Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Metal-Organic Framework Based Drug Delivery for Alzheimer's Therapy and Clinical Progress

Author(s): Syed Nasir Abbas Bukhari*

Volume 19, Issue 8, 2022

Published on: 23 May, 2022

Page: [920 - 932] Pages: 13

DOI: 10.2174/1570193X19666220316142832

Price: $65

Abstract

Metal-organic frameworks (MOFs) are a category of composite materials synthesized through metal ions and organic ligands. This class of material has a variety of applications, including energy storage, isolation, catalysis, sensing, cancer theranostics, and so on; this rapidly expanding class of frameworks provides advantages. However, MOF uses have not been expanded in chemosensing and neurodegenerative disease phototherapy. In recent years, there has been a lot of focus on research on metal-organic structures (MOFs) in biomedical applications. MOFs are considered promising classes of drug-related nanocarriers based on their well-defined architecture, superficial and porous surfaces, configurable pores, and simple chemical functionalization. In this report, in the first part, we explored the special proprieties of MOFs and their benefits for drug delivery as nanocarriers in biomedical applications. Adapting MOFs to therapeutic agents, like surface adsorption, pore modularity, covalent bindings, and functional molecules, were also summarized in this review. Many other MOF applications in chemotherapeutic agents were discovered in the last segment, not only for a tumor laser treatment but also for neurodegenerative diseases like Alzheimer's (AD). Presently, highly responsive Alzheimer's biomarkers (AD) are essential for us in preventing and diagnosing AD, i.e., presenilin 1, amyloid β-protein (Aβ), as well as acetylcholine (ACh). The brain's deviant amyloid-β peptide (Aβ) mixture is the primary pathologic symptom of Alzheimer's disease (AD). Inhibiting aggregation is regarded as an appealing preventive action to alleviate amyloid neuroinflammation. In this study, we looked at how effective response and AD diagnosis have changed, and I looked at the future of MOFs in this field.

Keywords: Composite materials, organic ligand, frameworks, biomedical application, chemical functionalization, acetylcholine.

Graphical Abstract
[1]
Hoskins, B.F.; Robson, R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc., 1989, 111(15), 5962-5964.
[http://dx.doi.org/10.1021/ja00197a079]
[2]
Meek, S.T.; Greathouse, J.A.; Allendorf, M.D. Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials. Adv. Mater., 2011, 23(2), 249-267.
[http://dx.doi.org/10.1002/adma.201002854] [PMID: 20972981]
[3]
Zhou, H.C.; Long, J.R.; Yaghi, O.M. Introduction to metal-organic frameworks. Chem. Rev., 2012, 112(2), 673-674.
[http://dx.doi.org/10.1021/cr300014x] [PMID: 22280456]
[4]
Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341(6149), 1230444.
[http://dx.doi.org/10.1126/science.1230444] [PMID: 23990564]
[5]
McGuire, C.V.; Forgan, R.S. The surface chemistry of metal-organic frameworks. Chem. Commun. (Camb.), 2015, 51(25), 5199-5217.
[http://dx.doi.org/10.1039/C4CC04458D] [PMID: 25116412]
[6]
Furukawa, H.; Ko, N.; Go, Y.B.; Aratani, N.; Choi, S.B.; Choi, E.; Yazaydin, A.Ö.; Snurr, R.Q.; O’Keeffe, M.; Kim, J.; Yaghi, O.M. Ultra-high porosity in metal-organic frameworks. Science, 2010, 329(5990), 424-428.
[http://dx.doi.org/10.1126/science.1192160] [PMID: 20595583]
[7]
Klimakow, M.; Klobes, P.; Thünemann, A.F.; Rademann, K.; Emmerling, F. Mechanochemical synthesis of metal-organic frameworks: A fast and facile approach toward quantitative yields and high specific surface areas. Chem. Mater., 2010, 22(18), 5216-5221.
[http://dx.doi.org/10.1021/cm1012119]
[8]
Seetharaj, R.; Vandana, P.V.; Arya, P.; Mathew, S. Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arab. J. Chem., 2019, 12(3), 295-315.
[http://dx.doi.org/10.1016/j.arabjc.2016.01.003]
[9]
Klinowski, J.; Paz, F.A.; Silva, P.; Rocha, J. Microwave-assisted synthesis of metal-organic frameworks. Dalton Trans., 2011, 40(2), 321-330.
[http://dx.doi.org/10.1039/C0DT00708K] [PMID: 20963251]
[10]
Tansell, A.J.; Jones, C.L.; Easun, T.L. MOF the beaten track: Unusual structures and uncommon applications of metal-organic frame-works. Chem. Cent. J., 2017, 11(1), 100.
[http://dx.doi.org/10.1186/s13065-017-0330-0] [PMID: 29086865]
[11]
Sholl, D.S.; Lively, R.P. Defects in metal-organic frameworks: Challenge or opportunity? J. Phys. Chem. Lett., 2015, 6(17), 3437-3444.
[http://dx.doi.org/10.1021/acs.jpclett.5b01135] [PMID: 26268796]
[12]
Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H. Tuneable nature of metal organic frameworks as heterogeneous solid catalysts for alcohol oxidation. Chem. Commun. (Camb.), 2017, 53(79), 10851-10869.
[http://dx.doi.org/10.1039/C7CC05927B] [PMID: 28936534]
[13]
Sajid, M. Toxicity of nanoscale metal organic frameworks: A perspective. Environ. Sci. Pollut. Res. Int., 2016, 23(15), 14805-14807.
[http://dx.doi.org/10.1007/s11356-016-7053-y] [PMID: 27300166]
[14]
Dufort, S.; Sancey, L.; Coll, J-L. Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolu-tion. Adv. Drug Deliv. Rev., 2012, 64(2), 179-189.
[http://dx.doi.org/10.1016/j.addr.2011.09.009] [PMID: 21983079]
[15]
Liu, R.; Li, D.; He, B.; Xu, X.; Sheng, M.; Lai, Y.; Wang, G.; Gu, Z. Anti-tumor drug delivery of pH-sensitive poly(ethylene glycol)-poly(L-histidine-)-poly(L-lactide) nanoparticles. J. Control. Release, 2011, 152(1), 49-56.
[16]
Kwon, G.S.; Kataoka, K. Block copolymer micelles as long-circulating drug vehicles. Adv. Drug Deliv. Rev., 1995, 16(2), 295-309.
[http://dx.doi.org/10.1016/0169-409X(95)00031-2]
[17]
Kwon, G.S.; Okano, T. Polymeric micelles as new drug carriers. Adv. Drug Deliv. Rev., 1996, 21(2), 107-116.
[http://dx.doi.org/10.1016/S0169-409X(96)00401-2]
[18]
Tibbetts, I.; Kostakis, G.E. Recent bio-advances in metal-organic frameworks. Molecules, 2020, 25(6), E1291.
[http://dx.doi.org/10.3390/molecules25061291] [PMID: 32178399]
[19]
Gaumet, M.; Vargas, A.; Gurny, R.; Delie, F. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm., 2008, 69(1), 1-9.
[http://dx.doi.org/10.1016/j.ejpb.2007.08.001] [PMID: 17826969]
[20]
Dalrymple, S.A.; Shimizu, G.K.H. Crystal engineering of a permanently porous network sustained exclusively by charge-assisted hydro-gen bonds. J. Am. Chem. Soc., 2007, 129(40), 12114-12116.
[http://dx.doi.org/10.1021/ja076094v] [PMID: 17880091]
[21]
Yang, W.; Feng, J.; Zhang, H. Facile and rapid fabrication of nanostructured lanthanide coordination polymers as selective luminescent probes in aqueous solution. J. Mater. Chem., 2012, 22(14), 6819-6823.
[http://dx.doi.org/10.1039/c2jm16344f]
[22]
Horcajada, P.; Serre, C.; Grosso, D.; Boissière, C.; Perruchas, S.; Sanchez, C.; Férey, G. Colloidal route for preparing optical thin films of nanoporous metal-organic frameworks. Adv. Mater., 2009, 21(19), 1931-1935.
[http://dx.doi.org/10.1002/adma.200801851]
[23]
Rieter, W.J.; Taylor, K.M.L.; An, H.; Lin, W.; Lin, W. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J. Am. Chem. Soc., 2006, 128(28), 9024-9025.
[http://dx.doi.org/10.1021/ja0627444] [PMID: 16834362]
[24]
Hatakeyama, W.; Sanchez, T.J.; Rowe, M.D.; Serkova, N.J.; Liberatore, M.W.; Boyes, S.G. Synthesis of gadolinium nanoscale metal-organic framework with hydrotropes: Manipulation of particle size and magnetic resonance imaging capability. ACS Appl. Mater. Interfaces, 2011, 3(5), 1502-1510.
[http://dx.doi.org/10.1021/am200075q] [PMID: 21456529]
[25]
Bhat, M.; Gaikar, V.G. Characterization of interaction between butylbenzene sulfonates and cetyl pyridinium chloride in a mixed aggregate system. Langmuir, 2000, 16(4), 1580-1592.
[http://dx.doi.org/10.1021/la9906119]
[26]
Prabhakar, P.K.; Raj, S.; Anuradha, P.R.; Sawant, S.N.; Doble, M. Biocompatibility studies on polyaniline and polyaniline-silver nanopar-ticle coated polyurethane composite. Colloids Surf. B Biointerfaces, 2011, 86(1), 146-153.
[http://dx.doi.org/10.1016/j.colsurfb.2011.03.033] [PMID: 21501952]
[27]
Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev., 2012, 112(2), 1232-1268.
[http://dx.doi.org/10.1021/cr200256v] [PMID: 22168547]
[28]
Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J-S.; Hwang, Y.K.; Marsaud, V.; Bories, P-N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Porous metal-organic-framework nanoscale carri-ers as a potential platform for drug delivery and imaging. Nat. Mater., 2010, 9(2), 172-178.
[http://dx.doi.org/10.1038/nmat2608] [PMID: 20010827]
[29]
Imaz, I.; Rubio-Martínez, M.; García-Fernández, L.; García, F.; Ruiz-Molina, D.; Hernando, J.; Puntes, V.; Maspoch, D. Coordination pol-ymer particles as potential drug delivery systems. Chem. Commun. (Camb.), 2010, 46(26), 4737-4739.
[http://dx.doi.org/10.1039/c003084h] [PMID: 20485835]
[30]
Rieter, W.J.; Pott, K.M.; Taylor, K.M.L.; Lin, W. Nanoscale coordination polymers for platinum-based anticancer drug delivery. J. Am. Chem. Soc., 2008, 130(35), 11584-11585.
[http://dx.doi.org/10.1021/ja803383k] [PMID: 18686947]
[31]
Shyngys, M.; Ren, J.; Liang, X.; Miao, J.; Blocki, A.; Beyer, S. Metal-Organic Framework (MOF)-based biomaterials for tissue engineering and regenerative medicine. Front. Bioeng. Biotechnol., 2021, 9(96), 603608.
[http://dx.doi.org/10.3389/fbioe.2021.603608] [PMID: 33777907]
[32]
Keskin, S. Kızılel, S. Biomedical applications of metal organic frameworks. Ind. Eng. Chem. Res., 2011, 50(4), 1799-1812.
[http://dx.doi.org/10.1021/ie101312k]
[33]
Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev., 2008, 37(1), 191-214.
[http://dx.doi.org/10.1039/B618320B] [PMID: 18197340]
[34]
Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal-organic frameworks as efficient materials for drug de-livery. Angew. Chem. Int. Ed., 2006, 45(36), 5974-5978.
[http://dx.doi.org/10.1002/anie.200601878] [PMID: 16897793]
[35]
Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chemistry, 2004, 10(6), 1373-1382.
[http://dx.doi.org/10.1002/chem.200305413] [PMID: 15034882]
[36]
Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N.A.; Balas, F.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc., 2008, 130(21), 6774-6780.
[http://dx.doi.org/10.1021/ja710973k] [PMID: 18454528]
[37]
Rojas, S.; Baati, T.; Njim, L.; Manchego, L.; Neffati, F.; Abdeljelil, N.; Saguem, S.; Serre, C.; Najjar, M.F.; Zakhama, A.; Horcajada, P. Metal-organic frameworks as efficient oral detoxifying agents. J. Am. Chem. Soc., 2018, 140(30), 9581-9586.
[http://dx.doi.org/10.1021/jacs.8b04435] [PMID: 29989808]
[38]
Vale, J.A.; Kulig, K. Position paper: Gastric lavage. J. Toxicol. Clin. Toxicol., 2004, 42(7), 933-943.
[http://dx.doi.org/10.1081/CLT-200045006] [PMID: 15641639]
[39]
Chyka, P.A.; Seger, D.; Krenzelok, E.P.; Vale, J.A. Position paper: Single-dose activated charcoal. Clin. Toxicol. (Phila.), 2005, 43(2), 61-87.
[http://dx.doi.org/10.1081/CLT-51867] [PMID: 15822758]
[40]
Betten, D.P.; Vohra, R.B.; Cook, M.D.; Matteucci, M.J.; Clark, R.F. Antidote use in the critically ill poisoned patient. J. Intensive Care Med., 2006, 21(5), 255-277.
[http://dx.doi.org/10.1177/0885066606290386] [PMID: 16946442]
[41]
Graham, L.M.; Nguyen, T.M.; Lee, S.B. Nanodetoxification: Emerging role of nanomaterials in drug intoxication treatment. Nanomedicine (Lond.), 2011, 6(5), 921-928.
[http://dx.doi.org/10.2217/nnm.11.75] [PMID: 21793680]
[42]
Liu, Y.; Eubank, J.F.; Cairns, A.J.; Eckert, J.; Kravtsov, V.Ch.; Luebke, R.; Eddaoudi, M. Assembly of metal-organic frameworks (MOFs) based on indium-trimer building blocks: A porous MOF with soc topology and high hydrogen storage. Angew. Chem. Int. Ed., 2007, 46(18), 3278-3283.
[http://dx.doi.org/10.1002/anie.200604306] [PMID: 17385775]
[43]
Eubank, J.F.; Wheatley, P.S.; Lebars, G.; McKinlay, A.C.; Leclerc, H.; Horcajada, P.; Daturi, M.; Vimont, A.; Morris, R.E.; Serre, C. Po-rous, rigid metal(III)-carboxylate metal-organic frameworks for the delivery of nitric oxide. APL Mater., 2014, 2(12), 124112.
[http://dx.doi.org/10.1063/1.4904069]
[44]
Gummin, D.D.; Mowry, J.B.; Spyker, D.A.; Brooks, D.E.; Osterthaler, K.M.; Banner, W. 2017 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 35th Annual Report. Clin. Toxicol. (Phila.), 2018, 56(12), 1213-1415.
[http://dx.doi.org/10.1080/15563650.2018.1533727] [PMID: 30576252]
[45]
Decker, W.J.; Corby, D.G.; Ibanez, J.D., Jr Aspirin adsorption with activated charcoal. Lancet, 1968, 1(7545), 754-755.
[http://dx.doi.org/10.1016/S0140-6736(68)92204-6] [PMID: 4170991]
[46]
Mensinger, Z.L.; Cook, B.L.; Wilson, E.L. Adsorption of amyloid beta peptide by metal-organic frameworks. ACS Omega, 2020, 5(51), 32969-32974.
[http://dx.doi.org/10.1021/acsomega.0c04019] [PMID: 33403258]
[47]
Rowe, M.D.; Thamm, D.H.; Kraft, S.L.; Boyes, S.G. Polymer-modified gadolinium metal-organic framework nanoparticles used as multi-functional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecules, 2009, 10(4), 983-993.
[http://dx.doi.org/10.1021/bm900043e] [PMID: 19290624]
[48]
Heppner, F.L.; Ransohoff, R.M.; Becher, B. Immune attack: The role of inflammation in Alzheimer disease. Nat. Rev. Neurosci., 2015, 16(6), 358-372.
[http://dx.doi.org/10.1038/nrn3880] [PMID: 25991443]
[49]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[50]
Herholz, K. Acetylcholine esterase activity in mild cognitive impairment and Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(Suppl. 1), S25-S29.
[http://dx.doi.org/10.1007/s00259-007-0699-4] [PMID: 18196237]
[51]
Karran, E.; Mercken, M.; De Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nat. Rev. Drug Discov., 2011, 10(9), 698-712.
[http://dx.doi.org/10.1038/nrd3505] [PMID: 21852788]
[52]
Scott, L.E.; Orvig, C. Medicinal inorganic chemistry approaches to passivation and removal of aberrant metal ions in disease. Chem. Rev., 2009, 109(10), 4885-4910.
[http://dx.doi.org/10.1021/cr9000176] [PMID: 19637926]
[53]
Teipel, S.J.; Wohlert, A.; Metzger, C.; Grimmer, T.; Sorg, C.; Ewers, M.; Meisenzahl, E.; Klöppel, S.; Borchardt, V.; Grothe, M.J.; Walter, M.; Dyrba, M. Multicenter stability of resting state fMRI in the detection of Alzheimer’s disease and amnestic MCI. Neuroimage Clin., 2017, 14, 183-194.
[http://dx.doi.org/10.1016/j.nicl.2017.01.018] [PMID: 28180077]
[54]
Huang, M.; Hu, M.; Song, Q.; Song, H.; Huang, J.; Gu, X.; Wang, X.; Chen, J.; Kang, T.; Feng, X.; Jiang, D.; Zheng, G.; Chen, H.; Gao, X. GM1-Modified lipoprotein-like nanoparticle: multifunctional nanoplatform for the combination therapy of Alzheimer’s Disease. ACS Nano, 2015, 9(11), 10801-10816.
[http://dx.doi.org/10.1021/acsnano.5b03124] [PMID: 26440073]
[55]
Gao, N.; Sun, H.; Dong, K.; Ren, J.; Qu, X. Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chemistry, 2015, 21(2), 829-835.
[http://dx.doi.org/10.1002/chem.201404562] [PMID: 25376633]
[56]
Brambilla, D.; Verpillot, R.; Le Droumaguet, B.; Nicolas, J.; Taverna, M. Kóňa, J.; Lettiero, B.; Hashemi, S.H.; De Kimpe, L.; Canovi, M.; Gobbi, M.; Nicolas, V.; Scheper, W.; Moghimi, S.M.; Tvaroška, I.; Couvreur, P.; Andrieux, K. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation: Toward engineering of functional nanomedicines for Alzheimer’s disease. ACS Nano, 2012, 6(7), 5897-5908.
[http://dx.doi.org/10.1021/nn300489k] [PMID: 22686577]
[57]
Yu, D.; Ma, M.; Liu, Z.; Pi, Z.; Du, X.; Ren, J.; Qu, X. MOF-encapsulated nanozyme enhanced siRNA combo: Control neural stem cell differentiation and ameliorate cognitive impairments in Alzheimer’s disease model. Biomaterials, 2020, 255, 120160.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120160] [PMID: 32540758]
[58]
Yu, D.; Guan, Y.; Bai, F.; Du, Z.; Gao, N.; Ren, J.; Qu, X. Metal-organic frameworks harness Cu chelating and photooxidation against amyloid β aggregation in vivo. Chemistry, 2019, 25(14), 3489-3495.
[http://dx.doi.org/10.1002/chem.201805835] [PMID: 30601592]
[59]
Taniguchi, A.; Shimizu, Y.; Oisaki, K.; Sohma, Y.; Kanai, M. Switchable photooxygenation catalysts that sense higher-order amyloid structures. Nat. Chem., 2016, 8(10), 974-982.
[http://dx.doi.org/10.1038/nchem.2550] [PMID: 27657874]
[60]
Binger, K.J.; Griffin, M.D.; Howlett, G.J. Methionine oxidation inhibits assembly and promotes disassembly of apolipoprotein C-II amy-loid fibrils. Biochemistry, 2008, 47(38), 10208-10217.
[http://dx.doi.org/10.1021/bi8009339] [PMID: 18729385]
[61]
Taniguchi, A.; Sasaki, D.; Shiohara, A.; Iwatsubo, T.; Tomita, T.; Sohma, Y.; Kanai, M. Attenuation of the aggregation and neurotoxicity of amyloid-β peptides by catalytic photooxygenation. Angew. Chem. Int. Ed. Engl., 2014, 53(5), 1382-1385.
[http://dx.doi.org/10.1002/anie.201308001] [PMID: 24339209]
[62]
Lee, J.S.; Lee, B.I.; Park, C.B. Photo-induced inhibition of Alzheimer’s β-amyloid aggregation in vitro by rose bengal. Biomaterials, 2015, 38, 43-49.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.058] [PMID: 25457982]
[63]
Wang, J.; Fan, Y.; Tan, Y.; Zhao, X.; Zhang, Y.; Cheng, C.; Yang, M. Porphyrinic metal-organic framework PCN-224 nanoparticles for near-infrared-induced attenuation of aggregation and neurotoxicity of Alzheimer’s amyloid-β peptide. ACS Appl. Mater. Interfaces, 2018, 10(43), 36615-36621.
[http://dx.doi.org/10.1021/acsami.8b15452] [PMID: 30338980]
[64]
Liu, J.; Yang, Y.; Zhu, W.; Yi, X.; Dong, Z.; Xu, X.; Chen, M.; Yang, K.; Lu, G.; Jiang, L.; Liu, Z. Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials, 2016, 97, 1-9.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.034] [PMID: 27155362]
[65]
Li, M.; Liu, Z.; Ren, J.; Qu, X. Inhibition of metal-induced amyloid aggregation using light-responsive magnetic nanoparticle prochelator conjugates. Chem. Sci. (Camb.), 2012, 3(3), 868-873.
[http://dx.doi.org/10.1039/C1SC00631B]
[66]
Ma, M.; Gao, N.; Sun, Y.; Ren, J.; Qu, X. A near-infrared responsive drug sequential release system for better eradicating amyloid aggre-gates. Small, 2017, 13(46), 1701817.
[http://dx.doi.org/10.1002/smll.201701817] [PMID: 29024506]
[67]
Wang, X.Z.; Du, J.; Xiao, N.N.; Zhang, Y.; Fei, L.; LaCoste, J.D.; Huang, Z.; Wang, Q.; Wang, X.R.; Ding, B. Driving force to detect Alz-heimer’s disease biomarkers: Application of a thioflavine T@Er-MOF ratiometric fluorescent sensor for smart detection of presenilin 1, amyloid β-protein and acetylcholine. Analyst (Lond.), 2020, 145(13), 4646-4663.
[http://dx.doi.org/10.1039/D0AN00440E] [PMID: 32458857]
[68]
Kepp, K.P. Bioinorganic chemistry of Alzheimer’s disease. Chem. Rev., 2012, 112(10), 5193-5239.
[http://dx.doi.org/10.1021/cr300009x] [PMID: 22793492]
[69]
Chételat, G. Alzheimer disease: Aβ-independent processes-rethinking preclinical AD. Nat. Rev. Neurol., 2013, 9(3), 123-124.
[http://dx.doi.org/10.1038/nrneurol.2013.21] [PMID: 23399647]
[70]
Jack, C.R., Jr; Knopman, D.S.; Jagust, W.J.; Shaw, L.M.; Aisen, P.S.; Weiner, M.W.; Petersen, R.C.; Trojanowski, J.Q. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol., 2010, 9(1), 119-128.
[http://dx.doi.org/10.1016/S1474-4422(09)70299-6] [PMID: 20083042]
[71]
Mangialasche, F.; Solomon, A.; Winblad, B.; Mecocci, P.; Kivipelto, M. Alzheimer’s disease: Clinical trials and drug development. Lancet Neurol., 2010, 9(7), 702-716.
[http://dx.doi.org/10.1016/S1474-4422(10)70119-8] [PMID: 20610346]
[72]
Mietelska-Porowska, A.; Wasik, U.; Goras, M.; Filipek, A.; Niewiadomska, G. Tau protein modifications and interactions: Their role in function and dysfunction. Int. J. Mol. Sci., 2014, 15(3), 4671-4713.
[http://dx.doi.org/10.3390/ijms15034671] [PMID: 24646911]
[73]
Scheltens, P.; Blennow, K.; Breteler, M.M.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; Van der Flier, W.M. Alzheimer’s disease. Lancet, 2016, 388(10043), 505-517.
[http://dx.doi.org/10.1016/S0140-6736(15)01124-1] [PMID: 26921134]
[74]
Kiss, R.; Csizmadia, G.; Solti, K.; Keresztes, A.; Zhu, M.; Pickhardt, M.; Mandelkow, E.; Tóth, G. Structural basis of small molecule tar-getability of monomeric tau protein. ACS Chem. Neurosci., 2018, 9(12), 2997-3006.
[http://dx.doi.org/10.1021/acschemneuro.8b00182] [PMID: 29944336]
[75]
O’Leary, J.C., III; Li, Q.; Marinec, P.; Blair, L.J.; Congdon, E.E.; Johnson, A.G.; Jinwal, U.K.; Koren, J., III; Jones, J.R.; Kraft, C.; Peters, M.; Abisambra, J.F.; Duff, K.E.; Weeber, E.J.; Gestwicki, J.E.; Dickey, C.A. Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden. Mol. Neurodegener., 2010, 5, 45.
[http://dx.doi.org/10.1186/1750-1326-5-45] [PMID: 21040568]
[76]
Chen, Q.; Du, Y.; Zhang, K.; Liang, Z.; Li, J.; Yu, H.; Ren, R.; Feng, J.; Jin, Z.; Li, F.; Sun, J.; Zhou, M.; He, Q.; Sun, X.; Zhang, H.; Tian, M.; Ling, D. tau-targeted multifunctional nanocomposite for combinational therapy of Alzheimer’s disease. ACS Nano, 2018, 12(2), 1321-1338.
[http://dx.doi.org/10.1021/acsnano.7b07625] [PMID: 29364648]
[77]
He, C.; Liu, D.; Lin, W. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev., 2015, 115(19), 11079-11108.
[http://dx.doi.org/10.1021/acs.chemrev.5b00125] [PMID: 26312730]
[78]
Cai, W.; Chu, C.C.; Liu, G.; Wáng, Y.X. Metal-organic framework-based nanomedicine platforms for drug delivery and molecular imaging. Small, 2015, 11(37), 4806-4822.
[http://dx.doi.org/10.1002/smll.201500802] [PMID: 26193176]
[79]
Gao, X.; Zhai, M.; Guan, W.; Liu, J.; Liu, Z.; Damirin, A. Controllable synthesis of a smart multifunctional nanoscale metal-organic framework for magnetic resonance/optical imaging and targeted drug delivery. ACS Appl. Mater. Interfaces, 2017, 9(4), 3455-3462.
[http://dx.doi.org/10.1021/acsami.6b14795] [PMID: 28079361]
[80]
Ulhakim, M.T.; Rezki, M.; Dewi, K.K.; Abrori, S.A.; Harimurti, S.; Septiani, N.L.W.; Kurnia, K.A.; Setyaningsih, W.; Darmawan, N.; Yuliarto, B. Review-recent trend on two-dimensional metal-organic frameworks for electrochemical biosensor application. J. Electrochem. Soc., 2020, 167(13), 136509.
[http://dx.doi.org/10.1149/1945-7111/abb6cc]
[81]
Simon-Yarza, T.; Mielcarek, A.; Couvreur, P.; Serre, C. Nanoparticles of metal-organic frameworks: On the road to in vivo efficacy in biomedicine. Adv. Mater., 2018, 30(37), e1707365.
[http://dx.doi.org/10.1002/adma.201707365] [PMID: 29876985]
[82]
Della Rocca, J.; Liu, D.; Lin, W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res., 2011, 44(10), 957-968.
[http://dx.doi.org/10.1021/ar200028a] [PMID: 21648429]
[83]
Zeng, J-Y.; Wang, X-S.; Song, W-F.; Cheng, H.; Zhang, X-Z. Metal-organic framework mediated multifunctional nanoplatforms for cancer therapy. Adv. Ther. (Weinh.), 2019, 2(2), 1800100.
[http://dx.doi.org/10.1002/adtp.201800100]
[84]
Zhao, J.; Yin, F.; Ji, L.; Wang, C.; Shi, C.; Liu, X.; Yang, H.; Wang, X.; Kong, L. Development of a Tau-targeted drug delivery system us-ing a multifunctional nanoscale metal-organic framework for Alzheimer’s disease therapy. ACS Appl. Mater. Interfaces, 2020, 12(40), 44447-44458.
[http://dx.doi.org/10.1021/acsami.0c11064] [PMID: 32897042]
[85]
Walji, A.M.; Hostetler, E.D.; Selnick, H.; Zeng, Z.; Miller, P.; Bennacef, I.; Salinas, C.; Connolly, B.; Gantert, L.; Holahan, M.; O’Malley, S.; Purcell, M.; Riffel, K.; Li, J.; Balsells, J. OBrien, J.A.; Melquist, S.; Soriano, A.; Zhang, X.; Ogawa, A.; Xu, S.; Joshi, E.; Della Rocca, J.; Hess, F.J.; Schachter, J.; Hesk, D.; Schenk, D.; Struyk, A.; Babaoglu, K.; Lohith, T.G.; Wang, Y.; Yang, K.; Fu, J.; Evelhoch, J.L.; Cole-man, P.J. Discovery of 6-(Fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([(18)F]-MK-6240): A Positron Emission Tomography (PET) imaging agent for quantification of Neurofibrillary Tangles (NFTs). J. Med. Chem., 2016, 59(10), 4778-4789.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00166] [PMID: 27088900]
[86]
Kubíček, V.; Böhmová, Z.; Ševčíková, R.; Vaněk, J.; Lubal, P.; Poláková, Z.; Michalicová, R.; Kotek, J.; Hermann, P. NOTA complexes with copper(II) and divalent metal ions: kinetic and thermodynamic studies. Inorg. Chem., 2018, 57(6), 3061-3072.
[http://dx.doi.org/10.1021/acs.inorgchem.7b02929] [PMID: 29488748]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy