Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in Pinacol Rearrangement

Author(s): Ye Jin, Mao Liu, Hang Cong and Qingmei Ge*

Volume 26, Issue 5, 2022

Published on: 25 May, 2022

Page: [507 - 525] Pages: 19

DOI: 10.2174/1385272826666220328150234

Price: $65

Abstract

A pinacol rearrangement is a well-known reaction by which a 1,2-diol is converted to a carbonyl compound through acid-catalyzed dehydration followed by a 1,2-migration of one of the neighboring substituents. Due to the particular abilities in installing polycyclic skeletons, quaternary carbon centers, and spirocyclic cores, the pinacol rearrangement reaction is a powerful and effective means of forming carbonyl functional groups in a variety of different molecules. Moreover, the substrates with an alkene group, a furan ring or alkyl chain tethered between the two diols have also been investigated as the expansion of pinacol rearrangement. Benefiting from the continuous development of the catalysis methodologies, pinacol rearrangements demonstrate synthetic utility in the preparation of natural products, bioactive molecules, and other functionally useful compounds. In this review, we discuss recent advances in the development of pinacol rearrangement and extended pinacol rearrangement reactions catalyzed by Brønsted acid, Lewis acid, and heterogeneous catalysts. In addition, we summarize several examples use pinacol rearrangements used in the synthesis of natural products and other valuable molecules.

Keywords: Pinacol rearrangement, brønsted acid, lewis acid, solid-heterogeneous catalysts, valuable molecule synthesis, bioactive molecules.

Graphical Abstract
[1]
Fittig, R. Ueber inige derivate des acetons. Justus Liebigs Ann. Chem., 1860, 114, 54-63.
[http://dx.doi.org/10.1002/jlac.18601140107]
[2]
Butlerov, A. Theorie der Dissociation. Justus Liebigs Ann. Chem., 1873, 170, 151-162.
[3]
Rickborn, B. The Pinacol Rearrangement in Comprehensive Organic Synthesis; Pergamon Press: Oxford, 1991, pp. 721-732.
[http://dx.doi.org/10.1016/B978-0-08-052349-1.00078-0]
[4]
Bunton, C.A.; Carr, M.D. Tracer studies on alcohols. V. the pinacol rearrangement of cis- and trans-1,2-Dimethylcyclohexane-1,2-Diol. J. Am. Chem. Soc., 1988, 5854-5861.
[5]
Berson, J.A. What is a discovery? Carbon skeletal rearrangements as counter-examples to the rule of minimal structural change. Angew. Chem. Int. Ed., 2002, 41(24), 4655-4660.
[http://dx.doi.org/10.1002/anie.200290007] [PMID: 12481317]
[6]
Nakamura, K.; Osamura, Y. Theoretical study of the reaction mechanism and migratory aptitude of the pinacol rearrangement. J. Am. Chem. Soc., 1993, 115, 9112-9120.
[http://dx.doi.org/10.1021/ja00073a029]
[7]
Nakamura, K.; Osamura, Y. Theoretical study on the migratory aptitude in pinacol rearrangement. Tetrahedron Lett., 1990, 31, 251-254.
[http://dx.doi.org/10.1016/S0040-4039(00)94384-3]
[8]
Bhushan, V.; Chandrasekaran, S. Lewis acid cataltsed pinacol rearrangement-a short synthesis of karahanaenone. Chem. Lett., 1982, 11, 1537-1538.
[http://dx.doi.org/10.1246/cl.1982.1537]
[9]
Chen, Y.; Medforth, C.J.; Smith, K.M.; Alderfer, J.; Dougherty, T.J.; Pandey, R.K. Effect of meso-substituents on the osmium tetraoxide reaction and pinacol-pinacolone rearrangement of the corresponding vic-dihydroxyporphyrins. J. Org. Chem., 2001, 66(11), 3930-3939.
[http://dx.doi.org/10.1021/jo0100143] [PMID: 11375017]
[10]
Shinohara, T.; Suzuki, K. Pinacol rearrangement for constructing asymmetric centers adjacent to heterocycles. Tetrahedron Lett., 2002, 43, 6937-6940.
[http://dx.doi.org/10.1016/S0040-4039(02)01626-X]
[11]
Lezaeta, M.D.; Sattar, W.; Svoronos, P.; Karimia, S.; Subramaniam, G. Effect of various acids at different concentrations on the pinacol rrearrangement. Tetrahedron Lett., 2002, 43, 9307-9309.
[http://dx.doi.org/10.1016/S0040-4039(02)02379-1]
[12]
Tadros, W.; Sakla, A.B.; Awad, S.B.; Helmy, A.A. Pinacol‐Pinacolone Rrearrangement of 1,2‐di‐(p‐methoxyphenyl)‐Ethane‐1, 2‐Diol and bis‐(4‐ Methoxyphenyl)-Acetaldehyde in Acid Media. Helv. Chim. Acta, 1972, 55, 2808-2812.
[http://dx.doi.org/10.1002/hlca.19720550810]
[13]
Joshi, P.; Ethirajan, M.; Goswami, L.N.; Srivatsan, A.; Missert, J.R.; Pandey, R.K. Synthesis, spectroscopic, and in vitro photosensitizing efficacy of ketobacteriochlo-rins derived from ring-B and ring-D reduced chlorins via pinacol-pinacolone rearrangement. J. Org. Chem., 2011, 76(21), 8629-8640.
[http://dx.doi.org/10.1021/jo201688c] [PMID: 21955163]
[14]
Rudolfa, O.; Rouchala, M. Lyckab, A.; Klásek, A. Pinacol rearrangement of 3,4-Dihydro-3,4-Dihydroxyquinolin-2(1H)-ones: An alternative pathway to viridicatin alkaloids and their analogs. Helv. Chim. Acta, 2013, 96, 1905-1917.
[http://dx.doi.org/10.1002/hlca.201300074]
[15]
Wang, P.; Gao, Y.; Ma, D. Divergent entry to gelsedine-type alkaloids: Total syntheses of (-)-gelsedilam, (-)-gelsenicine, (-)-gelsedine, and (-)-gelsemoxonine. J. Am. Chem. Soc., 2018, 140(37), 11608-11612.
[http://dx.doi.org/10.1021/jacs.8b08127] [PMID: 30160105]
[16]
Amedio, J.C., Jr; Bernard, P.J.; Fountain, M.; Wagenen, G.V., Jr A practical preparation of 4,4-Diphenylcyclohexanol: A key intermediate in the synthesis of MS-325. Synth. Commun., 1998, 28, 3895-3906.
[http://dx.doi.org/10.1080/00397919808004943]
[17]
He, C.; Xuan, J.; Rao, P.; Xie, P-P.; Hong, X.; Lin, X.; Ding, H. Total Syntheses of (+)-Sarcophytin, (+)-Chatancin, (-)-3-Oxochatancin, and (-)-Pavidolide B: A divergent approach. Angew. Chem., 2019, 131, 5154-5158.
[http://dx.doi.org/10.1002/ange.201900782]
[18]
Sato, R.; Nagaoka, T.; Saito, M. Novel reductive coupling-rearrangement of carbonyl compounds with metal/Lewis Acid under Irradiation of Ultrasonic Wave. Tetrahedron Lett., 1990, 31, 4165-4168.
[http://dx.doi.org/10.1016/S0040-4039(00)97571-3]
[19]
Alvarez-Manzaneda, E.; Chahboun, R.; Barranco, I.; Cabrera, E.; Alvarez, E.; Lara, A.; Alvarez-Manzaneda, R.; Hmamouchic, M.; Es-Samtic, H. Diastereoselective routes towards the austrodorane skeleton based on pinacol rearrangement: Synthesis of (D)-austrodoral and (D)-austrodoric acid. Tetrahedron, 2007, 63, 11943-11951.
[http://dx.doi.org/10.1016/j.tet.2007.09.016]
[20]
Frongia, A.; Girard, C.; Ollivier, J.; Piras, P.P.; Secci, F. Convenient formal synthesis of (+)-Grandisol through Lewis acid promoted enantioselective pinacolic rear-rangement. Synlett, 2008, 18, 2823-2825.
[21]
Pettit, G.R.; Lippert, J.W., III; Herald, D.L. A pinacol rearrangement/oxidation synthetic route to hydroxyphenstatin. J. Org. Chem., 2000, 65(22), 7438-7444.
[http://dx.doi.org/10.1021/jo000705j] [PMID: 11076601]
[22]
Rao, C.N.; Khan, F.A. BF3-Et2O mediated skeletal rearrangements of norbornyl appended cyclopentanediols. Org. Biomol. Chem., 2015, 13(9), 2768-2775.
[http://dx.doi.org/10.1039/C4OB02423K] [PMID: 25602974]
[23]
Wang, J-L.; Li, H-J.; Wang, H-S.; Wu, Y-C. Regioselective 1,2-Diol rearrangement by controlling the loading of BF3•Et2O and its application to the synthesis of related nor-Sesquiterene- and Sesquiterene-type marine natural products. Org. Lett., 2017, 19(14), 3811-3814.
[http://dx.doi.org/10.1021/acs.orglett.7b01679] [PMID: 28696127]
[24]
Kombala, C.J.; Ekanayake, D.I.; Gross, D.E. Boron trifluoride facilitated transesterification of dioxaborolanes. Tetrahedron Lett., 2017, 58, 3782-3786.
[http://dx.doi.org/10.1016/j.tetlet.2017.08.052]
[25]
Shit, S.; Devi, N.; Devi, N.R.; Saikia, A.K. Stereoselective synthesis of hexahydrofuro[3,4-b]furan-4-ol and its dimer via tandem Prins and pinacol rearrangement. Org. Biomol. Chem., 2019, 17(31), 7398-7407.
[http://dx.doi.org/10.1039/C9OB01353A] [PMID: 31347626]
[26]
Cao, S.; Yue, H.; Zhu, M.; Xu, L. Synthesis of Tricyclo[7.2.1.09,10]Dodecan-11-one core ring systems of norditerpenoid alkaloids and racemulosine. Org. Chem. Front., 2020, 7, 933-937.
[http://dx.doi.org/10.1039/D0QO00088D]
[27]
Bezouhanova, C.P.; Jabur, F.A. Zeolite catalysts for pinacol rearrangement. J. Mol. Catal., 1994, 87, 39-46.
[http://dx.doi.org/10.1016/0304-5102(93)E0220-B]
[28]
Jabur, F.A.; Penchev, V.J.; Bezoukhanova, C.P. Pinacol rearrangement on SAPO molecular sieves. J. Chem. Soc. Chem. Commun., 1994, 13, 1591-1592.
[http://dx.doi.org/10.1039/c39940001591]
[29]
Bucsi, I.; Molnár, A.; Bartók, M. Transformation of l,2-Diols over Perfluorinated Resinsulfonic Acids (Nafion-H). Tetrahedron, 1994, 50, 8195-8202.
[http://dx.doi.org/10.1016/S0040-4020(01)85301-1]
[30]
Torok, B.; Bucsi, I.; Beregszaszi, T. Transformation of diols in the presence of heteropoly acids under homogeneous and heterogeneous conditions. J. Mol. Catal. Chem., 1996, 107, 305-311.
[http://dx.doi.org/10.1016/1381-1169(95)00225-1]
[31]
Campelo, J.M.; Chakraborty, R.; Marinas, J.M.; Romero, A.A. Gas-phase pinacol conversion on AlPO4, γ,-Al2O3 and SiO2 catalysts. Catal. Lett., 1998, 54, 91-93.
[http://dx.doi.org/10.1023/A:1019019720156]
[32]
Gelman, F.; Blum, J.; Avnir, D. Acids and Bases in One Pot while Avoiding Their Mutual Destruction We gratefully acknowledge support from the Israel Science Foun-dation (grant 96-98-2) and from the Infrastructure (Tashtiot) Project of the Israel Ministry for Science, Arts and Sports; and from the German-Israeli Foundation for Sci-entific Research and Development (Grant No. I-530.045.05/97). Angew. Chem. Int. Ed. Engl., 2001, 40(19), 3647-3649.
[http://dx.doi.org/10.1002/1521-3773(20011001)40:19<3647:AID-ANIE3647>3.0.CO;2-A] [PMID: 11592209]
[33]
Magdalena, J.; Duan, L.O.; Bradley, O.; Alice, C.S.; John, R.H.W. A new solid acid catalyst: The first phosphonate and phosphonic acid functionalised microporous polysilsesquioxanes. Chem. Commun. (Camb.), 2001, 67-68.
[34]
Minár, A.; Beregzászi, T.; Fudala, A.; Lentz, P.; Nagy, J.B.; Kónya, Z.; Kiricsi, I. The acidity and catalytic activity of supported acidic Cesium Dodecatungstophosphates Studied by MAS NMR, FTIR, and catalytic test reactions. J. Catal., 2001, 202, 379-386.
[http://dx.doi.org/10.1006/jcat.2001.3285]
[35]
Hsien, M.; Sheu, H.T.; Lee, T.; Cheng, S.; Lee, J.F. Fe-substituted molecular sieves as catalysts in liquid phase pinacol rearrangement. J. Mol. Catal. Chem., 2002, 181, 189-200.
[http://dx.doi.org/10.1016/S1381-1169(01)00382-X]
[36]
Okuhara, T. New catalytic functions of heteropoly compounds as solid acids. Catal. Today, 2002, 73, 167-176.
[http://dx.doi.org/10.1016/S0920-5861(01)00509-0]
[37]
Barrault, J.; Pouilloux, Y.; Clacens, J. Catalysis and fine chemistry. Catal. Today, 2002, 75, 177-181.
[http://dx.doi.org/10.1016/S0920-5861(02)00062-7]
[38]
Pillai, U.R.; Sahle-Demessie, E.; Varma, R.S. Environmentally friendlier organic transformations on mineral supports under non-traditional conditions. J. Mater. Chem., 2002, 12, 3199-3207.
[http://dx.doi.org/10.1039/B205916A]
[39]
Alloum, A.B.; Labiad, N.B.; Villemin, D. Application of microwave heating techniques for dry organic reactions. J. Chem. Soc. Chem. Commun., 1989, 386-387.
[http://dx.doi.org/10.1039/c39890000386]
[40]
Shamshuddin, S.Z.M.; Kuriakose, G.; Nagaraju, N. Pinacol-Pinacolone rearrangement over solids supported metal ion catalysts. Indian J. Chem. Technol., 2005, 12, 447-454.
[41]
Behar-Levy, H.; Avnir, D. Silver doped with acidic/basic polymers: Novel, reactive metallic composites. Adv. Funct. Mater., 2005, 15, 1141-1146.
[http://dx.doi.org/10.1002/adfm.200400370]
[42]
Rac, B.; Nagy, M.; Palinko, I.; Molnar, A. Application of sulfonic acid functionalized MCM-41 materials-selectivity changes in various probe reactions. Appl. Catal. A Gen., 2007, 316, 152-159.
[http://dx.doi.org/10.1016/j.apcata.2006.08.039]
[43]
Upadhyaya, D.J.; Samant, S.D. A Facile and efficient pinacol-pinacolone rearrangement of vicinal diols using ZnCl2 supported on silica as a recyclable catalyst. Appl. Catal. A Gen., 2008, 340, 42-51.
[http://dx.doi.org/10.1016/j.apcata.2008.01.034]
[44]
Upadhyaya, D.J.; Samant, S.D. New insights into the bifunctionality of vanadium Phosphorous Oxides: A chemical switch between oxidative scission and pinacol rearrangement of vicinal diols. Catal. Today, 2013, 208, 60-65.
[http://dx.doi.org/10.1016/j.cattod.2012.10.021]
[45]
Lesbani, A.; Mohadi, R. Brönsted acid of Keggin type polyoxometalate catalyzed pinacol rearrangement. Bull. Chem. React. Eng. Catal., 2014, 9, 136-141.
[http://dx.doi.org/10.9767/bcrec.9.2.6074.136-141]
[46]
Cole, A.C.; Jensen, J.L.; Ntai, I.; Tran, K.L.T.; Weaver, K.J.; Forbes, D.C.; Davis, J.H. Jr Novel Brønsted acidic ionic liquids and their use as dual solvent-catalysts. J. Am. Chem. Soc., 2002, 124(21), 5962-5963.
[http://dx.doi.org/10.1021/ja026290w] [PMID: 12022828]
[47]
Henderson, L.C.; Byrne, N. Rapid and efficient protic ionic liquid-mediated pinacol rearrangements under microwave irradiation. Green Chem., 2011, 13, 813-816.
[http://dx.doi.org/10.1039/c0gc00916d]
[48]
Ikushima, Y.; Hatakeda, K.; Sato, O.; Yokoyama, T.; Arai, M. Noncatalytic organic synthesis using supercritical water: The peculiarity near the critical point. Angew. Chem. Int. Ed. Engl., 1999, 38(19), 2910-2914.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19991004)38:19<2910:AID-ANIE2910>3.0.CO;2-C] [PMID: 10540390]
[49]
Ikushima, Y.; Hatakeda, K.; Sato, O.; Yokoyama, T.; Arai, M. Acceleration of synthetic organic reactions using supercritical water: Noncatalytic beckmann and pinacol rearrangements. J. Am. Chem. Soc., 2000, 122, 1908-1918.
[http://dx.doi.org/10.1021/ja9925251]
[50]
Ikushima, Y.; Sato, O. Noncatalytic organic synthesis using supercritical water. EP Patent EP99121571A, 2000.
[51]
Dai, Z.; Hatano, B.; Tagaya, H. Catalytic dehydration of propylene glycol with salts in near-critical water. Appl. Catal. A Gen., 2004, 258, 189-193.
[http://dx.doi.org/10.1016/j.apcata.2003.09.001]
[52]
Kremsner, J.M.; Kappe, C.O. microwave-assisted organic synthesis in near-critical water at 300 °C - A proof-of-concept study. Eur. J. Org. Chem., 2005, 3672-3679.
[http://dx.doi.org/10.1002/ejoc.200500324]
[53]
Avola, S.; Goettmann, F.; Antoniettic, M.; Kunz, W. Organic reactivity of alcohols in superheated aqueous salt solutions: An overview. New J. Chem., 2012, 36, 1568-1573.
[http://dx.doi.org/10.1039/c2nj21038j]
[54]
Toda, F.; Shigemasa, T. Pinacol rearrangement in the solid state. J. Chem. Soc. Perkins Trans, 1989, 1, 209-211.
[http://dx.doi.org/10.1039/p19890000209]
[55]
Toyoshi, Y.; Nakato, T.; Okuhara, T. Solid-solid catalysis by inorganic solid acids: Pinacol rearrangement over a heteropoly compound consisting of fine particles. Bull. Chem. Soc. Jpn., 1998, 71, 2817-2824.
[http://dx.doi.org/10.1246/bcsj.71.2817]
[56]
Parviz, R.; Ebrahim, K. Facile and fast pinacol rearrangement by AlCl3 in the solid state. Molecules, 2001, 6, 442-447.
[http://dx.doi.org/10.3390/60500442]
[57]
Yahyaee, M.; Kianmehr, E.; Foroutannejad, C.; Beheshti, S. Facile and efficient pinacol rearrangement using Tungstophosphoric Acid (H3PW12O40) under solvent-free conditions. Bull. Korean Chem. Soc., 2006, 27, 1246-1248.
[http://dx.doi.org/10.5012/bkcs.2006.27.8.1246]
[58]
Hoang, M.; Gadosy, T.; Ghazi, H.; Hou, D-F.; Hopkinson, A.C.; Johnston, L.J.; Lee-Ruff, E. Photochemical pinacol rearrangement. J. Org. Chem., 1998, 63(21), 7168-7171.
[http://dx.doi.org/10.1021/jo980148p] [PMID: 11672356]
[59]
Mladenova, G.; Singh, G.; Acton, A.; Chen, L.; Rinco, O.; Johnston, L.J.; Lee-Ruff, E. Photochemical pinacol rearrangements of unsymmetrical diols. J. Org. Chem., 2004, 69(6), 2017-2023.
[http://dx.doi.org/10.1021/jo035439z] [PMID: 15058948]
[60]
Shao, Y.; Yang, C.; Gui, W.; Liu, Y.; Xia, W. Photochemical studies on aromatic γ,δ-epoxy ketones: Efficient synthesis of benzocyclobutanones and indanones. Chem. Commun. (Camb.), 2012, 48(29), 3560-3562.
[http://dx.doi.org/10.1039/c2cc17960a] [PMID: 22388546]
[61]
Kimura, M.; Kobayashi, K.; Yamamot, Y.; Sawaki, Y. Electrooxidative Pinacol-type rearrangement of β-Hydroxy Sulfides. Efficient C-S cleavage mediated by chloride ion oxidation. Tetrahedron, 1996, 52, 4303-4310.
[http://dx.doi.org/10.1016/0040-4020(96)00130-5]
[62]
Chen, C.; Kang, J-C.; Mao, C.; Dong, J-W.; Xie, Y-Y.; Ding, T-M.; Tu, Y-Q.; Chen, Z-M.; Zhang, S-Y. Electrochemical Halogenation/Semi-pinacol rearrangement of allylic alcohols using inorganic halide salt: An eco-friendly route to synthesis of β-halocarbonyls. Green Chem., 2019, 21, 4014-4019.
[http://dx.doi.org/10.1039/C9GC01152H]
[63]
Petris, G.D.; Giacomello, P.; Pizzabiocca, A.; Renzi, G.; Speranza, M. Stereochemical Effects in the Gas-Phase Pinacol Rearrangement. 2. Ring Contraction versus Methyl Migration in cis- and trans-1,2-Dimethylcyclohexane-1,2-Diol. J. Am. Chem. Soc., 1988, 110, 1098-1103.
[http://dx.doi.org/10.1021/ja00212a017]
[64]
Chen, X.; Esser, L.; Harran, P.G. Stereocontrol in Pinacol Ring-contraction of cyclopeptidyl glycols: The Diazonamide C10 Problem. Angew. Chem. Int. Ed., 2000, 39, 937-940.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000303)39:5<937:AID-ANIE937>3.0.CO;2-A]
[65]
Kirsch, S.F.; Binder, J.T.; Crone, B.; Duschek, A.; Haug, T.T.; Liébert, C.; Menz, H. Catalyzed tandem reaction of 3-silyloxy-1,5-enynes consisting of cyclization and pinacol rearrangement. Angew. Chem. Int. Ed., 2007, 46(13), 2310-2313.
[http://dx.doi.org/10.1002/anie.200604544] [PMID: 17310486]
[66]
Liu, L.; Zhang, J. Selectivity control in Lewis acid catalyzed regiodivergent tandem cationic cyclization/ring expansion terminated by pinacol rearrangement. Angew. Chem. Int. Ed. Engl., 2009, 48(33), 6093-6096.
[http://dx.doi.org/10.1002/anie.200901628] [PMID: 19593831]
[67]
Zhu, L-L.; Li, X-X.; Zhou, W.; Li, X.; Chen, Z. Divergent synthetic routes for ring expansion or cyclization from 1,4-allylic diol derivatives via gold(I) catalysis or zinc(II) mediation. J. Org. Chem., 2011, 76(21), 8814-8823.
[http://dx.doi.org/10.1021/jo2015517] [PMID: 21919452]
[68]
Liu, W-D.; Xu, G-Q.; Hu, X-Q.; Xu, P-F. Visible-Light-Induced Aza-Pinacol Rearrangement: Ring Expansion of Alkylidenecyclopropanes. Org. Lett., 2017, 19(23), 6288-6291.
[http://dx.doi.org/10.1021/acs.orglett.7b02989] [PMID: 29155594]
[69]
Zhu, L.; Yuan, H.; Zhang, J. The effect of CF3 functional group substituent on bifunctional activation model and enantioselectivity for BINOL N-triflylphosphoramides catalyzed rearrangement reaction. J. Catal., 2020, 383, 230-238.
[http://dx.doi.org/10.1016/j.jcat.2020.01.012]
[70]
Defaut, B.; Parsons, T.B.; Spencer, N.; Male, L.; Kariuki, B.M.; Grainger, R.S. Synthesis of the trans-hydrindane core of dictyoxetane. Org. Biomol. Chem., 2012, 10(25), 4926-4932.
[http://dx.doi.org/10.1039/c2ob25384d] [PMID: 22610125]
[71]
Gembus, V.; Karmazin, L.; Pira, S.; Uguen, D. Regioselective Pinacol rearrangement of unsymmetrical Cyclobutane-1,2-Diols. Bull. Chem. Soc. Jpn., 2018, 91, 319-346.
[http://dx.doi.org/10.1246/bcsj.20170335]
[72]
Ieawsuwan, W.; Pingaew, R.; Kunkaewom, S.; Ploypradith, P.; Ruchirawat, S. Scandium(III)-triflate-catalyzed pinacol-pinacolone rearrangement and cyclization of 1,2-diaryl-1,2-ethanediol: A versatile synthesis of 1-Aryl-2,3-dihydro-1H-3-benzazepines. Asian J. Org. Chem., 2019, 8, 1441-1447.
[http://dx.doi.org/10.1002/ajoc.201900318]
[73]
Li, J.; Jeong, S.; Esser, L.; Harran, P.G. Total synthesis of nominal Diazonamides-Part 1: Convergent preparation of the structure proposed for (-)-Diazonamide A Fund-ing provided by the NIH (RO1-GM60591), the NSF (CAREER 9984282), the Howard Hughes Medical Institute (junior faculty support), the Robert A. Welch Founda-tion, and the Advanced Research Program of the Texas Higher Education Coordinating Board. Angew. Chem. Int. Ed. Engl., 2001, 40(24), 4765-4769.
[http://dx.doi.org/10.1002/1521-3773(20011217)40:24<4765:AID-ANIE4765>3.0.CO;2-1] [PMID: 12404411]
[74]
Zeng, Y.; Yang, J.; Li, Y.; Gu, W.; Huang, L.; Yi, P.; Yuan, C.; Hao, X.; Hypermogins, A-D. Four highly modified polycyclic polyprenylated acylphloroglucinols from Hypericum Monogynum. Tetrahedron Lett., 2021, 64, 152733-152736.
[http://dx.doi.org/10.1016/j.tetlet.2020.152733]
[75]
Delayre, B.; Wang, Q.; Zhu, J. Natural product synthesis enabled by domino processes incorporating a 1,2-Rearrangement Step. ACS Cent. Sci., 2021, 7(4), 559-569.
[http://dx.doi.org/10.1021/acscentsci.1c00075] [PMID: 34056086]
[76]
Sekiya, R.; Kiyo-oka, K.; Imakubo, T.; Kobayashi, K. Intramolecular migration of bulky substituents in the Solid State: Vinylogous Pinacol rearrangements induced thermally and by acid catalysis. J. Am. Chem. Soc., 2000, 122, 10282-10288.
[http://dx.doi.org/10.1021/ja000788l]
[77]
Wu, H.; Wang, Q.; Zhu, J. Organocatalytic enantioselective vinylogous pinacol rearrangement enabled by chiral ion pairing. Angew. Chem., 2016, 128, 15637-15640.
[http://dx.doi.org/10.1002/ange.201609911]
[78]
Fei, C.; Liu, J.; Peng, H. BINOL-phosphoric acids-catalyzed furylogous pinacol rearrangement of 1-[5-(hydroxy-diaryl-methyl)-furan-2-yl]- cyclobutanols into spiro cyclopentanones. tetrahedron, 2018, 74, 6939-6945.
[http://dx.doi.org/10.1016/j.tet.2018.10.022]
[79]
Smet, M.; Dijk, J.V.; Dehaen, W. A Novel Acid-Catalyzed Rearrangement of 9,10-Diaryl-9,10-hihydroanthracene-9,10-diols Affording 10,10′-diaryl-9-anthrones. Tetrahedron, 1999, 55, 7859-7874.
[http://dx.doi.org/10.1016/S0040-4020(99)00406-8]
[80]
Tiffeneau, M.; Levy, J. Pinacolic and semi-pinacolic transpositions. comparative migratory tendencies of different radicals, Compt. Rend, 1923, 176, 312-314.
[81]
Wang, B.; Tu, Y-Q. Stereoselective construction of quaternary carbon stereocenters via a semipinacol rearrangement strategy. Acc. Chem. Res., 2011, 44(11), 1207-1222.
[http://dx.doi.org/10.1021/ar200082p] [PMID: 21728380]
[82]
Wang, S-H.; Li, B-S.; Tu, Y-Q. Catalytic asymmetric semipinacol rearrangements. Chem. Commun. (Camb.), 2014, 50(19), 2393-2408.
[http://dx.doi.org/10.1039/C3CC48547A] [PMID: 24473198]
[83]
Zhang, X-M.; Tu, Y-Q.; Zhang, F-M.; Chen, Z-H.; Wang, S-H. Recent applications of the 1,2-carbon atom migration strategy in complex natural product total synthesis. Chem. Soc. Rev., 2017, 46(8), 2272-2305.
[http://dx.doi.org/10.1039/C6CS00935B] [PMID: 28349159]
[84]
Song, Z-L.; Fan, C-A.; Tu, Y-Q. Semipinacol rearrangement in natural product synthesis. Chem. Rev., 2011, 111(11), 7523-7556.
[http://dx.doi.org/10.1021/cr200055g] [PMID: 21851053]
[85]
Moyano, A.; El-Hamdouni, N.; Atlamsani, A. Asymmetric organocatalytic rearrangement reactions. Chemistry, 2010, 16(18), 5260-5273.
[http://dx.doi.org/10.1002/chem.200903410] [PMID: 20391560]
[86]
Zhang, X-M.; Li, B-S.; Wang, S-H.; Zhang, K.; Zhang, F-M.; Tu, Y-Q. Recent development and applications of semipinacol rearrangement reactions. Chem. Sci. (Camb.), 2021, 12(27), 9262-9274.
[http://dx.doi.org/10.1039/D1SC02386A] [PMID: 34349896]
[87]
Wu, H.; Wang, Q.; Zhu, J. Recent Advances in Catalytic Enantioselective Rearrangement. Eur. J. Org. Chem., 2019, 1964-1980.
[http://dx.doi.org/10.1002/ejoc.201801799]
[88]
Wang, P-S.; Chen, D-F.; Gong, L-Z. Recent progress in asymmetric relay catalysis of metal complex with chiral phosphoric acid. Top. Curr. Chem. (Cham), 2019, 378(1), 9-30.
[http://dx.doi.org/10.1007/s41061-019-0263-2] [PMID: 31879793]
[89]
Wang, Y.; Cobo, A.A.; Franz, A.K. Recent advances in organocatalytic asymmetric multicomponent cascade reactions for enantioselective synthesis of Spirooxindoles. Org. Chem. Front., 2021, 8, 4315-4348.
[http://dx.doi.org/10.1039/D1QO00220A]
[90]
Liu, W.; Yang, X. Recent advances in (dynamic) kinetic resolution and desymmetrization catalyzed by chiral phosphoric acids. Asian J. Org. Chem., 2021, 10, 692-710.
[91]
Tran, V.T.; Nimmagadda, S.K.; Liu, M.; Engle, K.M. Recent applications of chiral phosphoric acids in palladium catalysis. Org. Biomol. Chem., 2020, 18(4), 618-637.
[http://dx.doi.org/10.1039/C9OB02205H] [PMID: 31907504]
[92]
Fang, G-C.; Cheng, Y-F.; Yu, Z-L.; Li, Z-L.; Liu, X-Y. Recent advances in first-row transition metal/chiral phosphoric acid combined catalysis. Top. Curr. Chem. (Cham), 2019, 377(5), 23.
[http://dx.doi.org/10.1007/s41061-019-0249-0] [PMID: 31463700]
[93]
Brown, J. Catalytic asymmetric synthesis. Acc. Chem. Res., 1994, 24, 1239-1240.
[94]
Notz, W.; List, B. Catalytic asymmetric synthesis of anti-1,2-Diols. J. Am. Chem. Soc., 2000, 122, 7386-7387.
[http://dx.doi.org/10.1021/ja001460v]
[95]
Gao, A.X.; Thomas, S.B.; Snyder Snyder, S.A. Pinacol and Semipinacol Rearrangements in Total Synthesis; Rojas, C.M., Ed.; John Wiley & Sons: Hoboken, 2015, Vol. 1, pp. 3-33.
[http://dx.doi.org/10.1002/9781118939901.ch1]
[96]
Zhang, E.; Fan, C-A.; Tu, Y-Q.; Zhang, F-M.; Song, Y-L. Organocatalytic asymmetric vinylogous α-ketol rearrangement: Enantioselective construction of chiral all-carbon quaternary stereocenters in spirocyclic diketones via semipinacol-type 1,2-carbon migration. J. Am. Chem. Soc., 2009, 131(41), 14626-14627.
[http://dx.doi.org/10.1021/ja906291n] [PMID: 19785419]
[97]
Romanov-Michailidis, F.; Guénée, L.; Alexakis, A. Enantioselective organocatalytic fluorination-induced Wagner-Meerwein rearrangement. Angew. Chem. Int. Ed. Engl., 2013, 52(35), 9266-9270.
[http://dx.doi.org/10.1002/anie.201303527] [PMID: 23852804]
[98]
Kleinbeck, F.; Toste, F.D. Gold(I)-catalyzed enantioselective ring expansion of allenylcyclopropanols. J. Am. Chem. Soc., 2009, 131(26), 9178-9179.
[http://dx.doi.org/10.1021/ja904055z] [PMID: 19530649]
[99]
Yu, Y.; Li, J.; Jiang, L.; Zhang, J-R.; Zu, L. Catalytic enantioselective Aza-pinacol rearrangement. Angew. Chem. Int. Ed., 2017, 56, 9217-9221. Angew. Chem., 2017, 129, 9345-9349.
[http://dx.doi.org/10.1002/ange.201705539]
[100]
Liang, T.; Zhang, Z.; Antilla, J.C. Chiral Brønsted acid catalyzed pinacol rearrangement. Angew. Chem. Int. Ed. Engl., 2010, 49(50), 9734-9736.
[http://dx.doi.org/10.1002/anie.201004778] [PMID: 21077074]
[101]
Falcone, B.N.; Grayson, M.N.; Rodriguez, J.B. Mechanistic insights into a chiral phosphoric acid-catalyzed asymmetric pinacol rearrangement. J. Org. Chem., 2018, 83(23), 14683-14687.
[http://dx.doi.org/10.1021/acs.joc.8b02812] [PMID: 30433780]
[102]
Snyder, S.A.; Thomas, S.B.; Mayer, A.C.; Breazzano, S.P. Total syntheses of hopeanol and hopeahainol A empowered by a chiral Brønsted acid induced pinacol rear-rangement. Angew. Chem. Int. Ed. Engl., 2012, 51(17), 4080-4084.
[http://dx.doi.org/10.1002/anie.201107730] [PMID: 22431237]
[103]
Wu, H.; Wang, Q.; Zhu, J. Organocatalytic enantioselective acyloin rearrangement of α-Hydroxy Acetals to α-Alkoxy Ketones. Angew. Chem. Int. Ed. Engl., 2017, 56(22), 5858-5861.
[http://dx.doi.org/10.1002/ange.201701098]
[104]
Wu, H.; Wang, Q.; Zhu, J. Catalytic Enantioselective Pinacol and Meinwald rearrangements for the construction of Quaternary Stereocenters. J. Am. Chem. Soc., 2019, 141(29), 11372-11377.
[http://dx.doi.org/10.1021/jacs.9b04551] [PMID: 31282151]
[105]
Hussain, M.M.; Li, H.; Hussain, N.; Ureña, M.; Carroll, P.J.; Walsh, P.J. Applications of 1-alkenyl-1,1-heterobimetallics in the stereoselective synthesis of cyclopropyl-boronate esters, trisubstituted cyclopropanols and 2,3-disubstituted cyclobutanones. J. Am. Chem. Soc., 2009, 131(18), 6516-6524.
[http://dx.doi.org/10.1021/ja900147s] [PMID: 19382808]
[106]
Scheffler, U.; Mahrwald, R. A One-pot cross-pinacol coupling/rearrangement procedure. Helv. Chim. Acta, 2012, 95, 1970-1975.
[http://dx.doi.org/10.1002/hlca.201200402]
[107]
Shirinian, V.Z.; Lvov, A.G.; Lonshakov, D.V.; Yadykov, A.V.; Kachala, V.V.; Krayushkin, M.M. Pinacol rearrangement of Cyclopent-3-en-1,2-Diols: Cyclopentenone formation and interrupting reaction. Tetrahedron Lett., 2018, 59, 243-246.
[http://dx.doi.org/10.1016/j.tetlet.2017.12.016]
[108]
Kedziorek, M.; Dobrzanska, L. Allylation of Orthoquinones towards annulated Polycyclic Aromatic Systems. Molecules, 2018, 23(8), 2043-2053.
[http://dx.doi.org/10.3390/molecules23082043] [PMID: 30111725]
[109]
Billamboz, M.; Banaszak, E.; Rigo, B. Tuning the selectivity: Study of solvent-free acid-mediated Pinacolic-Pinacolone Rearrangement under microwave irradiation. ChemistrySelect, 2018, 3, 10236-10243.
[http://dx.doi.org/10.1002/slct.201802351]
[110]
Lutz, R.E.; Bass, R.G.; Boykin, D.W. Rearrangement of the vinylog of benzpinacol. J. Org. Chem., 1964, 29, 3660-3664.
[http://dx.doi.org/10.1021/jo01035a057]
[111]
Darby, R.A.; Lutz, R.E. Pinacol like Rearrangement of a Cyclopropane-1,2-Dimethylene Glycol. J. Org. Chem., 1957, 22, 1353-1355.
[http://dx.doi.org/10.1021/jo01362a014]
[112]
Dao, N.; Sader, J.K.; Oliver, A.G.; Wulff, J.E. Prying open a Thiele cage: Discovery of an unprecedented extended pinacol rearrangement. Chem. Commun. (Camb.), 2019, 55(11), 1600-1603.
[http://dx.doi.org/10.1039/C8CC08862D] [PMID: 30656291]
[113]
Suzuki, K.; Takikawa, H.; Hachisu, Y.; Bode, J.W. Isoxazole-Directed Pinacol Rearrangement: Stereocontrolled approach to angular stereogenic centers. Angew. Chem., 2007, 119, 3316-3318.
[http://dx.doi.org/10.1002/ange.200605138]
[114]
Crossley, M.J.; Burn, P.L. An approach to porphyrin-based molecular wires: Synthesis of a Bis(porphyrin)tetraone and its conversion to a linearly conjugated tetrakisporphyrin system. J. Chem. Soc. Chem. Commun., 1991, 1569-1571.
[http://dx.doi.org/10.1039/c39910001569]
[115]
Lin, V.S-Y.; DiMagno, S.G.; Therien, M.J. Highly conjugated, acetylenyl bridged porphyrins: New models for light-harvesting antenna systems. Science, 1994, 264(5162), 1105-1111.
[http://dx.doi.org/10.1126/science.8178169] [PMID: 8178169]
[116]
Holten, D.; Bocian, D.F.; Lindsey, J.S. Probing electronic communication in covalently linked multiporphyrin arrays. A guide to the rational design of molecular pho-tonic devices. Acc. Chem. Res., 2002, 35(1), 57-69.
[http://dx.doi.org/10.1021/ar970264z] [PMID: 11790089]
[117]
Senge, M.O.; Fazekas, M.; Notaras, E.G.A.; Blau, W.J.; Zawadzka, M.; Locos, O.B.; Mhuircheartaigh, E.M.N. Nonlinear optical properties of porphyrins. Adv. Mater., 2007, 19, 2737-2774.
[http://dx.doi.org/10.1002/adma.200601850]
[118]
Crossley, M.J.; Hambley, T.W.; Mackay, L.G.; Try, A.C.; Walton, R. Porphyrin Analogues of Tröger’s Base: Large chiral cavities with a bimetallic binding site. J. Chem. Soc. Chem. Commun., 1995, 1077-1079.
[http://dx.doi.org/10.1039/C39950001077]
[119]
Susumu, K.; Duncan, T.V.; Therien, M.J. Potentiometric, electronic structural, and ground- and excited-state optical properties of conjugated bis[(porphinato)zinc(II)] compounds featuring proquinoidal spacer units. J. Am. Chem. Soc., 2005, 127(14), 5186-5195.
[http://dx.doi.org/10.1021/ja040243h] [PMID: 15810854]
[120]
Kim, D.; Osuka, A. Directly linked porphyrin arrays with tunable excitonic interactions. Acc. Chem. Res., 2004, 37(10), 735-745.
[http://dx.doi.org/10.1021/ar030242e] [PMID: 15491120]
[121]
Hoffmann, M.; Wilson, C.J.; Odell, B.; Anderson, H.L. Template-directed synthesis of a π-conjugated porphyrin nanoring. Angew. Chem., 2007, •••, 119-1212.
[122]
Nakamura, Y.; Aratani, N.; Osuka, A. Cyclic porphyrin arrays as artificial photosynthetic antenna: Synthesis and excitation energy transfer. Chem. Soc. Rev., 2007, 36(6), 831-845.
[http://dx.doi.org/10.1039/b618854k] [PMID: 17534471]
[123]
Filatov, M.A.; Laquai, F.; Fortin, D.; Guilard, R.; Harvey, P.D. Strong donor-acceptor couplings in a special pair-antenna model. Chem. Commun. (Camb.), 2010, 46(48), 9176-9178.
[http://dx.doi.org/10.1039/c0cc03665j] [PMID: 21049124]
[124]
Sprafke, J.K.; Stranks, S.D.; Warner, J.H.; Nicholas, R.J.; Anderson, H.L. Noncovalent binding of carbon nanotubes by porphyrin oligomers. Angew. Chem., 2011, 123, 2361-2364.
[http://dx.doi.org/10.1002/ange.201007295]
[125]
Terazono, Y.; Kodis, G.; Bhushan, K.; Zaks, J.; Madden, C.; Moore, A.L.; Moore, T.A.; Fleming, G.R.; Gust, D. Mimicking the role of the antenna in photosynthetic pho-toprotection. J. Am. Chem. Soc., 2011, 133(9), 2916-2922.
[http://dx.doi.org/10.1021/ja107753f] [PMID: 21314185]
[126]
Garg, V.; Kodis, G.; Chachisvilis, M.; Hambourger, M.; Moore, A.L.; Moore, T.A.; Gust, D. Conformationally constrained macrocyclic diporphyrin-fullerene artificial photosynthetic reaction center. J. Am. Chem. Soc., 2011, 133(9), 2944-2954.
[http://dx.doi.org/10.1021/ja1083078] [PMID: 21319796]
[127]
Ishizuka, T.; Sinks, L.E.; Song, K.; Hung, S-T.; Nayak, A.; Clays, K.; Therien, M.J. The roles of molecular structure and effective optical symmetry in evolving dipolar chromophoric building blocks to potent octopolar nonlinear optical chromophores. J. Am. Chem. Soc., 2011, 133(9), 2884-2896.
[http://dx.doi.org/10.1021/ja105004k] [PMID: 21322603]
[128]
Tokuji, S.; Maeda, C.; Yorimitsu, H.; Osuka, A. New synthetic strategy for diporphyrins: Pinacol coupling-rearrangement. Chemistry, 2011, 17(26), 7154-7157.
[http://dx.doi.org/10.1002/chem.201100872] [PMID: 21563221]
[129]
Jørgensen, L.; McKerrall, S.J.; Kuttruff, C.A.; Ungeheuer, F.; Felding, J.; Baran, P.S. 14-step synthesis of (+)-ingenol from (+)-3-carene. Science, 2013, 341(6148), 878-882.
[http://dx.doi.org/10.1126/science.1241606] [PMID: 23907534]
[130]
Lavigne, R.M.A.; Riou, M.; Girardin, M.; Morency, L.; Barriault, L. Synthesis of highly functionalized bicyclo[m.n.1]alkanones via a cationic reaction cascade. Org. Lett., 2005, 7(26), 5921-5923.
[http://dx.doi.org/10.1021/ol0527072] [PMID: 16354100]
[131]
Tanino, K.; Onuki, K.; Asano, K.; Miyashita, M.; Nakamura, T.; Takahashi, Y.; Kuwajima, I. Total synthesis of ingenol. J. Am. Chem. Soc., 2003, 125(6), 1498-1500.
[http://dx.doi.org/10.1021/ja029226n] [PMID: 12568608]
[132]
Cha, J.K.; Epstein, O.L. Synthetic approaches to Ingenol. Tetrahedron, 2006, 62, 1329-1343.
[http://dx.doi.org/10.1016/j.tet.2005.10.035]
[133]
Drosos, N.; Cheng, G.-J.; Ozkal, E.; Cacherat, B.; Thiel, W.; Morandi, B. Catalytic Reductive Pinacol-type rearrangement of unactivated 1,2-Diols through a concerted, stereoinvertive mechanism. Angew. Chem. Int. Ed., 2017, 56, 13377−13381.
[http://dx.doi.org/10.1002/ange.201704936]
[134]
Drosos, N.; Morandi, B. Boron-catalyzed regioselective deoxygenation of terminal 1,2-Diols to 2-Alkanols enabled by the strategic formation of a Cyclic Siloxane in-termediate. Angew. Chem., 2015, 127, 8938-8942.
[http://dx.doi.org/10.1002/ange.201503172]
[135]
Drosos, N.; Ozkal, E.; Morandi, B. Catalytic Selective Deoxygenation of Polyols using the B(C6F5)3/Silane System. Synlett, 2016, 27, 1760-1764.
[http://dx.doi.org/10.1055/s-0035-1561639]
[136]
Shi, H.; Du, C.; Zhang, X.; Xie, F.; Wang, X.; Cui, S.; Peng, X.; Cheng, M.; Lin, B.; Liu, Y. Lewis Acid assisted electrophilic fluorine-catalyzed Pinacol rearrangement of Hydrobenzoin substrates: One-Pot synthesis of (±)-Latifine and. Cherylline. J. Org. Chem., 2018, 83(3), 1312-1319.
[http://dx.doi.org/10.1021/acs.joc.7b02587] [PMID: 29320186]
[137]
Harada, T.; Mukaiyama, T. The catalytic pinacol rearrangement of 1,2-Diols using an Antimony(V) salt. Chem. Lett., 1992, 81-84.
[http://dx.doi.org/10.1246/cl.1992.81]
[138]
Albini, A.; Mella, M. The Photochemical Reaction of 1,4-Naphthalenedicarbonitrile with Aromatic Pinacols and Pinacol Ethers. Tetrahedron, 1986, 42, 6219-6224.
[http://dx.doi.org/10.1016/S0040-4020(01)88083-2]
[139]
Lopez, L.; Farinola, G.M.; Paradiso, V.; Mele, G.; Nacci, A. Reactions on (R) and (S)-1,1,2-Triphenyl-1,2-Ethandiols Induced by Aminium Salts and Protic Acids. Sol-vent Effect. Tetrahedron, 1997, 53, 10817-10826.
[http://dx.doi.org/10.1016/S0040-4020(97)00689-3]
[140]
Jana, S.; Guin, C.; Roy, S.C. Radical promoted Wagner-Meerwein-type rearrangement of epoxides in camphoric systems using a Ti(III) radical source. J. Org. Chem., 2005, 70(20), 8252-8254.
[http://dx.doi.org/10.1021/jo051338k] [PMID: 16277363]
[141]
Ciminale, F.; Lopez, L.; Nacci, A.; D’Accolti, L.; Vitale, F. Aminium Hexachloroantimonate salts as latent sources of antimony Pentachloride in Pinacolic Rearrange-ment of Vicinal Diols. Eur. J. Org. Chem., 2005, 1597-1603.
[http://dx.doi.org/10.1002/ejoc.200400701]
[142]
Chen, X.; Wu, C.; Li, J.; Li, Y. Chemoselectivity of Pinacol rearrangement originate by different Hexafluoroantimonate Oxidant. Z. Anorg. Allg. Chem., 2019, 645, 22-26.
[http://dx.doi.org/10.1002/zaac.201800209]
[143]
Hsu, B-Y.; Cheng, S. pinacol rearrangement over metal-substituted aluminophosphate molecular sieves. Microporous Mesoporous Mater., 1998, 21, 505-515.
[http://dx.doi.org/10.1016/S1387-1811(97)00060-7]
[144]
Bucsi, I.; Molnar, A.; Bartok, M.; Olah, G.A. Transformation of 1,3-, 1,4- and 1,5-Diols over Perfluorinated Resinsulfonic Acids (Nation-H). Tetrahedron, 1995, 51, 3319-3326.
[http://dx.doi.org/10.1016/0040-4020(95)00053-B]
[145]
Shinde, A.B.; Shrigadi, N.B.; Bhat, R.P.; Samant, S.D. Pinacol-Pinacolone Rearrangement on FeCl3 Modified Montmorillonite K10. Synth. Commun., 2004, 34, 309-314.
[http://dx.doi.org/10.1081/SCC-120027268]
[146]
Nakato, T.; Toyoshi, Y.; Kimura, M.; Okuhara, T. Unique catalysis of an acidic salt of Heteropoly Acid, Cs2.5H0.5PW12O40, consisting of microcrystallites. Catal. Today, 1999, 52, 23-28.
[http://dx.doi.org/10.1016/S0920-5861(99)00059-0]
[147]
Takamizawa, S.; Akatsuka, T.; Ueda, T. Gas-conforming transformability of an ionic single-crystal host consisting of discrete charged components. Angew. Chem., 2008, 120, 1713-1716.
[http://dx.doi.org/10.1002/ange.200702950]
[148]
Seino, S.; Kawahara, R.; Ogasawara, Y.; Mizuno, N.; Uchida, S. Reduction-induced highly selective uptake of cesium ions by an ionic crystal based on Silicododecamo-lybdate. Angew. Chem. Int. Ed., 2016, 55, 3987-3991.
[http://dx.doi.org/10.1002/ange.201511633]
[149]
Bennett, M.V.; Beauvais, L.G.; Shores, M.P.; Long, J.R. Expanded prussian blue analogues incorporating [Re6Se8(CN)6]3-/4- clusters: Adjusting porosity via charge bal-ance. J. Am. Chem. Soc., 2001, 123, 8022-8032.
[http://dx.doi.org/10.1021/ja0110473] [PMID: 11506558]
[150]
Uchida, S.; Lesbani, A.; Ogasawara, Y.; Mizuno, N. Ionic crystals [M3O(OOCC6H5)6(H2O)3]4[α-SiW12O40] (M = Cr, Fe) as heterogeneous catalysts for pinacol rearrange-ment. Inorg. Chem., 2012, 51(2), 775-777.
[http://dx.doi.org/10.1021/ic2025186] [PMID: 22221189]
[151]
Kawahara, R.; Osuga, R.; Kondo, J.N.; Mizuno, N.; Uchida, S. Synergetic effect in heterogeneous acid catalysis by a porous ionic crystal based on Al(iii)-salphen and polyoxometalate. Dalton Trans., 2017, 46(10), 3105-3109.
[http://dx.doi.org/10.1039/C6DT04552A] [PMID: 28074198]
[152]
Mizuno, K.; Mura, T.; Uchida, S. Control of polymorphisms and functions in all-inorganic ionic crystals based on Polyaluminum Hydroxide and Polyoxometalates. Cryst. Growth Des., 2016, 16, 4968-4974.
[http://dx.doi.org/10.1021/acs.cgd.6b00555]
[153]
Chen, S-Y.; Lee, J-F.; Cheng, S. Pinacol-Type rearrangement catalyzed by Zr-incorporated SBA-15. J. Catal., 2010, 270, 196-205.
[http://dx.doi.org/10.1016/j.jcat.2009.12.020]
[154]
Nikitina, M.A.; Ivanova, I.I. Conversion of 2,3-Butanediol over Phosphate Catalysts. ChemCatChem, 2016, 8, 1346-1353.
[http://dx.doi.org/10.1002/cctc.201501399]
[155]
Zhang, W.; Yu, D.; Jia, X.; Huang, H. Efficient dehydration of Bio-based 2,3-Butanediol to Butanone over Boric Acid Modified HZSM-5 Zeolites. Green Chem., 2012, 14, 3441-3450.
[http://dx.doi.org/10.1039/c2gc36324k]
[156]
Zhao, J.; Yu, D.; Zhang, W.; Hu, Y.; Jiang, T.; Fu, J.; Huang, H. Catalytic Dehydration of 2,3-Butanediol over P/HZSM-5: Effect of catalyst, reaction temperature and reactant configuration on rearrangement products. RSC Advances, 2016, 6, 16988-16995.
[http://dx.doi.org/10.1039/C5RA23251A]
[157]
Pavlik, C.; Morton, M.D.; Smith, M.B. Polymer-mediated pinacol rearrangements. Synlett, 2011, 2191-2194.
[158]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666-669.
[http://dx.doi.org/10.1126/science.1102896] [PMID: 15499015]
[159]
Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature, 2006, 442(7100), 282-286.
[http://dx.doi.org/10.1038/nature04969] [PMID: 16855586]
[160]
Li, D.; Kaner, R.B. Materials science. Graphene-based materials. Science, 2008, 320(5880), 1170-1171.
[http://dx.doi.org/10.1126/science.1158180] [PMID: 18511678]
[161]
Chen, J-H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M.S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol., 2008, 3(4), 206-209.
[http://dx.doi.org/10.1038/nnano.2008.58] [PMID: 18654504]
[162]
Li, P.; Li, T.; Zhou, J-H.; Sui, Z-J.; Dai, Y-C.; Yuan, W-K.; Chen, D. Synthesis of carbon nanofiber/graphite-felt composite as a catalyst. Microporous Mesoporous Mater., 2006, 95, 1-7.
[http://dx.doi.org/10.1016/j.micromeso.2006.04.014]
[163]
Zhang, J.; Su, D.; Zhang, A.; Wang, D.; Schögl, R.; Hébert, C. Nanocarbon as Robust Catalyst: Mechanistic insight into carbon mediated catalysis. Angew. Chem., 2007, 119, 7460-7464.
[http://dx.doi.org/10.1002/ange.200702466]
[164]
Scheuermann, G.M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mülhaupt, R. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc., 2009, 131(23), 8262-8270.
[http://dx.doi.org/10.1021/ja901105a] [PMID: 19469566]
[165]
Dreyer, D.R.; Jia, H-P.; Bielawski, C.W. Graphene Oxide: A convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. Int. Ed., 2010, 49, 6813-6816.
[http://dx.doi.org/10.1002/ange.201002160]
[166]
Gómez-Martínez, M.; Baeza, A.; Alonso, D.A. Pinacol rearrangement and direct nucleophilic substitution of allylic alcohols promoted by Graphene Oxide and Graphene Oxide-CO2H. ChemCatChem, 2017, 9, 1032-1039.
[http://dx.doi.org/10.1002/cctc.201601362]
[167]
Konkena, B.; Vasudevan, S. Understanding aqueous dispersibility of Graphene Oxide and reduced Graphene Oxide through pKa measurements. J. Phys. Chem. Lett., 2012, 3(7), 867-872.
[http://dx.doi.org/10.1021/jz300236w] [PMID: 26286412]
[168]
Dreyer, D.R.; Jarvis, K.A.; Ferreira, P.J.; Bielawski, C.W. Graphite Oxide as a carbocatalyst for the preparation of fullerene-reinforced polyester and polyamide nanocom-posites. Polym. Chem., 2012, 3, 757-766.
[http://dx.doi.org/10.1039/c2py00545j]
[169]
Dreyer, D.R.; Bielawski, C.W. Graphite Oxide as an Olefi n Polymerization Carbocatalyst: Applications in electrochemical double layer capacitors. Adv. Funct. Mater., 2012, 22, 3247-3253.
[http://dx.doi.org/10.1002/adfm.201103152]
[170]
Zhang, J.; Chen, Z.; Kong, J.; Liang, Y.; Chen, K.; Chang, Y.; Yuan, H.; Wang, Y.; Liang, H.; Li, J.; Mao, M.; Li, J.; Xing, G. Fullerenol nanoparticles eradicate Helicobac-ter pylori via pH-Responsive Peroxidase Activity. ACS Appl. Mater. Interfaces, 2020, 12, 29013-29023.
[http://dx.doi.org/10.1021/acsami.0c05509] [PMID: 32486636]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy