Review Article

阿尔茨海默病三唑类药物的药理学探索:概述

卷 23, 期 9, 2022

发表于: 17 May, 2022

页: [933 - 953] 页: 21

弟呕挨: 10.2174/1389450123666220328153741

价格: $65

摘要

阿尔茨海默病 (AD) 是一种不可逆的进行性神经退行性疾病,可能占全球痴呆病例的约 60-70%。 AD的特点是行为和认知功能受损,包括记忆、语言、概念、注意力、判断力和推理问题。 AD 的两个重要标志是根据疾病的病因,分别在大脑中出现斑块和缠结的淀粉样蛋白-β (Aβ) 和 tau 蛋白,包括胆碱能损伤、金属失调、氧化应激和降解神经递质。目前,使用的药物只能缓解症状,但不能有效治愈疾病,这就需要开发新的分子来治疗 AD。杂环化合物已被证明有能力开发为治疗各种疾病的药物。由于结构变异的可能性,五元杂环化合物三唑因发现新药而备受关注。而且,它已经证明了它在各种药物类别中的重要性。本综述主要总结了新型 1,2,3-三唑和 1,2,4-三唑基分子在靶向各种 AD 靶标(如磷酸二酯酶 1 (PDE1) 抑制剂、细胞凋亡)的药物发现过程中的最新进展信号调节激酶 1 (ASK1) 抑制剂、生长抑素受体亚型 4 (SSTR4) 激动剂、其他几种可成药靶点、分子模型研究,以及用于合成含有分子的三唑类的各种方法,如点击反应、佩利扎里反应和艾因霍恩-布伦纳反应。

关键词: 阿尔茨海默病、1,2,3-三唑、1,4-三唑、Aβ-淀粉样蛋白、tau 蛋白、磷酸二酯酶 1 抑制剂、佩利扎里反应、分子对接。

« Previous
图形摘要
[1]
Alzheimer’s Association. Facts and figures report. Alzheimer’s Association 2020; 2020: 1-91.
[2]
2020 Alzheimer’s Disease facts and figures. Alzheimers Dement 2020; 16(3): 391-460.
[http://dx.doi.org/10.1002/alz.12068]
[3]
Mcgill-carter T. Market analysis Alzheimers disease 2020. J Psychiatry 2020; 22(6): 21-2.
[4]
Alzheimer’s Association. 2019 Alzheimer’s disease facts and figures. Alzheimers Dement 2019; 15(3): 321-87.
[http://dx.doi.org/10.1016/j.jalz.2019.01.010]
[5]
Patil P, Thakur A, Sharma A, Flora SJS. Natural products and their derivatives as multifunctional ligands against Alzheimer’s disease. Drug Dev Res 2020; 81(2): 165-83.
[http://dx.doi.org/10.1002/ddr.21587] [PMID: 31820476]
[6]
Ferreira VF, da Rocha DR, da Silva FC, Ferreira PG, Boechat NA, Magalhães JL. Novel 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives: A patent review (2008 - 2011). Expert Opin Ther Pat 2013; 23(3): 319-31.
[http://dx.doi.org/10.1517/13543776.2013.749862] [PMID: 23289412]
[7]
George T, Mehta DV, Tahilramani R, David J, Talwalker PK. Synthesis of some s-triazoles with potential analgetic and antiinflammatory activities. J Med Chem 1971; 14(4): 335-8.
[http://dx.doi.org/10.1021/jm00286a016] [PMID: 5553747]
[8]
Cui LJ, Xie ZF, Piao HR, Li G, Chai KY, Quan ZS. Synthesis and anticonvulsant activity of 1-substituted-7-benzyloxy-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinoline. Biol Pharm Bull 2005; 28(7): 1216-20.
[http://dx.doi.org/10.1248/bpb.28.1216] [PMID: 15997101]
[9]
Al-Soud YA, Al-Dweri MN, Al-Masoudi NA. Synthesis, antitumor and antiviral properties of some 1,2,4-triazole derivatives. Farmaco 2004; 59(10): 775-83.
[http://dx.doi.org/10.1016/j.farmac.2004.05.006] [PMID: 15474054]
[10]
Huang M, Deng Z, Tian J, Liu T. Synthesis and biological evaluation of salinomycin triazole analogues as anticancer agents. Eur J Med Chem 2017; 127: 900-8.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.067] [PMID: 27876192]
[11]
Zhang X, Rakesh KP, Shantharam CS, et al. Podophyllotoxin derivatives as an excellent anticancer aspirant for future chemotherapy: A key current imminent needs. Bioorg Med Chem 2018; 26(2): 340-55.
[http://dx.doi.org/10.1016/j.bmc.2017.11.026] [PMID: 29269253]
[12]
Bonache MA, Moreno-Fernández S, Miguel M, Sabater-Muñoz B, González-Muñiz R. Small library of triazolyl polyphenols correlating antioxidant activity and stability with number and position of hydroxyl groups. ACS Comb Sci 2018; 20(12): 694-9.
[http://dx.doi.org/10.1021/acscombsci.8b00118] [PMID: 30372022]
[13]
Gujjar R, Marwaha A, El Mazouni F, et al. Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogen-ase inhibitor with antimalarial activity in mice. J Med Chem 2009; 52(7): 1864-72.
[http://dx.doi.org/10.1021/jm801343r] [PMID: 19296651]
[14]
Qin HL, Zhang ZW, Lekkala R, Alsulami H, Rakesh KP. Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: A key review. Eur J Med Chem 2020; 193: 112215.
[http://dx.doi.org/10.1016/j.ejmech.2020.112215] [PMID: 32179331]
[15]
Liu J, Liu Q, Yang X, et al. Design, synthesis, and biological evaluation of 1,2,4-triazole bearing 5-substituted biphenyl-2-sulfonamide derivatives as potential antihypertensive candidates. Bioorg Med Chem 2013; 21(24): 7742-51.
[http://dx.doi.org/10.1016/j.bmc.2013.10.017] [PMID: 24200932]
[16]
Kane JM, Dudley MW, Sorensen SM, Miller FP. 2,4-Dihydro-3H-1,2,4-triazole-3-thiones as potential antidepressant agents. J Med Chem 1988; 31(6): 1253-8.
[http://dx.doi.org/10.1021/jm00401a031] [PMID: 3373495]
[17]
Hester JB Jr, VonVoigtlander P, Evenson GN. 6-(Substituted-amino)-4H-s-triazolo[4,3-a][1,4]benzodiazepines and 4-(substituted-amino)-6H-s-triazolo[4,3-a][1,4]benzodiazepines with potential antianxiety activity. J Med Chem 1980; 23(8): 873-7.
[http://dx.doi.org/10.1021/jm00182a012] [PMID: 6105215]
[18]
Ko K, Kim HJ, Ho PS, et al. Discovery of a novel highly selective histamine H4 receptor antagonist for the treatment of atopic dermatitis. J Med Chem 2018; 61(7): 2949-61.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01855] [PMID: 29579390]
[19]
Boechat N, Ferreira VF, Ferreira SB, et al. Novel 1,2,3-triazole derivatives for use against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain. J Med Chem 2011; 54(17): 5988-99.
[http://dx.doi.org/10.1021/jm2003624] [PMID: 21776985]
[20]
Mohamed MAA, Abd Allah OA, Bekhit AA, Kadry AM, El-Saghier AMM. Synthesis and antidiabetic activity of novel triazole derivatives containing amino acids. J Heterocycl Chem 2020; 57(6): 2365-78.
[http://dx.doi.org/10.1002/jhet.3951]
[21]
Tronci E, Simola N, Borsini F, et al. Characterization of the antiparkinsonian effects of the new adenosine A2A receptor antagonist ST1535: Acute and subchronic studies in rats. Eur J Pharmacol 2007; 566(1-3): 94-102.
[http://dx.doi.org/10.1016/j.ejphar.2007.03.021] [PMID: 17445798]
[22]
Zhao C, Rakesh KP, Ravidar L, Fang WY, Qin HL. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: A critical review. Eur J Med Chem 2019; 162: 679-734.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.017] [PMID: 30496988]
[23]
Boukhssas S, Aouine Y, Faraj H, Alami A, El Hallaoui A, Bekkari H. Synthesis, characterization, and antibacterial activity of diethyl 1-((4-Methyl-2-Phenyl-4,5-Dihydrooxazol-4-Yl)Methyl)-1 H -1,2,3-triazole-4,5-dicarboxylate. J Chem 2017; 2017(1): 1-6.
[http://dx.doi.org/10.1155/2017/4238360]
[24]
Qin HL, Zhang ZW, Ravindar L, Rakesh KP. Antibacterial activities with the structure-activity relationship of coumarin derivatives. Eur J Med Chem 2020; 207: 112832.
[http://dx.doi.org/10.1016/j.ejmech.2020.112832] [PMID: 32971428]
[25]
da Silva F de C, de Souza MCBV, Frugulhetti IIP, et al. Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates. Eur J Med Chem 2009; 44(1): 373-83.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.047] [PMID: 18486994]
[26]
Shalini K, Kumar N, Drabu S, Sharma PK. Advances in synthetic approach to and antifungal activity of triazoles. Beilstein J Org Chem 2011; 7: 668-77.
[http://dx.doi.org/10.3762/bjoc.7.79] [PMID: 21804864]
[27]
Láinez MJA. Rizatriptan in the treatment of migraine. Neuropsychiatr Dis Treat 2006; 2(3): 247-59.
[http://dx.doi.org/10.2147/nedt.2006.2.3.247] [PMID: 19412472]
[28]
Bonandi E, Christodoulou MS, Fumagalli G, Perdicchia D, Rastelli G, Passarella D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov Today 2017; 22(10): 1572-81.
[http://dx.doi.org/10.1016/j.drudis.2017.05.014] [PMID: 28676407]
[29]
Agalave SG, Maujan SR, Pore VS. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem Asian J 2011; 6(10): 2696-718.
[http://dx.doi.org/10.1002/asia.201100432] [PMID: 21954075]
[30]
Xu M, Peng Y, Zhu L, Wang S, Ji J, Rakesh KP. Triazole derivatives as inhibitors of Alzheimer’s disease: Current developments and structure-activity relationships. Elsevier Masson SAS 2019; 180: 656-72.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.059] [PMID: 31352246]
[31]
Kharb R, Sharma PC, Yar MS. Pharmacological significance of triazole scaffold. J Enzyme Inhib Med Chem 2011; 26(1): 1-21.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
[32]
Sahu JK, Ganguly S, Kaushik A. Triazoles: A valuable insight into recent developments and biological activities. Chin J Nat Med 2013; 11(5): 456-65.
[http://dx.doi.org/10.1016/S1875-5364(13)60084-9] [PMID: 24359767]
[33]
Asif M. Biological potentials of biological active triazole derivatives: A short review. Organic Chemistry Current Research 2016; 5(4): 2-9.
[http://dx.doi.org/10.4172/2161-0401.1000173]
[34]
Breugst M, Reissig HU. The huisgen reaction: Milestones of the 1,3-dipolar cycloaddition. Angew Chem Int Ed Engl 2020; 59(30): 12293-307.
[http://dx.doi.org/10.1002/anie.202003115] [PMID: 32255543]
[35]
Sharpless WD, Wu P, Hansen TV, Lindberg JG. Just click it: Undergraduate procedures for the copper(I)-catalyzed formation of 1,2,3-triazoles from azides and terminal acetylenes. J Chem Educ 2005; 82(12): 1833-6.
[http://dx.doi.org/10.1021/ed082p1833]
[36]
Zhang L, Chen X, Xue P, et al. Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J Am Chem Soc 2005; 127(46): 15998-9.
[http://dx.doi.org/10.1021/ja054114s] [PMID: 16287266]
[37]
Hui R, Zhao M, Chen M, Ren Z, Guan Z. One-pot synthesis of 4-Aryl-NH-1,2,3-triazoles through three-component reaction of aldehydes, nitroalkanes and NaN3. Chin J Chem 2017; 35(12): 1808-12.
[http://dx.doi.org/10.1002/cjoc.201700367]
[38]
Barluenga J, Valdés C, Beltrán G, Escribano M, Aznar F. Developments in Pd catalysis: Synthesis of 1H-1,2,3-triazoles from sodium azide and alkenyl bromides. Angew Chem Int Ed 2006; 45(41): 6893-6.
[http://dx.doi.org/10.1002/anie.200601045] [PMID: 17001730]
[39]
Yang L, Wu Y, Yang Y, Wen C, Wan JP. Catalyst-free synthesis of 4-acyl-NH-1,2,3-triazoles by water-mediated cycloaddition reactions of enaminones and tosyl azide. Beilstein J Org Chem 2018; 14: 2348-53.
[http://dx.doi.org/10.3762/bjoc.14.210] [PMID: 30254699]
[40]
Shelke GM, Rao VK, Jha M, Cameron TS, Kumar A. Microwave-assisted catalyst-free synthesis of substituted 1,2,4-triazoles. Synlett 2015; 26(3): 404-7.
[http://dx.doi.org/10.1055/s-0034-1379734]
[41]
Einhorn A, Bischkopff E, Szelinski B, et al. Ueber die Nmethylolverbindungen der säureamide. Justus Liebigs Ann Chem 1905; 343(3): 207-305. [Erste Abhandlung.].
[http://dx.doi.org/10.1002/jlac.19053430207]
[42]
Bartus RT. On neurodegenerative diseases, models, and treatment strategies: Lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 2000; 163(2): 495-529.
[http://dx.doi.org/10.1006/exnr.2000.7397] [PMID: 10833325]
[43]
Muley S S, Kavitha M, Lade D, et al. Application of 1,4,5-trisubstituted-1,2,3-triazoles as acetylcholinesterase inhibitors. Indo Am j pharm res 2015; 4(2231-6878): 2231-6876.
[44]
Mohammadi-Khanaposhtani M, Saeedi M, Zafarghandi NS, et al. Potent acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, and docking study of acridone linked to 1,2,3-triazole derivatives. Eur J Med Chem 2015; 92: 799-806.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.044] [PMID: 25636055]
[45]
Bagheri SM, Khoobi M, Nadri H, et al. Synthesis and anticholinergic activity of 4-hydroxycoumarin derivatives containing substituted benzyl-1,2,3-triazole moiety. Chem Biol Drug Des 2015; 86(5): 1215-20.
[http://dx.doi.org/10.1111/cbdd.12588] [PMID: 26010139]
[46]
Mohammadi-Khanaposhtani M, Mahdavi M, Saeedi M, et al. Design, synthesis, biological evaluation, and docking study of acetylcho-linesterase inhibitors: New acridone-1,2,4-oxadiazole-1,2,3-triazole hybrids. Chem Biol Drug Des 2015; 86(6): 1425-32.
[http://dx.doi.org/10.1111/cbdd.12609] [PMID: 26077890]
[47]
Saeedi M, Ansari S, Mahdavi M, et al. Synthesis of novel 1,2,3-triazole-dihydro[3,2-c[chromenones as acetylcholinesterase inhibitors. Synth Commun 2015; 45(20): 2311-8.
[http://dx.doi.org/10.1080/00397911.2015.1077971]
[48]
Mantoani SP, Chierrito TPC, Vilela AFL, Cardoso CL, Martínez A, Carvalho I. Novel triazole-quinoline derivatives as selective dual binding site acetylcholinesterase inhibitors. Molecules 2016; 21(2): 1-12.
[http://dx.doi.org/10.3390/molecules21020193] [PMID: 26861273]
[49]
Li JC, Zhang J, Rodrigues MC, et al. Synthesis and evaluation of novel 1,2,3-triazole-based acetylcholinesterase inhibitors with neuro-protective activity. Bioorg Med Chem Lett 2016; 26(16): 3881-5.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.017] [PMID: 27426301]
[50]
Saeedi M, Safavi M, Karimpour-Razkenari E, et al. Synthesis of novel chromenones linked to 1,2,3-triazole ring system: Investigation of biological activities against Alzheimer’s disease. Bioorg Chem 2017; 70: 86-93.
[http://dx.doi.org/10.1016/j.bioorg.2016.11.011] [PMID: 27914694]
[51]
Najafi Z, Mahdavi M, Saeedi M, et al. Novel tacrine-1,2,3-triazole hybrids: In vitro, in vivo biological evaluation and docking study of cholinesterase inhibitors. Eur J Med Chem 2017; 125: 1200-12.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.008] [PMID: 27863370]
[52]
Wu G, Gao Y, Kang D, et al. Design, synthesis and biological evaluation of tacrine-1,2,3-triazole derivatives as potent cholinesterase inhibitors. MedChemComm 2017; 9(1): 149-59.
[http://dx.doi.org/10.1039/C7MD00457E] [PMID: 30108908]
[53]
Yazdani M, Edraki N, Badri R, Khoshneviszadeh M, Iraji A, Firuzi O. 5,6-Diphenyl triazine-thio methyl triazole hybrid as a new Alzheimer’s disease modifying agents. Mol Divers 2020; 24(3): 641-54.
[http://dx.doi.org/10.1007/s11030-019-09970-3] [PMID: 31327094]
[54]
Najafi Z, Mahdavi M, Saeedi M, et al. Novel tacrine-coumarin hybrids linked to 1,2,3-triazole as anti-Alzheimer’s compounds: In vitro and in vivo biological evaluation and docking study. Bioorg Chem 2019; 83: 303-16.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.056] [PMID: 30396115]
[55]
Le-Nhat-Thuy G, Nguyen Thi N, Pham-The H, et al. Synthesis and biological evaluation of novel quinazoline-triazole hybrid com-pounds with potential use in Alzheimer’s disease. Bioorg Med Chem Lett 2020; 30(18): 127404.
[http://dx.doi.org/10.1016/j.bmcl.2020.127404] [PMID: 32717612]
[56]
Kumar J, Gill A, Shaikh M, et al. Pyrimidine-triazolopyrimidine and pyrimidine-pyridine hybrids as potential acetylcholinesterase inhibi-tors for Alzheimer’s Disease. ChemistrySelect 2018; 3(2): 736-47.
[http://dx.doi.org/10.1002/slct.201702599]
[57]
Özil M, Balaydın HT, Şentürk M. Synthesis of 5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-one’s aryl Schiff base derivatives and investi-gation of carbonic anhydrase and cholinesterase (AChE, BuChE) inhibitory properties. Bioorg Chem 2019; 86: 705-13.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.045] [PMID: 30836234]
[58]
Santos SN, Alves De Souza G, Pereira TM, et al. Regioselective microwave synthesis and derivatization of 1,5-diaryl-3-amino-1,2,4-triazoles and a study of their cholinesterase inhibition properties. RSC Advances 2019; 9(35): 20356-69.
[http://dx.doi.org/10.1039/C9RA04105B]
[59]
Siddiqui SZ, Arfan M, Abbasi MA, et al. Discovery of dual inhibitors of acetyl and butrylcholinesterase and antiproliferative activity of 1,2,4-triazole-3-thiol: Synthesis and in silico molecular study. ChemistrySelect 2020; 5(21): 6430-9.
[http://dx.doi.org/10.1002/slct.201904905]
[60]
Cai Z. Monoamine oxidase inhibitors: Promising therapeutic agents for Alzheimer’s disease. (Review). Mol Med Rep 2014; 9(5): 1533-41.
[http://dx.doi.org/10.3892/mmr.2014.2040] [PMID: 24626484]
[61]
Di Pietro O, Alencar N, Esteban G, et al. Design, synthesis and biological evaluation of N-methyl-N-[(1,2,3-triazol-4-yl)alkyl]propargylamines as novel monoamine oxidase B inhibitors. Bioorg Med Chem 2016; 24(20): 4835-54.
[http://dx.doi.org/10.1016/j.bmc.2016.06.045] [PMID: 27396685]
[62]
Murphy MP, LeVine H III. Alzheimer’s disease and the amyloid-β peptide. J Alzheimers Dis 2010; 19(1): 311-23.
[http://dx.doi.org/10.3233/JAD-2010-1221] [PMID: 20061647]
[63]
Kaur A, Narang SS, Kaur A, et al. Multifunctional mono-triazole derivatives inhibit Aβ42 Aggregation and Cu2+-mediated aβ42 aggregation and protect against aβ42-induced cytotoxicity. Chem Res Toxicol 2019; 32(9): 1824-39.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00168] [PMID: 31402645]
[64]
Kaur A, Kaur A, Goyal D, Goyal B. How does the mono-triazole derivative modulate Aβ42 aggregation and disrupt a protofibril structure: Insights from molecular dynamics simulations. ACS Omega 2020; 5(25): 15606-19.
[http://dx.doi.org/10.1021/acsomega.0c01825] [PMID: 32637837]
[65]
Kaur A, Mann S, Kaur A, et al. Multi-target-directed triazole derivatives as promising agents for the treatment of Alzheimer’s disease. Bioorg Chem 2019; 87: 572-84.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.058] [PMID: 30928879]
[66]
Kaur A, Shuaib S, Goyal D, Goyal B. Interactions of a multifunctional di-triazole derivative with Alzheimer’s Aβ42 monomer and Aβ42 protofibril: A systematic molecular dynamics study. Phys Chem Chem Phys 2020; 22(3): 1543-56.
[http://dx.doi.org/10.1039/C9CP04775A] [PMID: 31872820]
[67]
Wang W, Wang W, Yao G, et al. Novel sarsasapogenin-triazolyl hybrids as potential anti-Alzheimer’s agents: Design, synthesis and biological evaluation. Eur J Med Chem 2018; 151: 351-62.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.082] [PMID: 29635167]
[68]
Das S, Smid SD. Identification of dibenzyl imidazolidine and triazole acetamide derivatives through virtual screening targeting amyloid beta aggregation and neurotoxicity in PC12 cells. Eur J Med Chem 2017; 130: 354-64.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.057] [PMID: 28273562]
[69]
Soares HD, Gasior M, Toyn JH, et al. The γ-secretase modulator, BMS-932481, modulates Aβ peptides in the plasma and cerebrospinal fluid of healthy volunteers. J Pharmacol Exp Ther 2016; 358(1): 138-50.
[http://dx.doi.org/10.1124/jpet.116.232256] [PMID: 27189973]
[70]
Yngve U, Paulsen K, MacSari I, et al. Triazolopyrimidinones as γ-secretase modulators: Structure-activity relationship, modulator pro-file, and in vivo profiling. MedChemComm 2013; 4(2): 422-31.
[http://dx.doi.org/10.1039/c2md20312j]
[71]
Ratni H, Alker A, Bartels B, et al. Discovery of RO7185876, a highly potent γ-secretase modulator (GSM) as a potential treatment for alzheimer’s disease. ACS Med Chem Lett 2020; 11(6): 1257-68.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00109] [PMID: 32551009]
[72]
Coimbra JRM, Marques DFF, Baptista SJ, et al. Highlights in BACE1 inhibitors for Alzheimer’s Disease treatment. Front Chem 2018; 6: 178.
[http://dx.doi.org/10.3389/fchem.2018.00178] [PMID: 29881722]
[73]
Yazdani M, Edraki N, Badri R, Khoshneviszadeh M, Iraji A, Firuzi O. Multi-target inhibitors against Alzheimer disease derived from 3-hydrazinyl 1,2,4-triazine scaffold containing pendant phenoxy methyl-1,2,3-triazole: Design, synthesis and biological evaluation. Bioorg Chem 2019; 84: 363-71.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.038] [PMID: 30530107]
[74]
Iraji A, Firuzi O, Khoshneviszadeh M, et al. Multifunctional iminochromene-2H-carboxamide derivatives containing different aminomethylene triazole with BACE1 inhibitory, neuroprotective and metal chelating properties targeting Alzheimer’s disease. Eur J Med Chem 2017; 141: 690-702.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.057] [PMID: 29107423]
[75]
Kametani F, Hasegawa M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s Disease. Front Neurosci 2018; 12: 25.
[http://dx.doi.org/10.3389/fnins.2018.00025] [PMID: 29440986]
[76]
Jain AK, Karthikeyan C, McIntosh KD, Tiwari AK, Trivedi P, Duttkonar A. Unravelling the potency of 4,5-diamino-4h-1,2,4 triazole-3-thiol derivatives for kinase inhibition using a rational approach. New J Chem 2019; 43(3): 1202-15.
[http://dx.doi.org/10.1039/C8NJ04205E]
[77]
Pohanka M. Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. Int J Mol Sci 2012; 13(2): 2219-38.
[http://dx.doi.org/10.3390/ijms13022219] [PMID: 22408449]
[78]
Arunrungvichian K, Boonyarat C, Fokin VV, Taylor P, Vajragupta O. Cognitive improvements in a mouse model with substituted 1,2,3-triazole agonists for nicotinic acetylcholine receptors. ACS Chem Neurosci 2015; 6(8): 1331-40.
[http://dx.doi.org/10.1021/acschemneuro.5b00059] [PMID: 25978789]
[79]
Liu J, Chang L, Song Y, Li H, Wu Y. The role of NMDA receptors in alzheimer’s disease. Front Neurosci 2019; 13: 43.
[http://dx.doi.org/10.3389/fnins.2019.00043] [PMID: 30800052]
[80]
Fu H, Tang W, Chen Z, et al. Synthesis and preliminary evaluations of a triazole-cored antagonist as a PET imaging probe ([18F]N2B-0518) for GluN2B subunit in the brain. ACS Chem Neurosci 2019; 10(5): 2263-75.
[http://dx.doi.org/10.1021/acschemneuro.8b00591] [PMID: 30698943]
[81]
Nabavi SM, Talarek S, Listos J, et al. Phosphodiesterase inhibitors say NO to Alzheimer’s disease. Food Chem Toxicol Elsevier 2019; 134: 110822.
[http://dx.doi.org/10.1016/j.fct.2019.110822] [PMID: 31536753]
[82]
Dyck B, Branstetter B, Gharbaoui T, et al. Discovery of selective phosphodiesterase 1 inhibitors with memory enhancing properties. J Med Chem 2017; 60(8): 3472-83.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00302] [PMID: 28406621]
[83]
Hasegawa Y, Toyama K, Uekawa K, Ichijo H, Kim-Mitsuyama S. Role of ASK1/p38 cascade in a mouse model of alzheimer’s disease and brain aging. J Alzheimers Dis 2018; 61(1): 259-63.
[http://dx.doi.org/10.3233/JAD-170645] [PMID: 29154282]
[84]
Himmelbauer MK, Xin Z, Jones JH, et al. Rational design and optimization of a novel class of macrocyclic apoptosis signal-regulating kinase 1 inhibitors. J Med Chem 2019; 62(23): 10740-56.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01206] [PMID: 31710475]
[85]
Sandoval KE, Farr SA, Banks WA, Crider AM, Morley JE, Witt KA. Somatostatin receptor subtype-4 agonist NNC 26-9100 mitigates the effect of soluble Aβ(42) oligomers via a metalloproteinase-dependent mechanism. Brain Res 2013; 1520: 145-56.
[http://dx.doi.org/10.1016/j.brainres.2013.05.006] [PMID: 23669069]
[86]
Daryaei I, Sandoval K, Witt K, Kontoyianni M, Michael Crider A. Discovery of a 3,4,5-trisubstituted-1,2,4-triazole agonist with high affinity and selectivity at the somatostatin subtype-4 (sst4) receptor. MedChemComm 2018; 9(12): 2083-90.
[http://dx.doi.org/10.1039/C8MD00388B] [PMID: 30746066]
[87]
Rastegari A, Nadri H, Mahdavi M, et al. Design, synthesis and anti-Alzheimer’s activity of novel 1,2,3-triazole-chromenone carboxamide derivatives. Bioorg Chem 2019; 83: 391-401.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.065] [PMID: 30412794]
[88]
Umar T, Gusain S, Raza MK, et al. Naphthalene-triazolopyrimidine hybrid compounds as potential multifunctional anti-Alzheimer’s agents. Bioorg Med Chem 2019; 27(14): 3156-66.
[http://dx.doi.org/10.1016/j.bmc.2019.06.004] [PMID: 31176571]
[89]
Pal T, Bhimaneni S, Sharma A, Flora SJS. Design, synthesis, biological evaluation and molecular docking study of novel pyridoxine-triazoles as anti-Alzheimer’s Agents. RSC Advances 2020; 10(44): 26006-21.
[http://dx.doi.org/10.1039/D0RA04942E]
[90]
de Freitas Silva M, Tardelli Lima E, Pruccoli L, et al. Design, synthesis and biological evaluation of novel triazole N-acylhydrazone hybrids for Alzheimer’s Disease. Molecules 2020; 25(14): 1-18.
[http://dx.doi.org/10.3390/molecules25143165] [PMID: 32664425]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy