Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Mini-Review Article

Natural Phytochemicals for the Treatment of Major Depressive Disorder: A Mini-Review of Pre- and Clinical Studies

Author(s): Luana M. Manosso, Camila O. Arent, Laura A. Borba, Helena M. Abelaira and Gislaine Z. Réus*

Volume 22, Issue 2, 2023

Published on: 29 March, 2022

Page: [237 - 254] Pages: 18

DOI: 10.2174/1570159X20666220329143804

Price: $65

Abstract

Major Depressive Disorder (MDD) is a common mental illness that causes significant disability and declining quality of life. An overlap of multiple factors can be involved in the pathophysiology of this mood disorder, including increased inflammation and oxidative stress, change in neurotransmitters, decreased brain-derived neurotrophic factor (BDNF), activation of the hypothalamicpituitary- adrenal (HPA) axis, and changes in the microbiota-gut-brain axis. Although the classic treatment for MDD is safe, it is far from ideal, with delay to start the best clinic, side effects, and a large number of non-responses or partial-responses. Therefore, other alternatives are being studied to improve depressive symptoms, and, among them, the role of phytochemicals in food stands out. This mini-review will discuss the main phytochemicals present in foods with clinical and preclinical studies showing benefits for MDD treatment. In addition, the main mechanisms of action that are being proposed for each of these compounds will be addressed.

Keywords: Antidepressant, flavonoids, phytochemicals, polyphenol, mood disorders, major depressive disorder.

Graphical Abstract
[1]
Malhi GS, Mann JJ. Depression. Lancet 2018; 392(10161): 2299-312.
[http://dx.doi.org/10.1016/S0140-6736(18)31948-2] [PMID: 30396512]
[2]
WHO Depression and other common mental disorders global health estimates. Depression and Other Common Mental Disorders Global Health Estimates 2017. Available from: https://apps.who.int/iris/bitstream/handle/10665/254610/WHO-MSD-MER-2017.2-eng.pdf
[3]
Cipriani A, Furukawa TA, Salanti G, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet 2018; 391(10128): 1357-66.
[http://dx.doi.org/10.1016/S0140-6736(17)32802-7] [PMID: 29477251]
[4]
Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature 2008; 455(7215): 894-902.
[http://dx.doi.org/10.1038/nature07455] [PMID: 18923511]
[5]
Duman RS, Aghajanian GK. Synaptic dysfunction in depression: Potential therapeutic targets. Science 2012; 338(6103): 68-72.
[http://dx.doi.org/10.1126/science.1222939] [PMID: 23042884]
[6]
Murrough JW, Abdallah CG, Mathew SJ. Targeting glutamate signalling in depression: Progress and prospects. Nat Rev Drug Discov 2017; 16(7): 472-86.
[7]
Dowlati Y, Herrmann N, Swardfager W, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry 2010; 67(5): 446-57.
[http://dx.doi.org/10.1016/j.biopsych.2009.09.033] [PMID: 20015486]
[8]
Osimo EF, Baxter LJ, Lewis G, Jones PB, Khandaker GM. Prevalence of low-grade inflammation in depression: A systematic review and meta-analysis of CRP levels. Psychol Med 2019; 49(12): 1958-70.
[http://dx.doi.org/10.1017/S0033291719001454] [PMID: 31258105]
[9]
Bryleva EY, Brundin L. Suicidality and activation of the kynurenine pathway of tryptophan metabolism. Curr Top Behav Neurosci 2017; 31: 269-84.
[http://dx.doi.org/10.1007/7854_2016_5] [PMID: 27221623]
[10]
O’Connor JC, Lawson MA, André C, et al. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 2009; 14(5): 511-22.
[http://dx.doi.org/10.1038/sj.mp.4002148] [PMID: 18195714]
[11]
Maes M, Kubera M, Leunis J-C. The gut-brain barrier in major depression: Intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuroendocrinol Lett 2008; 29(1): 117-24.
[PMID: 18283240]
[12]
Morais LH, Schreiber HL IV, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol 2021; 19(4): 241-55.
[http://dx.doi.org/10.1038/s41579-020-00460-0] [PMID: 33093662]
[13]
Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 2009; 6(5): 306-14.
[http://dx.doi.org/10.1038/nrgastro.2009.35] [PMID: 19404271]
[14]
Kelly JR, Borre Y, O’ Brien C, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 2016; 82: 109-18.
[http://dx.doi.org/10.1016/j.jpsychires.2016.07.019] [PMID: 27491067]
[15]
Jiang H, Ling Z, Zhang Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 2015; 48: 186-94.
[http://dx.doi.org/10.1016/j.bbi.2015.03.016] [PMID: 25882912]
[16]
Liu RT, Walsh RFL, Sheehan AE. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neurosci Biobehav Rev 2019; 102: 13-23.
[http://dx.doi.org/10.1016/j.neubiorev.2019.03.023] [PMID: 31004628]
[17]
Sanada K, Nakajima S, Kurokawa S, et al. Gut microbiota and major depressive disorder: A systematic review and meta-analysis. J Affect Disord 2020; 266: 1-13.
[http://dx.doi.org/10.1016/j.jad.2020.01.102] [PMID: 32056863]
[18]
Maes M, Song C, Lin A, et al. The effects of psychological stress on humans: Increased production of pro-inflammatory cytokines and a Th1-like response in stress-induced anxiety. Cytokine 1998; 10(4): 313-8.
[http://dx.doi.org/10.1006/cyto.1997.0290] [PMID: 9617578]
[19]
Lindqvist D, Dhabhar FS, James SJ, et al. Oxidative stress, inflammation and treatment response in major depression. Psychoneuroendocrinology 2017; 76: 197-205.
[http://dx.doi.org/10.1016/j.psyneuen.2016.11.031] [PMID: 27960139]
[20]
Moylan S, Berk M, Dean OM, et al. Oxidative & nitrosative stress in depression: Why so much stress? Neurosci Biobehav Rev 2014; 45: 46-62.
[http://dx.doi.org/10.1016/j.neubiorev.2014.05.007] [PMID: 24858007]
[21]
Nobis A, Zalewski D, Waszkiewicz N. Peripheral markers of depression. J Clin Med 2020; 9(12): 3793.
[http://dx.doi.org/10.3390/jcm9123793] [PMID: 33255237]
[22]
Anderson G, Maes M. Oxidative/nitrosative stress and immuno-inflammatory pathways in depression: Treatment implications. Curr Pharm Des 2014; 20(23): 3812-47.
[http://dx.doi.org/10.2174/13816128113196660738] [PMID: 24180395]
[23]
Calogero AE, Gallucci WT, Chrousos GP, Gold PW. Catecholamine effects upon rat hypothalamic corticotropin-releasing hormone secretion in vitro. J Clin Invest 1988; 82(3): 839-46.
[http://dx.doi.org/10.1172/JCI113687] [PMID: 2901433]
[24]
Pruessner M, Hellhammer DH, Pruessner JC, Lupien SJ. Self-reported depressive symptoms and stress levels in healthy young men: Associations with the cortisol response to awakening. Psychosom Med 2003; 65(1): 92-9.
[http://dx.doi.org/10.1097/01.PSY.0000040950.22044.10] [PMID: 12554820]
[25]
Heim C, Nemeroff CB. The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies. Biol Psychiatry 2001; 49(12): 1023-39.
[http://dx.doi.org/10.1016/S0006-3223(01)01157-X] [PMID: 11430844]
[26]
Harrison EL, Baune BT. Modulation of early stress-induced neurobiological changes: A review of behavioural and pharmacological interventions in animal models. Transl Psychiatry 2014; 4: e390.
[http://dx.doi.org/10.1038/tp.2014.31] [PMID: 24825729]
[27]
Holsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 2000; 23(5): 477-501.
[http://dx.doi.org/10.1016/S0893-133X(00)00159-7] [PMID: 11027914]
[28]
Pariante CM, Miller AH. Glucocorticoid receptors in major depression: Relevance to pathophysiology and treatment. Biol Psychiatry 2001; 49(5): 391-404.
[http://dx.doi.org/10.1016/S0006-3223(00)01088-X] [PMID: 11274650]
[29]
Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59(12): 1116-27.
[http://dx.doi.org/10.1016/j.biopsych.2006.02.013] [PMID: 16631126]
[30]
Lang UE, Borgwardt S. Molecular mechanisms of depression: Perspectives on new treatment strategies. Cell Physiol Biochem 2013; 31(6): 761-77.
[http://dx.doi.org/10.1159/000350094] [PMID: 23735822]
[31]
Yoshii A, Constantine-Paton M. Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol 2010; 70(5): 304-22.
[http://dx.doi.org/10.1002/dneu.20765] [PMID: 20186705]
[32]
Pittenger C, Duman RS. Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology 2008; 33(1): 88-109.
[http://dx.doi.org/10.1038/sj.npp.1301574] [PMID: 17851537]
[33]
Hoshaw BA, Malberg JE, Lucki I. Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Res 2005; 1037(1-2): 204-8.
[http://dx.doi.org/10.1016/j.brainres.2005.01.007] [PMID: 15777771]
[34]
Medawar E, Huhn S, Villringer A, Veronica Witte A. The effects of plant-based diets on the body and the brain: A systematic review. Transl Psychiatry 2019; 9(1): 226.
[http://dx.doi.org/10.1038/s41398-019-0552-0] [PMID: 31515473]
[35]
Boeing H, Bechthold A, Bub A, et al. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur J Nutr 2012; 51(6): 637-63.
[http://dx.doi.org/10.1007/s00394-012-0380-y] [PMID: 22684631]
[36]
Serra D, Almeida LM, Dinis TCP. Dietary polyphenols: A novel strategy to modulate microbiota-gut-brain axis. Trends Food Sci Technol 2018; 78: 224-33.
[http://dx.doi.org/10.1016/j.tifs.2018.06.007]
[37]
Bear TLK, Dalziel JE, Coad J, Roy NC, Butts CA, Gopal PK. The role of the gut microbiota in dietary interventions for depression and anxiety. Adv Nutr 2020; 11(4): 890-907.
[http://dx.doi.org/10.1093/advances/nmaa016] [PMID: 32149335]
[38]
Dillard CJ, Bruce German J. Phytochemicals: Nutraceuticals and human health. J Sci Food Agric 2000; 80: 1744-56.
[http://dx.doi.org/10.1002/1097-0010(20000915)80:12<1744:AID-JSFA725>3.0.CO;2-W]
[39]
Barbieri R, Coppo E, Marchese A, et al. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol Res 2017; 196: 44-68.
[http://dx.doi.org/10.1016/j.micres.2016.12.003] [PMID: 28164790]
[40]
Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010; 2(12): 1231-46.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[41]
González-Vallinas M, González-Castejón M, Rodríguez-Casado A, Ramírez de Molina A. Dietary phytochemicals in cancer prevention and therapy: A complementary approach with promising perspectives. Nutr Rev 2013; 71(9): 585-99.
[http://dx.doi.org/10.1111/nure.12051] [PMID: 24032363]
[42]
Putnik P, Gabrić D, Roohinejad S, et al. An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food Chem 2019; 276: 680-91.
[http://dx.doi.org/10.1016/j.foodchem.2018.10.068] [PMID: 30409648]
[43]
Ruhee RT, Roberts LA, Ma S, Suzuki K. Organosulfur compounds: A review of their anti-inflammatory effects in human health. Front Nutr 2020; 7: 64.
[http://dx.doi.org/10.3389/fnut.2020.00064] [PMID: 32582751]
[44]
Durazzo A, Lucarini M, Souto EB, et al. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother Res 2019; 33(9): 2221-43.
[http://dx.doi.org/10.1002/ptr.6419] [PMID: 31359516]
[45]
Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 2013; 18(14): 1818-92.
[http://dx.doi.org/10.1089/ars.2012.4581] [PMID: 22794138]
[46]
Williamson G. The role of polyphenols in modern nutrition. Nutr Bull 2017; 42(3): 226-35.
[http://dx.doi.org/10.1111/nbu.12278] [PMID: 28983192]
[47]
Murota K, Nakamura Y, Uehara M. Flavonoid metabolism: The interaction of metabolites and gut microbiota. Biosci Biotechnol Biochem 2018; 82(4): 600-10.
[http://dx.doi.org/10.1080/09168451.2018.1444467] [PMID: 29504827]
[48]
Pandareesh MD, Mythri RB, Srinivas Bharath MM. Bioavailability of dietary polyphenols: Factors contributing to their clinical application in CNS diseases. Neurochem Int 2015; 89: 198-208.
[http://dx.doi.org/10.1016/j.neuint.2015.07.003] [PMID: 26163045]
[49]
Figueira I, Garcia G, Pimpão RC, et al. Polyphenols journey through blood-brain barrier towards neuronal protection. Sci Rep 2017; 7(1): 11456.
[http://dx.doi.org/10.1038/s41598-017-11512-6] [PMID: 28904352]
[50]
Silva RFM. Pogačnik L. Polyphenols from food and natural products: Neuroprotection and safety. Antioxidants 2020; 9(1): 61.
[http://dx.doi.org/10.3390/antiox9010061] [PMID: 31936711]
[51]
Sarubbo F, Moranta D, Pani G. Dietary polyphenols and neurogenesis: Molecular interactions and implication for brain ageing and cognition. Neurosci Biobehav Rev 2018; 90: 456-70.
[http://dx.doi.org/10.1016/j.neubiorev.2018.05.011] [PMID: 29753753]
[52]
Bayes J, Schloss J, Sibbritt D. Effects of polyphenols in a mediterranean diet on symptoms of depression: A systematic literature review. Adv Nutr 2020; 11(3): 602-15.
[http://dx.doi.org/10.1093/advances/nmz117] [PMID: 31687743]
[53]
Kotha RR, Luthria DL. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules 2019; 24(16): 2930.
[http://dx.doi.org/10.3390/molecules24162930] [PMID: 31412624]
[54]
Fusar-Poli L, Vozza L, Gabbiadini A, et al. Curcumin for depression: A meta-analysis. Crit Rev Food Sci Nutr 2020; 60(15): 2643-53.
[PMID: 31423805]
[55]
Ng QX, Koh SSH, Chan HW, Ho CYX. Clinical use of curcumin in depression: A meta-analysis. J Am Med Dir Assoc 2017; 18(6): 503-8.
[http://dx.doi.org/10.1016/j.jamda.2016.12.071] [PMID: 28236605]
[56]
Dei Cas M, Ghidoni R. Dietary curcumin: Correlation between bioavailability and health potential. Nutrients 2019; 11(9): 2147.
[http://dx.doi.org/10.3390/nu11092147] [PMID: 31500361]
[57]
Tabrizi R, Vakili S, Akbari M, et al. The effects of curcumin-containing supplements on biomarkers of inflammation and oxidative stress: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2019; 33(2): 253-62.
[http://dx.doi.org/10.1002/ptr.6226] [PMID: 30402990]
[58]
Wang Z, Zhang Q, Yuan L, et al. The effects of curcumin on depressive-like behavior in mice after lipopolysaccharide administration. Behav Brain Res 2014; 274: 282-90.
[http://dx.doi.org/10.1016/j.bbr.2014.08.018] [PMID: 25131506]
[59]
Zhang WY, Guo YJ, Han WX, et al. Curcumin relieves depressive-like behaviors via inhibition of the NLRP3 inflammasome and kynurenine pathway in rats suffering from chronic unpredictable mild stress. Int Immunopharmacol 2019; 67: 138-44.
[http://dx.doi.org/10.1016/j.intimp.2018.12.012] [PMID: 30551030]
[60]
Liao D, Lv C, Cao L, et al. Curcumin attenuates chronic unpredictable mild stress-induced depressive-like behaviors via restoring changes in oxidative stress and the activation of Nrf2 signaling pathway in rats. Oxid Med Cell Longev 2020; 2020: 9268083.
[http://dx.doi.org/10.1155/2020/9268083] [PMID: 33014280]
[61]
da Silva Marques JG, Antunes FTT, da Silva Brum LF, et al. Adaptogenic effects of curcumin on depression induced by moderate and unpredictable chronic stress in mice. Behav Brain Res 2021; 399: 113002.
[http://dx.doi.org/10.1016/j.bbr.2020.113002] [PMID: 33161033]
[62]
Amidfar M, Réus GZ, de Moura AB, Quevedo J, Kim Y-K. The role of neurotrophic factors in pathophysiology of major depressive disorder. Adv Exp Med Biol 2021; 1305: 257-72.
[http://dx.doi.org/10.1007/978-981-33-6044-0_14] [PMID: 33834404]
[63]
Sarraf P, Parohan M, Javanbakht MH, Ranji-Burachaloo S, Djalali M. Short-term curcumin supplementation enhances serum brain-derived neurotrophic factor in adult men and women: A systematic review and dose-response meta-analysis of randomized controlled trials. Nutr Res 2019; 69: 1-8.
[http://dx.doi.org/10.1016/j.nutres.2019.05.001] [PMID: 31279955]
[64]
Namgyal D, Ali S, Mehta R, Sarwat M. The neuroprotective effect of curcumin against Cd-induced neurotoxicity and hippocampal neurogenesis promotion through CREB-BDNF signaling pathway. Toxicology 2020; 442: 152542.
[http://dx.doi.org/10.1016/j.tox.2020.152542] [PMID: 32735850]
[65]
Motaghinejad M, Motevalian M, Fatima S, Hashemi H, Gholami M. Curcumin confers neuroprotection against alcohol-induced hippocampal neurodegeneration via CREB-BDNF pathway in rats. Biomed Pharmacother 2017; 87: 721-40.
[http://dx.doi.org/10.1016/j.biopha.2016.12.020] [PMID: 28095363]
[66]
Zhang L, Fang Y, Xu Y, et al. Curcumin improves amyloid β-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One 2015; 10(6): e0131525.
[http://dx.doi.org/10.1371/journal.pone.0131525] [PMID: 26114940]
[67]
Huang Z, Zhong XM, Li ZY, Feng CR, Pan AJ, Mao QQ. Curcumin reverses corticosterone-induced depressive-like behavior and decrease in brain BDNF levels in rats. Neurosci Lett 2011; 493(3): 145-8.
[http://dx.doi.org/10.1016/j.neulet.2011.02.030] [PMID: 21334417]
[68]
Xu Y, Li S, Vernon MM, et al. Curcumin prevents corticosterone-induced neurotoxicity and abnormalities of neuroplasticity via 5-HT receptor pathway. J Neurochem 2011; 118(5): 784-95.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07356.x] [PMID: 21689105]
[69]
Lin TY, Lu CW, Wang CC, Wang YC, Wang SJ. Curcumin inhibits glutamate release in nerve terminals from rat prefrontal cortex: Possible relevance to its antidepressant mechanism. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(7): 1785-93.
[http://dx.doi.org/10.1016/j.pnpbp.2011.06.012] [PMID: 21741425]
[70]
Aubry AV, Khandaker H, Ravenelle R, et al. A diet enriched with curcumin promotes resilience to chronic social defeat stress. Neuropsychopharmacology 2019; 44(4): 733-42.
[http://dx.doi.org/10.1038/s41386-018-0295-2] [PMID: 30542090]
[71]
Di Meo F, Margarucci S, Galderisi U, Crispi S, Peluso G. Curcumin, gut microbiota, and neuroprotection. Nutrients 2019; 11(10): 2426.
[http://dx.doi.org/10.3390/nu11102426] [PMID: 31614630]
[72]
Scazzocchio B, Minghetti L, D’Archivio M. Interaction between gut microbiota and curcumin: A new key of understanding for the health effects of curcumin. Nutrients 2020; 12(9): 1-18.
[http://dx.doi.org/10.3390/nu12092499] [PMID: 32824993]
[73]
Yu Y, Wu S, Li J, et al. The effect of curcumin on the brain-gut axis in rat model of irritable bowel syndrome: Involvement of 5-HT-dependent signaling. Metab Brain Dis 2015; 30(1): 47-55.
[http://dx.doi.org/10.1007/s11011-014-9554-z] [PMID: 24807589]
[74]
Jiang J, Wang W, Sun YJ, Hu M, Li F, Zhu DY. Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood-brain barrier damage. Eur J Pharmacol 2007; 561(1-3): 54-62.
[http://dx.doi.org/10.1016/j.ejphar.2006.12.028] [PMID: 17303117]
[75]
Andújar I, Recio MC, Giner RM, Ríos JL. Cocoa polyphenols and their potential benefits for human health. Oxid Med Cell Longev 2012; 2012: 906252.
[http://dx.doi.org/10.1155/2012/906252] [PMID: 23150750]
[76]
Fusar-Poli L, Gabbiadini A, Ciancio A, Vozza L, Signorelli MS, Aguglia E. The effect of cocoa-rich products on depression, anxiety, and mood: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 2021; 1-13.
[http://dx.doi.org/10.1080/10408398.2021.1920570] [PMID: 33970709]
[77]
Jackson SE, Smith L, Firth J, et al. Is there a relationship between chocolate consumption and symptoms of depression? A cross-sectional survey of 13,626 US adults. Depress Anxiety 2019; 36(10): 987-95.
[http://dx.doi.org/10.1002/da.22950] [PMID: 31356717]
[78]
Messaoudi M, Bisson JF, Nejdi A, Rozan P, Javelot H. Antidepressant-like effects of a cocoa polyphenolic extract in Wistar-Unilever rats. Nutr Neurosci 2008; 11(6): 269-76.
[http://dx.doi.org/10.1179/147683008X344165] [PMID: 19000380]
[79]
Goya L, Martín MÁ, Sarriá B, Ramos S, Mateos R, Bravo L. Effect of cocoa and its flavonoids on biomarkers of inflammation: Studies of cell culture, animals and humans. Nutrients 2016; 8(4): 212.
[http://dx.doi.org/10.3390/nu8040212] [PMID: 27070643]
[80]
Guruvayoorappan C, Kuttan G. (+)-Catechin inhibits tumour angiogenesis and regulates the production of nitric oxide and TNF-alpha in LPS-stimulated macrophages. Innate Immun 2008; 14(3): 160-74.
[http://dx.doi.org/10.1177/1753425908093295] [PMID: 18562575]
[81]
Ramos-Romero S, Pérez-Cano FJ, Pérez-Berezo T, Castellote C, Franch A, Castell M. Effect of a cocoa flavonoid-enriched diet on experimental autoimmune arthritis. Br J Nutr 2012; 107(4): 523-32.
[http://dx.doi.org/10.1017/S000711451100328X] [PMID: 21771382]
[82]
Jenny M, Santer E, Klein A, et al. Cacao extracts suppress tryptophan degradation of mitogen-stimulated peripheral blood mononuclear cells. J Ethnopharmacol 2009; 122(2): 261-7.
[http://dx.doi.org/10.1016/j.jep.2009.01.011] [PMID: 19330924]
[83]
di Giuseppe R, Di Castelnuovo A, Centritto F, et al. Regular consumption of dark chocolate is associated with low serum concentrations of C-reactive protein in a healthy Italian population. J Nutr 2008; 138(10): 1939-45.
[http://dx.doi.org/10.1093/jn/138.10.1939] [PMID: 18806104]
[84]
Hooper L, Kay C, Abdelhamid A, et al. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: A systematic review and meta-analysis of randomized trials. Am J Clin Nutr 2012; 95(3): 740-51.
[http://dx.doi.org/10.3945/ajcn.111.023457] [PMID: 22301923]
[85]
Shrime MG, Bauer SR, McDonald AC, Chowdhury NH, Coltart CE, Ding EL. Flavonoid-rich cocoa consumption affects multiple cardiovascular risk factors in a meta-analysis of short-term studies. J Nutr 2011; 141(11): 1982-8.
[http://dx.doi.org/10.3945/jn.111.145482] [PMID: 21956956]
[86]
Neshatdoust S, Saunders C, Castle SM, et al. High-flavonoid intake induces cognitive improvements linked to changes in serum brain-derived neurotrophic factor: Two randomised, controlled trials. Nutr Healthy Aging 2016; 4(1): 81-93.
[http://dx.doi.org/10.3233/NHA-1615] [PMID: 28035345]
[87]
Nath S, Bachani M, Harshavardhana D, Steiner JP. Catechins protect neurons against mitochondrial toxins and HIV proteins via activation of the BDNF pathway. J Neurovirol 2012; 18(6): 445-55.
[http://dx.doi.org/10.1007/s13365-012-0122-1] [PMID: 22886603]
[88]
Yoneda M, Sugimoto N, Katakura M, et al. Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice. J Nutr Biochem 2017; 39: 110-6.
[http://dx.doi.org/10.1016/j.jnutbio.2016.10.002] [PMID: 27833051]
[89]
Cimini A, Gentile R, D’Angelo B, et al. Cocoa powder triggers neuroprotective and preventive effects in a human Alzheimer’s disease model by modulating BDNF signaling pathway. J Cell Biochem 2013; 114(10): 2209-20.
[http://dx.doi.org/10.1002/jcb.24548] [PMID: 23554028]
[90]
Sorrenti V, Ali S, Mancin L, Davinelli S, Paoli A, Scapagnini G. Cocoa polyphenols and gut microbiota interplay: Bioavailability, prebiotic effect, and impact on human health. Nutrients 2020; 12(7): 1908.
[http://dx.doi.org/10.3390/nu12071908] [PMID: 32605083]
[91]
Wach A. Pyrzyńska K, Biesaga M. Quercetin content in some food and herbal samples. Food Chem 2007; 100: 699-704.
[http://dx.doi.org/10.1016/j.foodchem.2005.10.028]
[92]
Li Y, Yao J, Han C, et al. Quercetin, inflammation and immunity. Nutrients 2016; 8(3): 167.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[93]
Samad N, Saleem A, Yasmin F, Shehzad MA. Quercetin protects against stress-induced anxiety- and depression-like behavior and improves memory in male mice. Physiol Res 2018; 67(5): 795-808.
[http://dx.doi.org/10.33549/physiolres.933776] [PMID: 30044120]
[94]
Mehta V, Parashar A, Udayabanu M. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress. Physiol Behav 2017; 171: 69-78.
[http://dx.doi.org/10.1016/j.physbeh.2017.01.006] [PMID: 28069457]
[95]
Şahin TD, Gocmez SS, Duruksu G, Yazir Y, Utkan T. Resveratrol and quercetin attenuate depressive-like behavior and restore impaired contractility of vas deferens in chronic stress-exposed rats: Involvement of oxidative stress and inflammation. Naunyn Schmiedebergs Arch Pharmacol 2020; 393(5): 761-5.
[http://dx.doi.org/10.1007/s00210-019-01781-5] [PMID: 31836917]
[96]
Ma ZX, Zhang RY, Rui WJ, Wang ZQ, Feng X. Quercetin alleviates chronic unpredictable mild stress-induced depressive-like behaviors by promoting adult hippocampal neurogenesis via FoxG1/CREB/BDNF signaling pathway. Behav Brain Res 2021; 406: 113245.
[http://dx.doi.org/10.1016/j.bbr.2021.113245] [PMID: 33745981]
[97]
Bhutada P, Mundhada Y, Bansod K, et al. Reversal by quercetin of corticotrophin releasing factor induced anxiety- and depression-like effect in mice. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34(6): 955-60.
[http://dx.doi.org/10.1016/j.pnpbp.2010.04.025] [PMID: 20447436]
[98]
Holzmann I, da Silva LM, Corrêa da Silva JA, Steimbach VM, de Souza MM. Antidepressant-like effect of quercetin in bulbectomized mice and involvement of the antioxidant defenses, and the glutamatergic and oxidonitrergic pathways. Pharmacol Biochem Behav 2015; 136: 55-63.
[http://dx.doi.org/10.1016/j.pbb.2015.07.003] [PMID: 26196245]
[99]
Rinwa P, Kumar A. Quercetin suppress microglial neuroinflammatory response and induce antidepressent-like effect in olfactory bulbectomized rats. Neuroscience 2013; 255: 86-98.
[http://dx.doi.org/10.1016/j.neuroscience.2013.09.044] [PMID: 24095694]
[100]
Wang G, Li Y, Lei C, et al. Quercetin exerts antidepressant and cardioprotective effects in estrogen receptor α-deficient female mice via BDNF-AKT/ERK1/2 signaling. J Steroid Biochem Mol Biol 2021; 206: 105795.
[http://dx.doi.org/10.1016/j.jsbmb.2020.105795] [PMID: 33246157]
[101]
Demir EA, Gergerlioglu HS, Oz M. Antidepressant-like effects of quercetin in diabetic rats are independent of hypothalamic-pituitary-adrenal axis. Acta Neuropsychiatr 2016; 28(1): 23-30.
[http://dx.doi.org/10.1017/neu.2015.45] [PMID: 26234153]
[102]
Anjaneyulu M, Chopra K, Kaur I. Antidepressant activity of quercetin, a bioflavonoid, in streptozotocin-induced diabetic mice. J Med Food 2003; 6(4): 391-5.
[http://dx.doi.org/10.1089/109662003772519976] [PMID: 14977450]
[103]
Sadighparvar S, Darband SG, Yousefi B, et al. Combination of quercetin and exercise training attenuates depression in rats with 1,2-dimethylhydrazine-induced colorectal cancer: Possible involvement of inflammation and BDNF signalling. Exp Physiol 2020; 105(9): 1598-609.
[http://dx.doi.org/10.1113/EP088605] [PMID: 32681548]
[104]
Zhang J, Ning L, Wang J. Dietary quercetin attenuates depressive-like behaviors by inhibiting astrocyte reactivation in response to stress. Biochem Biophys Res Commun 2020; 533(4): 1338-46.
[http://dx.doi.org/10.1016/j.bbrc.2020.10.016] [PMID: 33059918]
[105]
Yoshino S, Hara A, Sakakibara H, et al. Effect of quercetin and glucuronide metabolites on the monoamine oxidase-A reaction in mouse brain mitochondria. Nutrition 2011; 27(7-8): 847-52.
[http://dx.doi.org/10.1016/j.nut.2010.09.002] [PMID: 21371861]
[106]
Kawabata K, Kawai Y, Terao J. Suppressive effect of quercetin on acute stress-induced hypothalamic-pituitary-adrenal axis response in Wistar rats. J Nutr Biochem 2010; 21(5): 374-80.
[http://dx.doi.org/10.1016/j.jnutbio.2009.01.008] [PMID: 19423323]
[107]
Porras D, Nistal E, Martínez-Flórez S, et al. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic Biol Med 2017; 102: 188-202.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.037] [PMID: 27890642]
[108]
Baur JA, Sinclair DA. Therapeutic potential of resveratrol: The in vivo evidence. Nat Rev Drug Discov 2006; 5: 493-506.
[109]
Cione E, La Torre C, Cannataro R, Caroleo MC, Plastina P, Gallelli L. Quercetin, epigallocatechin gallate, curcumin, and resveratrol: From dietary sources to human MicroRNA modulation. Molecules 2019; 25(1): 63.
[http://dx.doi.org/10.3390/molecules25010063] [PMID: 31878082]
[110]
Moore A, Beidler J, Hong MY. Resveratrol and depression in animal models: A systematic review of the biological mechanisms. Molecules 2018; 23(9): 2197.
[http://dx.doi.org/10.3390/molecules23092197] [PMID: 30200269]
[111]
Diaz-Gerevini GT, Repossi G, Dain A, Tarres MC, Das UN, Eynard AR. Beneficial action of resveratrol: How and why? Nutrition 2016; 32(2): 174-8.
[http://dx.doi.org/10.1016/j.nut.2015.08.017] [PMID: 26706021]
[112]
Abd El-Fattah AA, Fahim AT, Sadik NAH, Ali BM. Resveratrol and dimethyl fumarate ameliorate depression-like behaviour in a rat model of chronic unpredictable mild stress. Brain Res 2018; 1701: 227-36.
[http://dx.doi.org/10.1016/j.brainres.2018.09.027] [PMID: 30244113]
[113]
liu S, Li T, Liu H, et al. Resveratrol exerts antidepressant properties in the chronic unpredictable mild stress model through the regulation of oxidative stress and mTOR pathway in the rat hippocampus and prefrontal cortex. Behav Brain Res 2016; 302: 191-9.
[http://dx.doi.org/10.1016/j.bbr.2016.01.037] [PMID: 26801825]
[114]
Sakr HF, Abbas AM, Elsamanoudy AZ, Ghoneim FM. Effect of fluoxetine and resveratrol on testicular functions and oxidative stress in a rat model of chronic mild stress-induced depression. J Physiol Pharmacol 2015; 66(4): 515-27.
[PMID: 26348076]
[115]
Ali SH, Madhana RM, KV A, et al. Resveratrol ameliorates depressive-like behavior in repeated corticosterone-induced depression in mice. Steroids 2015; 101: 37-42.
[http://dx.doi.org/10.1016/j.steroids.2015.05.010] [PMID: 26048446]
[116]
Li YC, Liu YM, Shen JD, Chen JJ, Pei YY, Fang XY. Resveratrol ameliorates the depressive-like behaviors and metabolic abnormalities induced by chronic corticosterone injection. Molecules 2016; 21(10): 1341.
[http://dx.doi.org/10.3390/molecules21101341] [PMID: 27754387]
[117]
Chen WJ, Du JK, Hu X, et al. Protective effects of resveratrol on mitochondrial function in the hippocampus improves inflammation-induced depressive-like behavior. Physiol Behav 2017; 182: 54-61.
[http://dx.doi.org/10.1016/j.physbeh.2017.09.024] [PMID: 28964807]
[118]
Ge L, Liu L, Liu H, et al. Resveratrol abrogates lipopolysaccharide-induced depressive-like behavior, neuroinflammatory response, and CREB/BDNF signaling in mice. Eur J Pharmacol 2015; 768: 49-57.
[http://dx.doi.org/10.1016/j.ejphar.2015.10.026] [PMID: 26485503]
[119]
Liu T, Ma Y, Zhang R, et al. Resveratrol ameliorates estrogen deficiency-induced depression- and anxiety-like behaviors and hippocampal inflammation in mice. Psychopharmacology (Berl) 2019; 236(4): 1385-99.
[http://dx.doi.org/10.1007/s00213-018-5148-5] [PMID: 30607478]
[120]
Quincozes-Santos A, Bobermin LD, Tramontina AC, et al. Oxidative stress mediated by NMDA, AMPA/KA channels in acute hippocampal slices: Neuroprotective effect of resveratrol. Toxicol Vitr 2014; 28(4): 544-51.
[http://dx.doi.org/10.1016/j.tiv.2013.12.021] [PMID: 24412540]
[121]
Gu Z, Chu L, Han Y. Therapeutic effect of resveratrol on mice with depression. Exp Ther Med 2019; 17(4): 3061-4.
[http://dx.doi.org/10.3892/etm.2019.7311] [PMID: 30936978]
[122]
Xu Y, Wang Z, You W, et al. Antidepressant-like effect of trans-resveratrol: Involvement of serotonin and noradrenaline system. Eur Neuropsychopharmacol 2010; 20(6): 405-13.
[http://dx.doi.org/10.1016/j.euroneuro.2010.02.013] [PMID: 20353885]
[123]
Wang Z, Gu J, Wang X, et al. Antidepressant-like activity of resveratrol treatment in the forced swim test and tail suspension test in mice: The HPA axis, BDNF expression and phosphorylation of ERK. Pharmacol Biochem Behav 2013; 112: 104-10.
[http://dx.doi.org/10.1016/j.pbb.2013.10.007] [PMID: 24125781]
[124]
Ge JF, Xu YY, Qin G, Cheng JQ, Chen FH. Resveratrol ameliorates the anxiety- and depression-like behavior of subclinical hypothyroidism rat: Possible involvement of the HPT Axis, HPA Axis, and Wnt/β-catenin pathway. Front Endocrinol (Lausanne) 2016; 7: 44.
[http://dx.doi.org/10.3389/fendo.2016.00044] [PMID: 27252679]
[125]
Zhu X, Li W, Li Y, et al. The antidepressant- and anxiolytic-like effects of resveratrol: Involvement of phosphodiesterase-4D inhibition. Neuropharmacology 2019; 153: 20-31.
[http://dx.doi.org/10.1016/j.neuropharm.2019.04.022] [PMID: 31026437]
[126]
Chen JJ, Shen JX, Yu ZH, et al. The antidepressant effects of resveratrol are accompanied by the attenuation of dendrite/dendritic spine loss and the upregulation of BDNF/p-cofilin1 levels in chronic restraint mice. Neurochem Res 2021; 46(3): 660-74.
[http://dx.doi.org/10.1007/s11064-020-03200-1] [PMID: 33392910]
[127]
Kodali M, Parihar VK, Hattiangady B, Mishra V, Shuai B, Shetty AK. Resveratrol prevents age-related memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature, and reduced glial activation. Sci Rep 2015; 5: 8075.
[http://dx.doi.org/10.1038/srep08075] [PMID: 25627672]
[128]
Chung JY, Jeong JH, Song J. Resveratrol modulates the gut-brain axis: Focus on glucagon-like peptide-1, 5-HT, and gut microbiota. Front Aging Neurosci 2020; 12: 588044.
[http://dx.doi.org/10.3389/fnagi.2020.588044] [PMID: 33328965]
[129]
Wang M, Firrman J, Liu L, Yam K. A review on flavonoid apigenin: Dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. BioMed Res Int 2019; 2019: 7010467.
[http://dx.doi.org/10.1155/2019/7010467] [PMID: 31737673]
[130]
Nabavi SF, Khan H, D’onofrio G, et al. Apigenin as neuroprotective agent: Of mice and men. Pharmacol Res 2018; 128: 359-65.
[http://dx.doi.org/10.1016/j.phrs.2017.10.008] [PMID: 29055745]
[131]
Zhang X, Bu H, Jiang Y, et al. The antidepressant effects of apigenin are associated with the promotion of autophagy via the mTOR/AMPK/ULK1 pathway. Mol Med Rep 2019; 20(3): 2867-74.
[http://dx.doi.org/10.3892/mmr.2019.10491] [PMID: 31322238]
[132]
Weng L, Guo X, Li Y, Yang X, Han Y. Apigenin reverses depression-like behavior induced by chronic corticosterone treatment in mice. Eur J Pharmacol 2016; 774: 50-4.
[http://dx.doi.org/10.1016/j.ejphar.2016.01.015] [PMID: 26826594]
[133]
Yi LT, Li JM, Li YC, Pan Y, Xu Q, Kong LD. Antidepressant-like behavioral and neurochemical effects of the citrus-associated chemical apigenin. Life Sci 2008; 82(13-14): 741-51.
[http://dx.doi.org/10.1016/j.lfs.2008.01.007] [PMID: 18308340]
[134]
Li R, Wang X, Qin T, Qu R, Ma S. Apigenin ameliorates chronic mild stress-induced depressive behavior by inhibiting interleukin-1β production and NLRP3 inflammasome activation in the rat brain. Behav Brain Res 2016; 296: 318-25.
[http://dx.doi.org/10.1016/j.bbr.2015.09.031] [PMID: 26416673]
[135]
Li R, Zhao D, Qu R, Fu Q, Ma S. The effects of apigenin on lipopolysaccharide-induced depressive-like behavior in mice. Neurosci Lett 2015; 594: 17-22.
[http://dx.doi.org/10.1016/j.neulet.2015.03.040] [PMID: 25800110]
[136]
Nakazawa T, Yasuda T, Ueda J, Ohsawa K. Antidepressant-like effects of apigenin and 2,4,5-trimethoxycinnamic acid from Perilla frutescens in the forced swimming test. Biol Pharm Bull 2003; 26(4): 474-80.
[http://dx.doi.org/10.1248/bpb.26.474] [PMID: 12673028]
[137]
Kalivarathan J, Chandrasekaran SP, Kalaivanan K, Ramachandran V, Carani Venkatraman A. Apigenin attenuates hippocampal oxidative events, inflammation and pathological alterations in rats fed high fat, fructose diet. Biomed Pharmacother 2017; 89: 323-31.
[http://dx.doi.org/10.1016/j.biopha.2017.01.162] [PMID: 28237914]
[138]
Chang CY, Lin TY, Lu CW, et al. Apigenin, a natural flavonoid, inhibits glutamate release in the rat hippocampus. Eur J Pharmacol 2015; 762: 72-81.
[http://dx.doi.org/10.1016/j.ejphar.2015.05.035] [PMID: 26007643]
[139]
Zhang T, Su J, Guo B, Wang K, Li X, Liang G. Apigenin protects blood-brain barrier and ameliorates early brain injury by inhibiting TLR4-mediated inflammatory pathway in subarachnoid hemorrhage rats. Int Immunopharmacol 2015; 28(1): 79-87.
[http://dx.doi.org/10.1016/j.intimp.2015.05.024] [PMID: 26028151]
[140]
Losi G, Puia G, Garzon G, de Vuono MC, Baraldi M. Apigenin modulates GABAergic and glutamatergic transmission in cultured cortical neurons. Eur J Pharmacol 2004; 502(1-2): 41-6.
[http://dx.doi.org/10.1016/j.ejphar.2004.08.043] [PMID: 15464088]
[141]
Feng WY. Metabolism of green tea catechins: An overview. Curr Drug Metab 2006; 7(7): 755-809.
[http://dx.doi.org/10.2174/138920006778520552] [PMID: 17073579]
[142]
Rothenberg DO, Zhang L. Mechanisms underlying the anti-depressive effects of regular tea consumption. Nutrients 2019; 11(6): 1361.
[http://dx.doi.org/10.3390/nu11061361] [PMID: 31212946]
[143]
Dong X, Yang C, Cao S, et al. Tea consumption and the risk of depression: A meta-analysis of observational studies. Aust N Z J Psychiatry 2015; 49(4): 334-45.
[http://dx.doi.org/10.1177/0004867414567759] [PMID: 25657295]
[144]
Li G, Yang J, Wang X, Zhou C, Zheng X, Lin W. Effects of EGCG on depression-related behavior and serotonin concentration in a rat model of chronic unpredictable mild stress. Food Funct 2020; 11(10): 8780-7.
[http://dx.doi.org/10.1039/D0FO00524J] [PMID: 32955535]
[145]
Wang J, Xu S, Chen X, et al. Antidepressant effect of EGCG through the inhibition of hippocampal neuroinflammation in chronic unpredictable mild stress-induced depression rat model. J Funct Foods 2020; 73: 104106.
[http://dx.doi.org/10.1016/j.jff.2020.104106]
[146]
Liu Y, Jia G, Gou L, et al. Antidepressant-like effects of tea polyphenols on mouse model of chronic unpredictable mild stress. Pharmacol Biochem Behav 2013; 104: 27-32.
[http://dx.doi.org/10.1016/j.pbb.2012.12.024] [PMID: 23290936]
[147]
Zhu WL, Shi HS, Wei YM, et al. Green tea polyphenols produce antidepressant-like effects in adult mice. Pharmacol Res 2012; 65(1): 74-80.
[http://dx.doi.org/10.1016/j.phrs.2011.09.007] [PMID: 21964320]
[148]
Yang J-R, Ren T-T, Lan R, Qin X-Y. Tea polyphenols attenuate staurosporine-induced cytotoxicity and apoptosis by modulating BDNF-TrkB/Akt and Erk1/2 signaling axis in hippocampal neurons. IBRO Rep 2020; 8: 115-21.
[http://dx.doi.org/10.1016/j.ibror.2020.04.002] [PMID: 32373755]
[149]
Zhong X, Liu M, Yao W, et al. Epigallocatechin-3-gallate attenuates microglial inflammation and neurotoxicity by suppressing the activation of canonical and noncanonical inflammasome via TLR4/NF-κB pathway. Mol Nutr Food Res 2019; 63(21): e1801230.
[http://dx.doi.org/10.1002/mnfr.201801230] [PMID: 31374144]
[150]
Seong K-J, Lee H-G, Kook MS, Ko H-M, Jung J-Y, Kim W-J. Epigallocatechin-3-gallate rescues LPS-impaired adult hippocampal neurogenesis through suppressing the TLR4-NF-κB signaling pathway in mice. Korean J Physiol Pharmacol 2016; 20(1): 41-51.
[http://dx.doi.org/10.4196/kjpp.2016.20.1.41] [PMID: 26807022]
[151]
Zhao X, Liu F, Jin H, et al. Involvement of PKCα and ERK1/2 signaling pathways in EGCG’s protection against stress-induced neural injuries in Wistar rats. Neuroscience 2017; 346: 226-37.
[http://dx.doi.org/10.1016/j.neuroscience.2017.01.025] [PMID: 28131624]
[152]
Lee B, Shim I, Lee H, Hahm DH. Effects of epigallocatechin gallate on behavioral and cognitive impairments, hypothalamic-pituitary-adrenal axis dysfunction, and alternations in hippocampal BDNF expression under single prolonged stress. J Med Food 2018; 21(10): 979-89.
[http://dx.doi.org/10.1089/jmf.2017.4161] [PMID: 30273101]
[153]
Ding ML, Ma H, Man YG, Lv HY. Protective effects of a green tea polyphenol, epigallocatechin-3-gallate, against sevoflurane-induced neuronal apoptosis involve regulation of CREB/BDNF/TrkB and PI3K/Akt/mTOR signalling pathways in neonatal mice. Can J Physiol Pharmacol 2017; 95(12): 1396-405.
[http://dx.doi.org/10.1139/cjpp-2016-0333] [PMID: 28679060]
[154]
Mi Y, Qi G, Fan R, et al. EGCG ameliorates high-fat- and high-fructose-induced cognitive defects by regulating the IRS/AKT and ERK/CREB/BDNF signaling pathways in the CNS. FASEB J 2017; 31(11): 4998-5011.
[http://dx.doi.org/10.1096/fj.201700400RR] [PMID: 28739640]
[155]
Cheng M, Zhang X, Miao Y, Cao J, Wu Z, Weng P. The modulatory effect of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) on intestinal microbiota of high fat diet-induced obesity mice model. Food Res Int 2017; 92: 9-16.
[http://dx.doi.org/10.1016/j.foodres.2016.12.008] [PMID: 28290302]
[156]
Xu Y, Xie M, Xue J, et al. EGCG ameliorates neuronal and behavioral defects by remodeling gut microbiota and TotM expression in Drosophila models of Parkinson’s disease. FASEB J 2020; 34(4): 5931-50.
[http://dx.doi.org/10.1096/fj.201903125RR] [PMID: 32157731]
[157]
Liu Z, de Bruijn WJC, Bruins ME, Vincken J-P. Reciprocal interactions between epigallocatechin-3-gallate (EGCG) and human gut microbiota in vitro. J Agric Food Chem 2020; 68(36): 9804-15.
[http://dx.doi.org/10.1021/acs.jafc.0c03587] [PMID: 32808768]
[158]
Zhang B, Wang J, Wei Q, et al. Epigallocatechin-3-O-gallate modulates the diversity of gut microbiota in ovariectomized rats. Food Sci Nutr 2020; 8(2): 1295-302.
[http://dx.doi.org/10.1002/fsn3.1419] [PMID: 32148835]
[159]
Woźniak Ł Skąpska S, Marszałek K. Ursolic acid-a pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules 2015; 20(11): 20614-41.
[http://dx.doi.org/10.3390/molecules201119721] [PMID: 26610440]
[160]
Ramos-Hryb AB, Pazini FL, Kaster MP, Rodrigues ALS. Therapeutic potential of ursolic acid to manage neurodegenerative and psychiatric diseases. CNS Drugs 2017; 31(12): 1029-41.
[http://dx.doi.org/10.1007/s40263-017-0474-4] [PMID: 29098660]
[161]
Colla ARS, Pazini FL, Lieberknecht V, Camargo A, Rodrigues ALS. Ursolic acid abrogates depressive-like behavior and hippocampal pro-apoptotic imbalance induced by chronic unpredictable stress. Metab Brain Dis 2021; 36(3): 437-46.
[http://dx.doi.org/10.1007/s11011-020-00658-4] [PMID: 33394285]
[162]
Machado DG, Neis VB, Balen GO, et al. Antidepressant-like effect of ursolic acid isolated from Rosmarinus officinalis L. in mice: Evidence for the involvement of the dopaminergic system. Pharmacol Biochem Behav 2012; 103(2): 204-11.
[http://dx.doi.org/10.1016/j.pbb.2012.08.016] [PMID: 22940588]
[163]
Colla ARS, Oliveira A, Pazini FL, et al. Serotonergic and noradrenergic systems are implicated in the antidepressant-like effect of ursolic acid in mice. Pharmacol Biochem Behav 2014; 124: 108-16.
[http://dx.doi.org/10.1016/j.pbb.2014.05.015] [PMID: 24887451]
[164]
Kim JH, Kim GH, Hwang KH. Monoamine oxidase and dopamine β-hydroxylase inhibitors from the fruits of gardenia jasminoides. Biomol Ther (Seoul) 2012; 20(2): 214-9.
[http://dx.doi.org/10.4062/biomolther.2012.20.2.214] [PMID: 24116298]
[165]
Ramos-Hryb AB, Cunha MP, Pazini FL, et al. Ursolic acid affords antidepressant-like effects in mice through the activation of PKA, PKC, CAMK-II and MEK1/2. Pharmacol Rep 2017; 69(6): 1240-6.
[http://dx.doi.org/10.1016/j.pharep.2017.05.009] [PMID: 29128805]
[166]
Xu HL, Wang XT, Cheng Y, et al. Ursolic acid improves diabetic nephropathy via suppression of oxidative stress and inflammation in streptozotocin-induced rats. Biomed Pharmacother 2018; 105: 915-21.
[http://dx.doi.org/10.1016/j.biopha.2018.06.055] [PMID: 30021385]
[167]
Ramírez-Rodríguez AM, González-Ortiz M, Martínez-Abundis E, Acuña Ortega N. Effect of ursolic acid on metabolic syndrome, insulin sensitivity, and inflammation. J Med Food 2017; 20(9): 882-6.
[http://dx.doi.org/10.1089/jmf.2017.0003] [PMID: 28598231]
[168]
Yoon JH, Youn K, Ho CT, Karwe MV, Jeong WS, Jun M. p-coumaric acid and ursolic acid from Corni fructus attenuated β-amyloid(25-35)-induced toxicity through regulation of the NF-κB signaling pathway in PC12 cells. J Agric Food Chem 2014; 62(21): 4911-6.
[http://dx.doi.org/10.1021/jf501314g] [PMID: 24815946]
[169]
Chi S, Wang C, Jiang T, Zhu XC, Yu JT, Tan L. The prevalence of depression in Alzheimer’s disease: A systematic review and meta-analysis. Curr Alzheimer Res 2015; 12(2): 189-98.
[http://dx.doi.org/10.2174/1567205012666150204124310] [PMID: 25654505]
[170]
Ownby RL, Crocco E, Acevedo A, John V, Loewenstein D. Depression and risk for Alzheimer disease: Systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry 2006; 63(5): 530-8.
[http://dx.doi.org/10.1001/archpsyc.63.5.530] [PMID: 16651510]
[171]
Egede LE, Ellis C. Diabetes and depression: Global perspectives. Diabetes Res Clin Pract 2010; 87(3): 302-12.
[http://dx.doi.org/10.1016/j.diabres.2010.01.024] [PMID: 20181405]
[172]
Buchberger B, Huppertz H, Krabbe L, Lux B, Mattivi JT, Siafarikas A. Symptoms of depression and anxiety in youth with type 1 diabetes: A systematic review and meta-analysis. Psychoneuroendocrinology 2016; 70: 70-84.
[http://dx.doi.org/10.1016/j.psyneuen.2016.04.019] [PMID: 27179232]
[173]
Mourya A, Akhtar A, Ahuja S, Sah SP, Kumar A. Synergistic action of ursolic acid and metformin in experimental model of insulin resistance and related behavioral alterations. Eur J Pharmacol 2018; 835: 31-40.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.056] [PMID: 30075220]
[174]
Peng F, Zhang H, He X, Song Z. Effects of ursolic acid on intestinal health and gut bacteria antibiotic resistance in mice. Front Physiol 2021; 12: 650190.
[http://dx.doi.org/10.3389/fphys.2021.650190] [PMID: 34122127]
[175]
Sheng Q, Li F, Chen G, et al. Ursolic acid regulates intestinal microbiota and inflammatory cell infiltration to prevent ulcerative colitis. J Immunol Res 2021; 2021: 6679316.
[http://dx.doi.org/10.1155/2021/6679316] [PMID: 34007853]
[176]
Mancuso C, Santangelo R. Ferulic acid: Pharmacological and toxicological aspects. Food Chem Toxicol 2014; 65: 185-95.
[http://dx.doi.org/10.1016/j.fct.2013.12.024] [PMID: 24373826]
[177]
Kumar N, Pruthi V. Potential applications of ferulic acid from natural sources. Biotechnol Rep (Amst) 2014; 4: 86-93.
[http://dx.doi.org/10.1016/j.btre.2014.09.002] [PMID: 28626667]
[178]
Sasaki K, Iwata N, Ferdousi F, Isoda H. Antidepressant-like effect of ferulic acid via promotion of energy metabolism activity. Mol Nutr Food Res 2019; 63(19): e1900327.
[http://dx.doi.org/10.1002/mnfr.201900327] [PMID: 31394019]
[179]
Zeni ALB, Zomkowski ADE, Maraschin M, Rodrigues ALS, Tasca CI. Ferulic acid exerts antidepressant-like effect in the tail suspension test in mice: Evidence for the involvement of the serotonergic system. Eur J Pharmacol 2012; 679(1-3): 68-74.
[http://dx.doi.org/10.1016/j.ejphar.2011.12.041] [PMID: 22266492]
[180]
Lenzi J, Rodrigues AF, Rós A de S, et al. Ferulic acid chronic treatment exerts antidepressant-like effect: Role of antioxidant defense system. Metab Brain Dis 2015; 30: 1453-63.
[181]
Zeni ALB, Zomkowski ADE, Maraschin M, Rodrigues ALS, Tasca CI. Involvement of PKA, CaMKII, PKC, MAPK/ERK and PI3K in the acute antidepressant-like effect of ferulic acid in the tail suspension test. Pharmacol Biochem Behav 2012; 103(2): 181-6.
[http://dx.doi.org/10.1016/j.pbb.2012.08.020] [PMID: 22960128]
[182]
Liu YM, Hu CY, Shen JD, Wu SH, Li YC, Yi LT. Elevation of synaptic protein is associated with the antidepressant-like effects of ferulic acid in a chronic model of depression. Physiol Behav 2017; 169: 184-8.
[http://dx.doi.org/10.1016/j.physbeh.2016.12.003] [PMID: 27940143]
[183]
Liu YM, Shen JD, Xu LP, Li HB, Li YC, Yi LT. Ferulic acid inhibits neuro-inflammation in mice exposed to chronic unpredictable mild stress. Int Immunopharmacol 2017; 45: 128-34.
[http://dx.doi.org/10.1016/j.intimp.2017.02.007] [PMID: 28213267]
[184]
Zeni ALB, Camargo A, Dalmagro AP. Ferulic acid reverses depression-like behavior and oxidative stress induced by chronic corticosterone treatment in mice. Steroids 2017; 125: 131-6.
[http://dx.doi.org/10.1016/j.steroids.2017.07.006] [PMID: 28733038]
[185]
Chen J, Lin D, Zhang C, et al. Antidepressant-like effects of ferulic acid: Involvement of serotonergic and norepinergic systems. Metab Brain Dis 2015; 30(1): 129-36.
[http://dx.doi.org/10.1007/s11011-014-9635-z] [PMID: 25483788]
[186]
Koshiguchi M, Komazaki H, Hirai S, Egashira Y. Ferulic acid suppresses expression of tryptophan metabolic key enzyme indoleamine 2, 3-dioxygenase via NFκB and p38 MAPK in lipopolysaccharide-stimulated microglial cells. Biosci Biotechnol Biochem 2017; 81(5): 966-71.
[http://dx.doi.org/10.1080/09168451.2016.1274636] [PMID: 28077028]
[187]
Lin TY, Lu CW, Huang S-K, Wang S-J. Ferulic acid suppresses glutamate release through inhibition of voltage-dependent calcium entry in rat cerebrocortical nerve terminals. J Med Food 2013; 16(2): 112-9.
[http://dx.doi.org/10.1089/jmf.2012.2387] [PMID: 23342970]
[188]
Gu Y, Zhang Y, Li M, et al. Ferulic acid ameliorates atherosclerotic injury by modulating gut microbiota and lipid metabolism. Front Pharmacol 2021; 12: 621339.
[http://dx.doi.org/10.3389/fphar.2021.621339] [PMID: 33841148]
[189]
Ma Y, Chen K, Lv L, Wu S, Guo Z. Ferulic acid ameliorates nonalcoholic fatty liver disease and modulates the gut microbiota composition in high-fat diet fed ApoE-/- mice. Biomed Pharmacother 2019; 113: 108753.
[http://dx.doi.org/10.1016/j.biopha.2019.108753] [PMID: 30856537]
[190]
Evtyugin DD, Magina S, Evtuguin DV. Recent advances in the production and applications of ellagic acid and its derivatives. A review. Molecules 2020; 25(12): 2745.
[http://dx.doi.org/10.3390/molecules25122745] [PMID: 32545813]
[191]
Huang X, Li W, You B, et al. Serum metabonomic study on the antidepressant-like effects of ellagic acid in a chronic unpredictable mild stress-induced mouse model. J Agric Food Chem 2020; 68(35): 9546-56.
[http://dx.doi.org/10.1021/acs.jafc.0c02895] [PMID: 32786855]
[192]
Dhingra D, Chhillar R. Antidepressant-like activity of ellagic acid in unstressed and acute immobilization-induced stressed mice. Pharmacol Rep 2012; 64(4): 796-807.
[http://dx.doi.org/10.1016/S1734-1140(12)70875-7] [PMID: 23087132]
[193]
Bedel HA, Kencebay Manas C, Özbey G, Usta C. The antidepressant-like activity of ellagic acid and its effect on hippocampal brain derived neurotrophic factor levels in mouse depression models. Nat Prod Res 2018; 32(24): 2932-5.
[http://dx.doi.org/10.1080/14786419.2017.1385021] [PMID: 29017372]
[194]
Girish C, Raj V, Arya J, Balakrishnan S. Evidence for the involvement of the monoaminergic system, but not the opioid system in the antidepressant-like activity of ellagic acid in mice. Eur J Pharmacol 2012; 682(1-3): 118-25.
[http://dx.doi.org/10.1016/j.ejphar.2012.02.034] [PMID: 22387858]
[195]
Lorigooini Z, Salimi N, Soltani A, Amini-Khoei H. Implication of NMDA-NO pathway in the antidepressant-like effect of ellagic acid in male mice. Neuropeptides 2019; 76: 101928.
[http://dx.doi.org/10.1016/j.npep.2019.04.003] [PMID: 31078318]
[196]
Aslan A, Gok O, Beyaz S, Arslan E, Erman O. Ağca CA. The preventive effect of ellagic acid on brain damage in rats via regulating of Nrf-2, NF-kB and apoptotic pathway. J Food Biochem 2020; 44(6): e13217.
[http://dx.doi.org/10.1111/jfbc.13217] [PMID: 32250487]
[197]
Saha P, Yeoh BS, Singh R, et al. Gut microbiota conversion of dietary ellagic acid into bioactive phytoceutical urolithin a inhibits heme peroxidases. PLoS One 2016; 11(6): e0156811.
[http://dx.doi.org/10.1371/journal.pone.0156811] [PMID: 27254317]
[198]
Kujawska M, Jodynis-Liebert J. Potential of the ellagic acid-derived gut microbiota metabolite - urolithin A in gastrointestinal protection. World J Gastroenterol 2020; 26(23): 3170-81.
[http://dx.doi.org/10.3748/wjg.v26.i23.3170] [PMID: 32684733]
[199]
García-Villalba R, Beltrán D, Espín JC, Selma MV, Tomás-Barberán FA. Time course production of urolithins from ellagic acid by human gut microbiota. J Agric Food Chem 2013; 61(37): 8797-806.
[http://dx.doi.org/10.1021/jf402498b] [PMID: 23984796]
[200]
Thangavel P, Puga-Olguín A, Rodríguez-Landa JF, Zepeda RC. Genistein as potential therapeutic candidate for menopausal symptoms and other related diseases. Molecules 2019; 24(21): 3892.
[http://dx.doi.org/10.3390/molecules24213892] [PMID: 31671813]
[201]
Chang M, Zhang L, Dai H, Sun L. Genistein acts as antidepressant agent against chronic mild stress-induced depression model of rats through augmentation of brain-derived neurotrophic factor. Brain Behav 2021; brb3: 2300.
[http://dx.doi.org/10.1002/brb3.2300]
[202]
Shen F, Huang WL, Xing BP, Fang X, Feng M, Jiang CM. Genistein improves the major depression through suppressing the expression of miR-221/222 by targeting connexin 43. Psychiatry Investig 2018; 15(10): 919-25.
[http://dx.doi.org/10.30773/pi.2018.06.29] [PMID: 30205672]
[203]
Hu P, Ma L, Wang YG, et al. Genistein, a dietary soy isoflavone, exerts antidepressant-like effects in mice: Involvement of serotonergic system. Neurochem Int 2017; 108: 426-35.
[http://dx.doi.org/10.1016/j.neuint.2017.06.002] [PMID: 28606822]
[204]
Kageyama A, Sakakibara H, Zhou W, et al. Genistein regulated serotonergic activity in the hippocampus of ovariectomized rats under forced swimming stress. Biosci Biotechnol Biochem 2010; 74(10): 2005-10.
[http://dx.doi.org/10.1271/bbb.100238] [PMID: 20944428]
[205]
Pereira DB, Carvalho AP, Duarte CB. Genistein inhibits Ca2+ influx and glutamate release from hippocampal synaptosomes: Putative non-specific effects. Neurochem Int 2003; 42(2): 179-88.
[http://dx.doi.org/10.1016/S0197-0186(02)00071-2] [PMID: 12421598]
[206]
Penner-Goeke S, Binder EB. Epigenetics and depression. Dialogues Clin Neurosci 2019; 21(4): 397-405.
[http://dx.doi.org/10.31887/DCNS.2019.21.4/ebinder] [PMID: 31949407]
[207]
Lopez JP, Kos A, Turecki G. Major depression and its treatment: MicroRNAs as peripheral biomarkers of diagnosis and treatment response. Curr Opin Psychiatry 2018; 31(1): 7-16.
[http://dx.doi.org/10.1097/YCO.0000000000000379] [PMID: 29076893]
[208]
Oved K, Morag A, Pasmanik-Chor M, Rehavi M, Shomron N, Gurwitz D. Genome-wide expression profiling of human lymphoblastoid cell lines implicates integrin beta-3 in the mode of action of antidepressants. Transl Psychiatry 2013; 3: e313.
[http://dx.doi.org/10.1038/tp.2013.86] [PMID: 24129413]
[209]
Guo J, Yang G, He Y, et al. Involvement of α7nAChR in the protective effects of genistein against β-amyloid-induced oxidative stress in neurons via a PI3K/Akt/Nrf2 pathway-related mechanism. Cell Mol Neurobiol 2020; 41: 377-93.
[210]
Jiang T, Wang XQ, Ding C, Du XL. Genistein attenuates isoflurane-induced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling. Korean J Physiol Pharmacol 2017; 21(6): 579-89.
[http://dx.doi.org/10.4196/kjpp.2017.21.6.579] [PMID: 29200900]
[211]
Mirahmadi SMS, Shahmohammadi A, Rousta AM, et al. Soy isoflavone genistein attenuates lipopolysaccharide-induced cognitive impairments in the rat via exerting anti-oxidative and anti-inflammatory effects. Cytokine 2018; 104: 151-9.
[http://dx.doi.org/10.1016/j.cyto.2017.10.008] [PMID: 29102164]
[212]
Saha S, Sadhukhan P, Mahalanobish S, Dutta S, Sil PC. Ameliorative role of genistein against age-dependent chronic arsenic toxicity in murine brains via the regulation of oxidative stress and inflammatory signaling cascades. J Nutr Biochem 2018; 55: 26-40.
[http://dx.doi.org/10.1016/j.jnutbio.2017.11.010] [PMID: 29331881]
[213]
Rockwood S, Broderick TL, Al-Nakkash L. Feeding obese diabetic mice a genistein diet induces thermogenic and metabolic change. J Med Food 2018; 21(4): 332-9.
[http://dx.doi.org/10.1089/jmf.2017.0084] [PMID: 29261006]
[214]
Yang R, Jia Q, Mehmood S, Ma S, Liu X. Genistein ameliorates inflammation and insulin resistance through mediation of gut microbiota composition in type 2 diabetic mice. Eur J Nutr 2021; 60(4): 2155-68.
[http://dx.doi.org/10.1007/s00394-020-02403-0] [PMID: 33068158]
[215]
López P, Sánchez M, Perez-Cruz C, et al. Long-term genistein consumption modifies gut microbiota, improving glucose metabolism, metabolic endotoxemia, and cognitive function in mice fed a high-fat diet. Mol Nutr Food Res 2018; 62(16): e1800313.
[http://dx.doi.org/10.1002/mnfr.201800313] [PMID: 29979819]
[216]
Salehi B, Fokou PVT, Sharifi-Rad M, et al. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals (Basel) 2019; 12(1): 11.
[http://dx.doi.org/10.3390/ph12010011] [PMID: 30634637]
[217]
Den Hartogh DJ, Tsiani E. Antidiabetic properties of Naringenin: A citrus fruit polyphenol. Biomolecules 2019; 9(3): 99.
[http://dx.doi.org/10.3390/biom9030099] [PMID: 30871083]
[218]
Yang W, Ma J, Liu Z, Lu Y, Hu B, Yu H. Effect of naringenin on brain insulin signaling and cognitive functions in ICV-STZ induced dementia model of rats. Neurol Sci 2014; 35(5): 741-51.
[http://dx.doi.org/10.1007/s10072-013-1594-3] [PMID: 24337945]
[219]
Raza SS, Khan MM, Ahmad A, et al. Neuroprotective effect of naringenin is mediated through suppression of NF-κB signaling pathway in experimental stroke. Neuroscience 2013; 230: 157-71.
[http://dx.doi.org/10.1016/j.neuroscience.2012.10.041] [PMID: 23103795]
[220]
Tayyab M, Farheen S. M MMP, Khanam N, Mobarak Hossain M, Shahi MH. Antidepressant and neuroprotective effects of naringenin via sonic hedgehog-gli1 cell signaling pathway in a rat model of chronic unpredictable mild stress. Neuromolecular Med 2019; 21(3): 250-61.
[http://dx.doi.org/10.1007/s12017-019-08538-6] [PMID: 31037465]
[221]
Yi LT, Liu BB, Li J, et al. BDNF signaling is necessary for the antidepressant-like effect of naringenin. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48: 135-41.
[http://dx.doi.org/10.1016/j.pnpbp.2013.10.002] [PMID: 24121063]
[222]
Bansal Y, Singh R, Saroj P, Sodhi RK, Kuhad A. Naringenin protects against oxido-inflammatory aberrations and altered tryptophan metabolism in olfactory bulbectomized-mice model of depression. Toxicol Appl Pharmacol 2018; 355: 257-68.
[http://dx.doi.org/10.1016/j.taap.2018.07.010] [PMID: 30017640]
[223]
Yi LT, Li CF, Zhan X, et al. Involvement of monoaminergic system in the antidepressant-like effect of the flavonoid naringenin in mice. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34(7): 1223-8.
[http://dx.doi.org/10.1016/j.pnpbp.2010.06.024] [PMID: 20603175]
[224]
Yi LT, Li J, Li HC, et al. Antidepressant-like behavioral, neurochemical and neuroendocrine effects of naringenin in the mouse repeated tail suspension test. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39(1): 175-81.
[http://dx.doi.org/10.1016/j.pnpbp.2012.06.009] [PMID: 22709719]
[225]
Firrman J, Liu L, Argoty GA, et al. Analysis of temporal changes in growth and gene expression for commensal gut microbes in response to the polyphenol naringenin. Microbiol Insights 2018; 11: 1178636118775100.
[http://dx.doi.org/10.1177/1178636118775100] [PMID: 30013359]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy