air, 2006, 16(3), 179-191.
[http://dx.doi.org/10.1111/j.1600-0668.2005.00414.x] [PMID: 16683937]
[41]
Singer, B.C.; Coleman, B.K.; Destaillats, H.; Hodgson, A.T.; Lunden, M.M.; Weschler, C.J.; Nazaroff, W.W. Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone. Atmos. Environ., 2006, 40(35), 6696-6710.
[http://dx.doi.org/10.1016/j.atmosenv.2006.06.005]
[42]
Liu, X.; Mason, M.; Krebs, K.; Sparks, L. Full-scale chamber investigation and simulation of air freshener emissions in the presence of ozone. Environ. Sci. Technol., 2004, 38(10), 2802-2812.
[http://dx.doi.org/10.1021/es030544b] [PMID: 15212253]
[43]
Steinemann, A.C. Fragranced consumer products and undisclosed ingredients. Environ. Impact Assess. Rev., 2009, 29(1), 32-38.
[http://dx.doi.org/10.1016/j.eiar.2008.05.002]
[44]
Tichenor, B.A.; Mason, M.A. Organic emissions from consumer products and building materials to the indoor environment. JAPCA, 1988, 38(3), 264-268.
[http://dx.doi.org/10.1080/08940630.1988.10466376] [PMID: 3379453]
[45]
Anderson, R.C.; Anderson, J.H. Toxic effects of air freshener emissions. Arch. Environ. Health, 1997, 52(6), 433-441.
[http://dx.doi.org/10.1080/00039899709602222] [PMID: 9541364]
[46]
Nørgaard, A.W.; Kudal, J.D.; Kofoed-Sørensen, V.; Koponen, I.K.; Wolkoff, P. Ozone-initiated VOC and particle emissions from a cleaning agent and an air freshener: risk assessment of acute airway effects. Environ. Int., 2014, 68, 209-218.
[http://dx.doi.org/10.1016/j.envint.2014.03.029] [PMID: 24769411]
[47]
Bartzis, J.; Wolkoff, P.; Stranger, M.; Efthimiou, G.; Tolis, E.I.; Maes, F.; Nørgaard, A.W.; Ventura, G.; Kalimeri, K.K.; Goelen, E.; Fernandes, O. On organic emissions testing from indoor consumer products’ use. J. Hazard. Mater., 2015, 285, 37-45.
[http://dx.doi.org/10.1016/j.jhazmat.2014.11.024] [PMID: 25462869]
[48]
Uhde, E.; Schulz, N. Impact of room fragrance products on indoor air quality. Atmos. Environ., 2015, 106, 492-502.
[http://dx.doi.org/10.1016/j.atmosenv.2014.11.020]
[49]
Trantallidi, M.; Dimitroulopoulou, C.; Wolkoff, P.; Kephalopoulos, S.; Carrer, P. EPHECT III: Health risk assessment of exposure to household consumer products. Sci. Total Environ., 2015, 536, 903-913.
[http://dx.doi.org/10.1016/j.scitotenv.2015.05.123] [PMID: 26277440]
[50]
Guan, D.; Guo, C.; Li, Y.; Lv, H.; Yu, X. Study on the concentration and distribution of the airborne bacteria in indoor air in the lecture theatres at Tianjin Chengjian University, China. Procedia Eng., 2015, 121, 33-36.
[http://dx.doi.org/10.1016/j.proeng.2015.08.1015]
[51]
Deng, W.; Chai, Y.; Lin, H.; So, W.W.M.; Ho, K.W.K.; Tsui, A.K.Y.; Wong, R.K.S. Distribution of bacteria in inhalable particles and its implications for health risks in kindergarten children in Hong Kong. Atmos. Environ., 2016, 128, 268-275.
[http://dx.doi.org/10.1016/j.atmosenv.2016.01.017]
[52]
Madsen, A.M.; Moslehi-Jenabian, S.; Islam, M.Z.; Frankel, M.; Spilak, M.; Frederiksen, M.W. Concentrations of Staphylococcus species in indoor air as associated with other bacteria, season, relative humidity, air change rate, and S. aureus-positive occupants. Environ. Res., 2018, 160, 282-291.
[http://dx.doi.org/10.1016/j.envres.2017.10.001] [PMID: 29035784]
[53]
Cao, S-J.; Cen, D.; Zhang, W.; Feng, Z. Study on the impacts of human walking on indoor particles dispersion using momentum theory method. Build. Environ., 2017, 126, 195-206.
[http://dx.doi.org/10.1016/j.buildenv.2017.10.001]
[54]
Qian, J.; Peccia, J.; Ferro, A.R. Walking-induced particle resuspension in indoor environments. Atmos. Environ., 2014, 89, 464-481.
[http://dx.doi.org/10.1016/j.atmosenv.2014.02.035]
[55]
Cabo Verde, S.; Almeida, S.M.; Matos, J.; Guerreiro, D.; Meneses, M.; Faria, T.; Botelho, D.; Santos, M.; Viegas, C. Microbiological assessment of indoor air quality at different hospital sites. Res. Microbiol., 2015, 166(7), 557-563.
[http://dx.doi.org/10.1016/j.resmic.2015.03.004] [PMID: 25869221]
[56]
Li, H.; Zhu, C.; Sun, H.; Feng, G. Detection and analysis of microbial contamination in museum’s con-stant temperature and humidity air conditioning system. Procedia Eng., 2017, 205, 1179-1185.
[http://dx.doi.org/10.1016/j.proeng.2017.10.188]
[57]
Mikuckas, A.; Ciuzas, D.; Prasauskas, T.; Mikuckiene, I.; Lukas, R.; Kazanavicius, E.; Jurelionis, A.; Martuzevicius, D. A grey model approach to indoor air quality management in rooms based on real-time sensing of particles and volatile organic compounds. Appl. Math. Model., 2017, 42, 290-299.
[http://dx.doi.org/10.1016/j.apm.2016.10.030]
[58]
Yang, L.; Ye, M.; He, B.J. CFD simulation research on residential indoor air quality. Sci. Total Environ., 2014, 472, 1137-1144.
[http://dx.doi.org/10.1016/j.scitotenv.2013.11.118] [PMID: 24365517]
[59]
Bourdin, D.; Mocho, P.; Desauziers, V.; Plaisance, H. Formaldehyde emission behavior of building materials: on-site measurements and modeling approach to predict indoor air pollution. J. Hazard. Mater., 2014, 280, 164-173.
[http://dx.doi.org/10.1016/j.jhazmat.2014.07.065] [PMID: 25151239]
[60]
Wang, B.; Shugart, H.H.; Lerdau, M.T. An individual-based model of forest volatile organic compound emissions—UVAFME-VOC v1.0. Ecol. Modell., 2017, 350, 69-78.
[http://dx.doi.org/10.1016/j.ecolmodel.2017.02.006]
[61]
Abbas, T.R.; Yu, J-H.; Fen, C-S.; Yeh, H-D.; Yeh, L-M. Modeling volatilization of residual VOCs in unsaturated zones: a moving boundary problem. J. Hazard. Mater., 2012, 219-220, 231-239.
[http://dx.doi.org/10.1016/j.jhazmat.2012.03.082] [PMID: 22521795]
[62]
Pan, S.; Choi, Y.; Roy, A.; Li, X.; Jeon, W.; Souri, A.H. Modeling the uncertainty of several VOC and its impact on simulated VOC and ozone in Houston, Texas. Atmos. Environ., 2015, 120, 404-416.
[http://dx.doi.org/10.1016/j.atmosenv.2015.09.029]
[63]
Teodosiu, C.; Ilie, V.; Teodosiu, R. Modelling of volatile organic compounds concentrations in rooms due to electronic devices. Process Saf. Environ. Prot., 2017, 108, 89-98.
[http://dx.doi.org/10.1016/j.psep.2016.06.013]
[64]
Zhu, L.; Deng, B.; Guo, Y. A unified model for VOCs emission/sorption from/on building materials with and without ventilation. Int. J. Heat Mass Transf., 2013, 67, 734-740.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.08.092]
[65]
Clausen, P.A. Emission of volatile and semivolatile organic compounds from w aterborne paints the effect of the film thickness. Indoor Air, 1993, 93(2), 567-572.
[66]
Clausen, P.A.; Laursen, B.; Wolkoff, P. Emission of volatile organic compounds from a vinyl floor covering. In: Modeling of Indoor Air Quality and Exposure. ASTM Spec. Tech. Publ., 1993, 12(05), 3-13.
[67]
Colombo, A.; De Bortoli, M.; Knoppel, H. Det ermination of volatile organic com pounds from household products in small test chambers and comparison with headspace analysis. Indoor Air, 1990, 90(3), 599-604.
[68]
Guo, Z.S.; Tichenor, B.A. Fundamental mass transfer models applied t o evaluating the emissions of vapour-phase organic from interior architectural coating. In: Proceedings of EPA/AWMA Symposium; , 1992.
[69]
Hanna, S.R.; Drivas, P.J. Modeling VOC emissions and air concentrations from the Exxon Valdes oils spill. Air Waste, 1993, 43(3), 298-309.
[http://dx.doi.org/10.1080/1073161X.1993.10467134]
[70]
Christianson, J.; Yu, J.W.; Neretnieks, I. Emissions of VOC' s from PVC-flooring-models for predicting the time dependent emission rates and resulting concentrations in the indoor air. Indoor Air' 93, 1993, 389-394.
[71]
Guo, Z.; Fortman, R.; Marfiak, S. Modeling the VOC emissions from int erior latex paint applied to gypsum board. Indoor Air' 96, 1996, 1, 987-991.
[72]
Yang, X. Study of building material emissions and indoor air quality. [PhD Thesis]. USA: Massachusetts Institut e of Technology, 1999.
[73]
Atta, A.Y.; Jibril, B.Y.; Al-Waheibi, T.K.; Al-Waheibi, Y.M. Microwave-enhanced catalytic degradation of 2-nitrophenol on alumina-supported copper oxides. Catal. Commun., 2012, 26, 112-116.
[http://dx.doi.org/10.1016/j.catcom.2012.04.033]
[74]
Zhang, Y.; Song, Z.; Yan, Y.; Zhao, X.; Sun, J.; Mao, Y.; Wang, W. Performance of Fe/SiC catalysts for cracking of toluene under microwave irradiation. Int. J. Hydrogen Energy, 2018, 43(15), 7227-7236.
[http://dx.doi.org/10.1016/j.ijhydene.2018.02.158]
[75]
Chang, Y.C.; Carlisle, C.T. Microwave process for removal and destruction of volatile organic compounds. Environ. Prog., 2001, 20(3), 145-150.
[76]
Giordano, L.; Roizard, D.; Favre, E. Life cycle assessment of post-combustion CO2 capture: A comparison between membrane separation and chemical absorption processes. Int. J. Greenh. Gas Control, 2018, 68, 146-163.
[http://dx.doi.org/10.1016/j.ijggc.2017.11.008]
[77]
Liu, G.; Xiao, M.; Zhang, X.; Gal, C.; Chen, X.; Liu, L.; Pan, S.; Wu, J.; Tang, L.; Clements-Croome, D. A review of air filtration technologies for sustainable and healthy building ventilation. Sustain Cities Soc., 2017, 32, 375-396.
[http://dx.doi.org/10.1016/j.scs.2017.04.011]
[78]
Kademoglou, K.; Williams, A.C.; Collins, C.D. Bioaccessibility of PBDEs present in indoor dust: A novel dialysis membrane method with a Tenax TA® absorption sink. Sci. Total Environ., 2018, 621, 1-8.
[http://dx.doi.org/10.1016/j.scitotenv.2017.11.097] [PMID: 29175617]
[79]
Majumdar, S.; Bhaumik, D.; Sirkar, K.K.; Simes, G. A pilot‐scale demonstration of a membrane‐based absorption‐ stripping process for removal and recovery of volatile organic compounds. Environ. Prog. Sustain. Energy, 2001, 20(1), 27-35.
[80]
Xia, B.; Majumdar, S.; Sirkar, K.K. Regenerative oil scrubbing of volatile organic compounds from a gas stream in hollow fiber membrane devices. Ind. Eng. Chem. Res., 1999, 38(9), 3462-3472.
[http://dx.doi.org/10.1021/ie980657h]
[81]
Obuskovic, G.; And, T.K.P.; Sirkar, K.K. Flow swing membrane absorption−permeation. Ind. Eng. Chem. Res., 1998, 37(1), 212-220.
[http://dx.doi.org/10.1021/ie970315w]
[82]
Guieysse, B.; Hort, C.; Platel, V.; Munoz, R.; Ondarts, M.; Revah, S. Biological treatment of indoor air for VOC removal: potential and challenges. Biotechnol. Adv., 2008, 26(5), 398-410.
[http://dx.doi.org/10.1016/j.biotechadv.2008.03.005] [PMID: 18547770]
[83]
Smith, F.L.; Sorial, G.A.; Suidan, M.T.; Breen, A.W.; Biswas, P.; Brenner, R.C. Development of two biomass control strategies for extended, stable operation of highly efficient biofilters with high toluene loadings. Environ. Sci. Technol., 1996, 30(5), 1744-1751.
[http://dx.doi.org/10.1021/es950743y]
[84]
Sorial, G.A.; Suidan, M.T.; Pandit, A.; Biswas, P.; Brenner, R.C.; Smith, F.L. Evaluation of trickle-bed air biofilter performance for styrene removal. J. Environ. Eng., 1997, 32(6), 530-537.
[http://dx.doi.org/10.1061/(ASCE)0733-9372(1997)123:6(530)]
[85]
Lu, C.; Chu, W.; Lin, M-R. Removal of BTEX vapor from waste gases by a trickle bed biofilter. J. Air Waste Manag. Assoc., 2000, 50(3), 411-417.
[http://dx.doi.org/10.1080/10473289.2000.10464021] [PMID: 10734712]
[86]
Paz, Y. Application of TiO2 photocatalysis for air treatment: Patents’ overview. Appl. Catal. B, 2010, 99(3), 448-460.
[http://dx.doi.org/10.1016/j.apcatb.2010.05.011]
[87]
Huang, H.; Leung, D.Y.C.; Li, G.; Leung, M.K.H.; Fu, X. Photocatalytic destruction of air pollutants with vacuum ultraviolet (VUV) irradiation. Catal. Today, 2011, 175(1), 310-315.
[http://dx.doi.org/10.1016/j.cattod.2011.04.015]
[88]
Yang, L.; Liu, Z.; Shi, J.; Zhang, Y.; Hu, H.; Shangguan, W. Degradation of indoor gaseous formaldehyde by hybrid VUV and TiO2/UV processes. Separ. Purif. Tech., 2007, 54(2), 204-211.
[http://dx.doi.org/10.1016/j.seppur.2006.09.003]
[89]
Zhong, L.; Haghighat, F. Photocatalytic air cleaners and materials technologies – Abilities and limitations. Build. Environ., 2015, 91, 191-203.
[http://dx.doi.org/10.1016/j.buildenv.2015.01.033]
[90]
Mamaghani, A.H.; Haghighat, F.; Lee, C-S. Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Appl. Catal. B, 2017, 203, 247-269.
[http://dx.doi.org/10.1016/j.apcatb.2016.10.037]
[91]
Zhang, L.; Peng, Y.; Zhang, J.; Chen, L.; Meng, X.; Xiao, F-S. Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials. Chin. J. Catal., 2016, 37(6), 800-809.
[http://dx.doi.org/10.1016/S1872-2067(15)61073-7]
[92]
Yan, Z.; Xu, Z.; Cheng, B.; Jiang, C. Co3O4 nanorod-supported Pt with enhanced performance for catalytic HCHO oxidation at room temperature. Appl. Surf. Sci., 2017, 404, 426-434.
[http://dx.doi.org/10.1016/j.apsusc.2017.02.010]
[93]
Leclercq, J.; Giraud, F.; Bianchi, D.; Fiaty, K.; Gaillard, F. Novel inductively-heated catalytic system for fast VOCs abatement, application to IPA in air. Appl. Catal. B, 2014, 146, 131-137.
[http://dx.doi.org/10.1016/j.apcatb.2013.03.049]
[94]
Cao, Y.; Yang, S.; Jin, M. Experimental study on the degradation of organic pollutants by nano-titanium dioxide. Miner. Resour. Prot. Util., 2002, 3, 37-40.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy