Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Natural Bioactive Compounds from Medicinal Plants as Antibacterial Drugs: Mechanism Insights and Clinical Perspectives

Author(s): Nasreddine El Omari, Fatima-Ezzahrae Guaouguaou* and Abdelhakim Bouyahya

Volume 22, Issue 13, 2022

Published on: 12 May, 2022

Page: [1093 - 1103] Pages: 11

DOI: 10.2174/1568026622666220330011255

Price: $65

Abstract

The coevolution in microbes has generated major functional consequences leading bacteria to develop resistance to antibiotics. Indeed, bacterial strains have been able to develop and adapt to the action of antibiotics via several resistance mechanisms. In this context, researchers are currently conducting many studies to screen natural antibacterial substances such as secondary metabolites of medicinal plants. Indeed, the potential of many plants used in traditional medicine in the treatment of infectious diseases was confirmed experimentally, namely Anethum graveolens, Elettaria cardamomum, Foeniculum vulgare, Trachyspermum ammi, Viola odorata, Dioscorea dregeana, Cheilanthes viridis, Vernonia colorata, etc. Bioactive molecules from different medicinal plants include terpenoids, flavonoids, and phenolic acids, which were shown to have significant anti- bacterial effects. The mechanisms of action of these molecules are different and can include structural, cellular, and molecular levels, which suggests them as real candidates for the development of natural antibiotics. However, the clinical trials of these molecules have not been very well studied which limits their clinical use against infectious diseases of bacterial origin.

Keywords: Antibiotic resistance, Natural substance, Antibacterial action, Bacteriostatic, Bactericide, Natural bioactive compounds, Medicinal plants.

Graphical Abstract
[1]
Elshamy, A.A.; Aboshanab, K.M. A review on bacterial resistance to carbapenems: Epidemiology, detection and treatment options. Future Sci. OA, 2020, 6(3), FSO438.
[http://dx.doi.org/10.2144/fsoa-2019-0098] [PMID: 32140243]
[2]
Begum, S.; Begum, T.; Rahman, N.; Khan, R.A. A review on antibiotic resistance and way of combating antimicrobial resistance. GSC Biol. Pharm. Sci., 2021, 14, 087-097.
[3]
Diniz do Nascimento, L.; Moraes, A.A.B.; Costa, K.S.D.; Pereira Galúcio, J.M.; Taube, P.S.; Costa, C.M.L.; Neves Cruz, J.; de Aguiar Andrade, E.H.; Faria, L.J.G. Bioactive natural compounds and antioxidant activity of essential oils from spice plants: New findings and potential applications. Biomolecules, 2020, 10(7), 988.
[http://dx.doi.org/10.3390/biom10070988] [PMID: 32630297]
[4]
Corrêa, R.C.G.; Heleno, S.A.; Alves, M.J.; Ferreira, I.C.F.R. Bacterial resistance: Antibiotics of last generation used in clinical practice and the arise of natural products as new therapeutic alternatives. Curr. Pharm. Des., 2020, 26(8), 815-837.
[http://dx.doi.org/10.2174/1381612826666200224105153] [PMID: 32091328]
[5]
Nascimento, G.G.; Locatelli, J.; Freitas, P.C.; Silva, G.L. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz. J. Microbiol., 2000, 31(4), 247-256.
[http://dx.doi.org/10.1590/S1517-83822000000400003]
[6]
Sakagami, Y.; Kajimura, K. Bactericidal activities of disinfectants against vancomycin-resistant enterococci. J. Hosp. Infect., 2002, 50(2), 140-144.
[http://dx.doi.org/10.1053/jhin.2001.1150] [PMID: 11846542]
[7]
Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev., 2011, 24(4), 718-733.
[http://dx.doi.org/10.1128/CMR.00002-11] [PMID: 21976606]
[8]
Chartone-Souza, E. Ultra-resistant bacteria: an almost lost war. Cienc Hoje, 1998, 23, 27-35.
[9]
Prakash, A.; Vadivel, V.; Rubini, D.; Nithyanand, P. Antibacterial and antibiofilm activities of linalool nanoemulsions against Salmonella typhimurium. Food Biosci., 2019, 28, 57-65.
[http://dx.doi.org/10.1016/j.fbio.2019.01.018]
[10]
Liu, X.; Cai, J.; Chen, H.; Zhong, Q.; Hou, Y.; Chen, W.; Chen, W. Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microb. Pathog., 2020, 141, 103980.
[http://dx.doi.org/10.1016/j.micpath.2020.103980] [PMID: 31962183]
[11]
Alves, S.; Duarte, A.; Sousa, S.; Domingues, F.C. Study of the major essential oil compounds of Coriandrum sativum against Acinetobac-ter baumannii and the effect of linalool on adhesion, biofilms and quorum sensing. Biofouling, 2016, 32(2), 155-165.
[http://dx.doi.org/10.1080/08927014.2015.1133810] [PMID: 26901586]
[12]
Espina, L.; Gelaw, T.K.; de Lamo-Castellví, S.; Pagán, R.; García-Gonzalo, D. Mechanism of bacterial inactivation by (+)-limonene and its potential use in food preservation combined processes. PLoS One, 2013, 8(2), e56769.
[http://dx.doi.org/10.1371/journal.pone.0056769] [PMID: 23424676]
[13]
Han, Y.; Sun, Z.; Chen, W. Antimicrobial susceptibility and antibacterial mechanism of limonene against Listeria monocytogenes. Molecules, 2019, 25(1), 33.
[http://dx.doi.org/10.3390/molecules25010033] [PMID: 31861877]
[14]
Subramenium, G.A.; Vijayakumar, K.; Pandian, S.K. Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors. J. Med. Microbiol., 2015, 64(8), 879-890.
[http://dx.doi.org/10.1099/jmm.0.000105] [PMID: 26294065]
[15]
Lee, W.; Woo, E-R.; Lee, D.G. Phytol has antibacterial property by inducing oxidative stress response in Pseudomonas aeruginosa. Free Radic. Res., 2016, 50(12), 1309-1318.
[http://dx.doi.org/10.1080/10715762.2016.1241395] [PMID: 27667264]
[16]
Li, T.; Mei, Y.; He, B.; Sun, X.; Li, J. Reducing quorum sensing-mediated virulence factor expression and biofilm formation in Hafnia alvei by using the potential quorum sensing inhibitor L-carvone. Front. Microbiol., 2019, 9, 3324.
[http://dx.doi.org/10.3389/fmicb.2018.03324] [PMID: 30687295]
[17]
Nostro, A.; Scaffaro, R.; D’Arrigo, M.; Botta, L.; Filocamo, A.; Marino, A.; Bisignano, G. Study on carvacrol and cinnamaldehyde poly-meric films: Mechanical properties, release kinetics and antibacterial and antibiofilm activities. Appl. Microbiol. Biotechnol., 2012, 96(4), 1029-1038.
[http://dx.doi.org/10.1007/s00253-012-4091-3] [PMID: 22555914]
[18]
Trevisan, D.A.C.; da Silva, A.F.; Negri, M.; de Abreu Filho, B.A.; Machinski, M. Junior; Patussi, E.V.; Campanerut-Sá, P.A.Z.; Mikcha, J.M.G.; Trevisan, D.A.C.; da Silva, A.F.; Negri, M.; de Abreu Filho, B.A.; Machinski, M., Junior; Patussi, E.V.; Campanerut-Sá, P.A.Z.; Mikcha, J.M.G. Antibacterial and antibiofilm activity of carvacrol against Salmonella enterica serotype typhimurium. Braz. J. Pharm. Sci., 2018, 54(1), 54.
[http://dx.doi.org/10.1590/s2175-97902018000117229]
[19]
Xu, J.; Zhou, F.; Ji, B-P.; Pei, R-S.; Xu, N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Appl. Microbiol., 2008, 47(3), 174-179.
[20]
Churklam, W.; Chaturongakul, S.; Ngamwongsatit, B.; Aunpad, R. The mechanisms of action of carvacrol and its synergism with nisin against Listeria Monocytogenes on sliced bologna sausage. Food Control, 2020, 108, 106864.
[http://dx.doi.org/10.1016/j.foodcont.2019.106864]
[21]
Pontes, E.K.U.; Melo, H.M.; Nogueira, J.W.A.; Firmino, N.C.S.; de Carvalho, M.G.; Catunda Júnior, F.E.A.; Cavalcante, T.T.A. Antibio-film activity of the essential oil of citronella (Cymbopogon nardus) and its major component, geraniol, on the bacterial biofilms of Staphylococcus aureus. Food Sci. Biotechnol., 2018, 28(3), 633-639.
[http://dx.doi.org/10.1007/s10068-018-0502-2] [PMID: 31093420]
[22]
Selvaraj, A.; Jayasree, T.; Valliammai, A.; Pandian, S.K. Myrtenol attenuates MRSA biofilm and virulence by suppressing sarA expres-sion dynamism. Front. Microbiol., 2019, 10, 2027.
[http://dx.doi.org/10.3389/fmicb.2019.02027] [PMID: 31551964]
[23]
Cordeiro, L.; Figueiredo, P.; Souza, H.; Sousa, A.; Andrade-Júnior, F.; Barbosa-Filho, J.; Lima, E. Antibacterial and antibiofilm activity of myrtenol against Staphylococcus aureus. Pharmaceuticals (Basel), 2020, 13(6), 133.
[http://dx.doi.org/10.3390/ph13060133] [PMID: 32630561]
[24]
Sun, Y.; Cai, X.; Cao, J.; Wu, Z.; Pan, D. Effects of 1,8-cineole on carbohydrate metabolism related cell structure changes of Salmonella. Front. Microbiol., 2018, 9, 1078.
[http://dx.doi.org/10.3389/fmicb.2018.01078] [PMID: 29910778]
[25]
Yoo, H-J.; Jwa, S-K. Inhibitory effects of β-caryophyllene on Streptococcus mutans biofilm. Arch. Oral Biol., 2018, 88, 42-46.
[http://dx.doi.org/10.1016/j.archoralbio.2018.01.009] [PMID: 29407750]
[26]
Moo, C-L.; Yang, S-K.; Osman, M-A.; Yuswan, M.H.; Loh, J-Y.; Lim, W-M.; Lim, S-H-E.; Lai, K-S. Antibacterial activity and mode of action of β-caryophyllene on Bacillus cereus. Pol. J. Microbiol., 2020, 69(1), 49-54.
[http://dx.doi.org/10.33073/pjm-2020-007]
[27]
Viana, E.S.; Campos, M.E.M.; Ponce, A.R.; Cuquetto, M.H.; Mantovani, H.C.; Vanetti, M.C.D. Biofilm formation and acyl homoserine lactone production in Hafnia Alvei isolated from raw milk. Biol. Res., 2009, 42, 427-436.
[28]
Wen, W.; Alseekh, S.; Fernie, A.R. Conservation and diversification of flavonoid metabolism in the plant kingdom. Curr. Opin. Plant Biol., 2020, 55, 100-108.
[http://dx.doi.org/10.1016/j.pbi.2020.04.004] [PMID: 32422532]
[29]
Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry, 2000, 55(6), 481-504.
[http://dx.doi.org/10.1016/S0031-9422(00)00235-1] [PMID: 11130659]
[30]
Wallace, J.; Bowlin, N.O.; Mills, D.M.; Saenkham, P.; Kwasny, S.M.; Opperman, T.J.; Williams, J.D.; Rock, C.O.; Bowlin, T.L.; Moir, D.T. Discovery of bacterial fatty acid synthase type II inhibitors using a novel cellular bioluminescent reporter assay. Antimicrob. Agents Chemother., 2015, 59(9), 5775-5787.
[http://dx.doi.org/10.1128/AAC.00686-15] [PMID: 26169404]
[31]
Pearson, J.P.; Feldman, M.; Iglewski, B.H.; Prince, A. Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect. Immun., 2000, 68(7), 4331-4334.
[http://dx.doi.org/10.1128/IAI.68.7.4331-4334.2000] [PMID: 10858254]
[32]
Zhang, L.; Kong, Y.; Wu, D.; Zhang, H.; Wu, J.; Chen, J.; Ding, J.; Hu, L.; Jiang, H.; Shen, X. Three flavonoids targeting the β-hydroxyacyl-acyl carrier protein dehydratase from Helicobacter pylori: Crystal structure characterization with enzymatic inhibition as-say. Protein Sci., 2008, 17(11), 1971-1978.
[http://dx.doi.org/10.1110/ps.036186.108] [PMID: 18780820]
[33]
Zhao, W-H.; Hu, Z-Q.; Okubo, S.; Hara, Y.; Shimamura, T. Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 2001, 45(6), 1737-1742.
[http://dx.doi.org/10.1128/AAC.45.6.1737-1742.2001] [PMID: 11353619]
[34]
Li, B.H.; Tian, W.X. Inhibitory effects of flavonoids on animal fatty acid synthase. J. Biochem., 2004, 135(1), 85-91.
[http://dx.doi.org/10.1093/jb/mvh010] [PMID: 14999013]
[35]
Ulanowska, K.; Tkaczyk, A.; Konopa, G. Węgrzyn, G. Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains. Arch. Microbiol., 2006, 184(5), 271-278.
[http://dx.doi.org/10.1007/s00203-005-0063-7] [PMID: 16328542]
[36]
Ohemeng, K.A.; Schwender, C.F.; Fu, K.P.; Barrett, J.F. DNA gyrase inhibitory and antibacterial activity of some flavones (1). Bioorg. Med. Chem. Lett., 1993, 3(2), 225-230. b.
[http://dx.doi.org/10.1016/S0960-894X(01)80881-7]
[37]
Plaper, A.; Golob, M.; Hafner, I.; Oblak, M.; Šolmajer, T.; Jerala, R. Characterization of quercetin binding site on DNA gyrase. Biochem. Biophys. Res. Commun., 2003, 306(2), 530-536.
[http://dx.doi.org/10.1016/S0006-291X(03)01006-4] [PMID: 12804597]
[38]
Spina, M.; Cuccioloni, M.; Mozzicafreddo, M.; Montecchia, F.; Pucciarelli, S.; Eleuteri, A.M.; Fioretti, E.; Angeletti, M. Mechanism of inhibition of wt-dihydrofolate reductase from E. coli by tea epigallocatechin-gallate. Proteins, 2008, 72(1), 240-251.
[http://dx.doi.org/10.1002/prot.21914] [PMID: 18214969]
[39]
Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev., 2019, 18(1), 241-272.
[http://dx.doi.org/10.1007/s11101-018-9591-z]
[40]
Harshey, R.M. Bacterial motility on a surface: Many ways to a common goal. Annu. Rev. Microbiol., 2003, 57(1), 249-273.
[http://dx.doi.org/10.1146/annurev.micro.57.030502.091014] [PMID: 14527279]
[41]
Rütschlin, S.; Böttcher, T. Inhibitors of bacterial swarming behavior. Chemistry, 2020, 26(5), 964-979.
[http://dx.doi.org/10.1002/chem.201901961] [PMID: 31268192]
[42]
Silva, L.N.; Zimmer, K.R.; Macedo, A.J.; Trentin, D.S. Plant natural products targeting bacterial virulence factors. Chem. Rev., 2016, 116(16), 9162-9236.
[http://dx.doi.org/10.1021/acs.chemrev.6b00184] [PMID: 27437994]
[43]
Pejin, B.; Ciric, A.; Markovic, J.D.; Glamoclija, J.; Nikolic, M.; Stanimirovic, B.; Sokovic, M. Quercetin potently reduces biofilm for-mation of the strain Pseudomonas aeruginosa PAO1 in vitro. Curr. Pharm. Biotechnol., 2015, 16(8), 733-737.
[http://dx.doi.org/10.2174/1389201016666150505121951] [PMID: 25941888]
[44]
Donlan, R.M. Biofilms and device-associated infections. Emerg. Infect. Dis., 2001, 7(2), 277-281.
[http://dx.doi.org/10.3201/eid0702.010226] [PMID: 11294723]
[45]
Bjarnsholt, T.; Ciofu, O.; Molin, S.; Givskov, M.; Høiby, N. Applying insights from biofilm biology to drug development - can a new approach be developed? Nat. Rev. Drug Discov., 2013, 12(10), 791-808.
[http://dx.doi.org/10.1038/nrd4000] [PMID: 24080700]
[46]
Ding, Y.; Avramova, Z.; Fromm, M. The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. Plant J., 2011, 66(5), 735-744.
[http://dx.doi.org/10.1111/j.1365-313X.2011.04534.x] [PMID: 21309869]
[47]
Vikram, A.; Jayaprakasha, G.K.; Jesudhasan, P.R.; Pillai, S.D.; Patil, B.S. Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J. Appl. Microbiol., 2010, 109(2), 515-527.
[http://dx.doi.org/10.1111/j.1365-2672.2010.04677.x] [PMID: 20163489]
[48]
Lee, P.; Tan, K.S. Effects of Epigallocatechin gallate against Enterococcus faecalis biofilm and virulence. Arch. Oral Biol., 2015, 60(3), 393-399.
[http://dx.doi.org/10.1016/j.archoralbio.2014.11.014] [PMID: 25526623]
[49]
Asahi, Y.; Noiri, Y.; Miura, J.; Maezono, H.; Yamaguchi, M.; Yamamoto, R.; Azakami, H.; Hayashi, M.; Ebisu, S. Effects of the tea cate-chin epigallocatechin gallate on Porphyromonas gingivalis biofilms. J. Appl. Microbiol., 2014, 116(5), 1164-1171.
[http://dx.doi.org/10.1111/jam.12458] [PMID: 24471579]
[50]
Withers, H.; Swift, S.; Williams, P. Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Curr. Opin. Microbiol., 2001, 4(2), 186-193.
[http://dx.doi.org/10.1016/S1369-5274(00)00187-9] [PMID: 11282475]
[51]
de Kievit, T.R.; Iglewski, B.H. Bacterial quorum sensing in pathogenic relationships. Infect. Immun., 2000, 68(9), 4839-4849.
[http://dx.doi.org/10.1128/IAI.68.9.4839-4849.2000] [PMID: 10948095]
[52]
Croft, K.D. The chemistry and biological effects of flavonoids and phenolic acids. Ann. N. Y. Acad. Sci., 1998, 854, 435-442.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb09922.x] [PMID: 9928450]
[53]
Campos, F.M.; Couto, J.A.; Figueiredo, A.R.; Tóth, I.V.; Rangel, A.O.; Hogg, T.A. Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. Int. J. Food Microbiol., 2009, 135(2), 144-151.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.07.031] [PMID: 19733929]
[54]
Oh, E.; Jeon, B. Contribution of surface polysaccharides to the resistance of Campylobacter jejuni to antimicrobial phenolic compounds. J. Antibiot. (Tokyo), 2015, 68(9), 591-593.
[http://dx.doi.org/10.1038/ja.2015.26] [PMID: 25757605]
[55]
Diniz-Silva, H.T.; Cirino, I.C.; Falcão-Silva, V.S.; Magnani, M.; de Souza, E.L.; Siqueira-Júnior, J.P. Tannic acid as a potential modulator of norfloxacin resistance in Staphylococcus aureus overexpressing norA. Chemotherapy, 2016, 61(6), 319-322.
[http://dx.doi.org/10.1159/000443495] [PMID: 27144278]
[56]
Kępa, M.; Miklasińska-Majdanik, M.; Wojtyczka, R.D.; Idzik, D.; Korzeniowski, K.; Smoleń-Dzirba, J.; Wąsik, T.J. Antimicrobial potential of caffeic acid against Staphylococcus aureus clinical strains. BioMed Res. Int., 2018, 2018
[57]
Sanhueza, L.; Melo, R.; Montero, R.; Maisey, K.; Mendoza, L.; Wilkens, M. Synergistic interactions between phenolic compounds identi-fied in grape pomace extract with antibiotics of different classes against Staphylococcus aureus and Escherichia coli. PLoS One, 2017, 12, e0172273.
[58]
Shen, X.; Sun, X.; Xie, Q.; Liu, H.; Zhao, Y.; Pan, Y.; Hwang, C-A.; Wu, V.C. Antimicrobial effect of blueberry (Vaccinium corymbosum L.) extracts against the growth of Listeria monocytogenes and Salmonella enteritidis. Food Control, 2014, 35(1), 159-165.
[http://dx.doi.org/10.1016/j.foodcont.2013.06.040]
[59]
Díaz-Gómez, R.; López-Solís, R.; Obreque-Slier, E.; Toledo-Araya, H. Comparative antibacterial effect of gallic acid and catechin against helicobacter pylori. Lebensm. Wiss. Technol., 2013, 54(2), 331-335.
[http://dx.doi.org/10.1016/j.lwt.2013.07.012]
[60]
Díaz-Gómez, R.; Toledo-Araya, H.; López-Solís, R.; Obreque-Slier, E. Combined effect of gallic acid and catechin against Escherichia coli. Lebensm. Wiss. Technol., 2014, 59(2), 896-900.
[http://dx.doi.org/10.1016/j.lwt.2014.06.049]
[61]
Salaheen, S.; Peng, M.; Joo, J.; Teramoto, H.; Biswas, D. Eradication and sensitization of methicillin resistant Staphylococcus aureus to methicillin with bioactive extracts of berry pomace. Front. Microbiol., 2017, 8, 253.
[http://dx.doi.org/10.3389/fmicb.2017.00253] [PMID: 28270804]
[62]
Cueva, C.; Moreno-Arribas, M.V.; Martín-Alvarez, P.J.; Bills, G.; Vicente, M.F.; Basilio, A.; Rivas, C.L.; Requena, T.; Rodríguez, J.M.; Bartolomé, B. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res. Microbiol., 2010, 161(5), 372-382.
[http://dx.doi.org/10.1016/j.resmic.2010.04.006] [PMID: 20451604]
[63]
Merkl, R.; Hrádková, I.; Filip, V.; Šmidrkal, J. Antimicrobial and antioxidant properties of phenolic acids alkyl esters. Czech J. Food Sci., 2010, 28(4), 275-279.
[http://dx.doi.org/10.17221/132/2010-CJFS]
[64]
Sánchez-Maldonado, A.F.; Schieber, A.; Gänzle, M.G. Structure-function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. J. Appl. Microbiol., 2011, 111(5), 1176-1184.
[http://dx.doi.org/10.1111/j.1365-2672.2011.05141.x] [PMID: 21895894]
[65]
Oh, E.; Jeon, B. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds. Front. Microbiol., 2015, 6, 1129. b.
[http://dx.doi.org/10.3389/fmicb.2015.01129] [PMID: 26528273]
[66]
Almajano, M.P.; Carbó, R.; Delgado, M.E.; Gordon, M.H. Effect of pH on the antimicrobial activity and oxidative stability of oil-in-water emulsions containing caffeic acid. J. Food Sci., 2007, 72(5), C258-C263.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00387.x] [PMID: 17995712]
[67]
Casetti, F.; Bartelke, S.; Biehler, K.; Augustin, M.; Schempp, C.M.; Frank, U. Antimicrobial activity against bacteria with dermatological relevance and skin tolerance of the essential oil from Coriandrum sativum L. fruits. Phytother. Res., 2012, 26(3), 420-424.
[http://dx.doi.org/10.1002/ptr.3571] [PMID: 21815228]
[68]
Sosto, F.; Benvenuti, C.; Group, C.S. CANVA Study Group. Controlled study on thymol + eugenol vaginal douche versus econazole in vaginal candidiasis and metronidazole in bacterial vaginosis. Arzneimittelforschung, 2011, 61(2), 126-131.
[http://dx.doi.org/10.1055/s-0031-1296178] [PMID: 21428248]
[69]
Baygin, O.; Tuzuner, T.; Kusgoz, A.; Senel, A.C.; Tanriver, M.; Arslan, I. Antibacterial effects of fluoride varnish compared with chlor-hexidine plus fluoride in disabled children. Oral Health Prev. Dent., 2014, 12(4), 373-382.
[PMID: 24914426]
[70]
Shim, H.I.; Song, D.J.; Shin, C.M.; Yoon, H.; Park, Y.S.; Kim, N.; Lee, D.H. Inhibitory effects of β-caryophyllene on Helicobacter pylori infection: A randomized double-blind, placebo-controlled study. Korean J. Gastroenterol., 2019, 74(4), 199-204.
[http://dx.doi.org/10.4166/kjg.2019.74.4.199] [PMID: 31650795]
[71]
Afshar, K.; Stothers, L.; Scott, H.; MacNeily, A.E. Cranberry juice for the prevention of pediatric urinary tract infection: A randomized controlled trial. J. Urol., 2012, 188(4)(Suppl.), 1584-1587.
[http://dx.doi.org/10.1016/j.juro.2012.02.031] [PMID: 22910239]
[72]
Yi, L.; Yu, J.; Han, L.; Li, T.; Yang, H.; Huang, C. Combination of baicalein and ethanol-wet-bonding improves dentin bonding durabil-ity. J. Dent., 2019, 90, 103207.
[http://dx.doi.org/10.1016/j.jdent.2019.103207] [PMID: 31586587]
[73]
Busscher, H.J.; Rinastiti, M.; Siswomihardjo, W.; van der Mei, H.C. Biofilm formation on dental restorative and implant materials. J. Dent. Res., 2010, 89(7), 657-665.
[http://dx.doi.org/10.1177/0022034510368644] [PMID: 20448246]
[74]
Vilela, M.M.; Salvador, S.L.; Teixeira, I.G.L.; Del Arco, M.C.G.; De Rossi, A. Efficacy of green tea and its extract, epigallocatechin-3-gallate, in the reduction of cariogenic microbiota in children: A randomized clinical trial. Arch. Oral Biol., 2020, 114, 104727.
[http://dx.doi.org/10.1016/j.archoralbio.2020.104727] [PMID: 32361019]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy