Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

The Expedition of Azido-reductive Cyclization Approaches Towards Various Heterocycles

Author(s): Jay Prakash Soni, Nayan Arvind Jadhav and Nagula Shankaraiah*

Volume 26, Issue 4, 2022

Published on: 19 April, 2022

Page: [382 - 398] Pages: 17

DOI: 10.2174/1385272826666220218095203

Price: $65

Abstract

Organic azides are placed in the interphase between chemistry, biology, medicine, and materials science. Their uses in peptide chemistry, combinatorial chemistry, and the synthesis of heterocycles are extensively explored. In this review, the focus is placed on the azidoreductive cyclization of azides and detailed its significant insights. The wide-ranging literature for synthesizing various heterocycles, employing chemoselective and straightforward protocols for azido-reduction with concomitant intramolecular cyclization, has been elaborated. In due course, the azido-reductive cyclization strategy witnessed the synthesis of essential heterocycles, such as benzodiazepine, quinazolinone, piperidine, pyrrole and their derivatives. In addition, the review includes application of azido-reductive cyclization strategies towards the synthesis of various iminosugars, drugs/APIs, and natural products embedding such heterocycles.

Keywords: Aza-sugars, azido-reductive cyclization, benzodiazepines, lactams, pyrroles, quinazolinones.

Graphical Abstract
[1]
(a) Griess, P. On a new class of compounds containing nitrogen, in which hydrogen is replaced by nitrogen. Philos. Trans. R. Soc. Lond., 1864, 13, 377.
(b) Curtius, T. Ueber Stickstoffwasserstoffsäure (Azoimid) N3H. Eur. J. Inorg. Chem., 1890, 23, 3023-3033.
(c) Scriven, E.F.V.; Turnbull, K. Azides: Their preparation and synthetic uses. Chem. Rev., 1988, 88(2), 297-368.
[http://dx.doi.org/10.1021/cr00084a001]
[2]
Boyer, J.H.; Canter, F.C. Alkyl and aryl azides. Chem. Rev., 1954, 54(1), 1-57.
[http://dx.doi.org/10.1021/cr60167a001]
[3]
Boyer, J.H.; Hamer, J. The acid-catalyzed reaction of alkyl azides upon carbonyl compounds. J. Am. Chem. Soc., 1955, 77(4), 951-954.
[http://dx.doi.org/10.1021/ja01609a045]
[4]
Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic azides: An exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed., 2005, 44(33), 5188-5240.
[http://dx.doi.org/10.1002/anie.200400657] [PMID: 16100733]
[5]
Brase, S.; Banert, K. Organic azides: Syntheses and applications, 1st ed; John Wiley & Sons: UK, 2010.
[6]
Curtius, T. Hydrazides and azides of organic acids. Adv. Synth. Catal., 1894, 50, 275-294.
[7]
Ge, L.; Chiou, M.; Li, Y.; Bao, H. Radical azidation as a means of constructing C(SP3)-N3 bonds. Green Synth. Catal., 2020, 1(2), 86-120.
[http://dx.doi.org/10.1016/j.gresc.2020.07.001]
[8]
Sutton, L.E. Structure of azides, from their electric dipole moment. Nature, 1931, 128(3232), 639.
[http://dx.doi.org/10.1038/128639a0]
[9]
Pauling, L.; Brockway, L.O. The adjacent charge rule and the structure of methyl azide, methyl nitrate, and fluorine nitrate. J. Am. Chem. Soc., 1937, 59(1), 13-20.
[http://dx.doi.org/10.1021/ja01280a005]
[10]
Huanga, D.; Yana, G. Recent advances in reactions of azides. Adv. Synth. Catal., 2017, 359(10), 1600-1619.
[http://dx.doi.org/10.1002/adsc.201700103]
[11]
Kamal, A.; Reddy, K.L.; Devaiah, V.; Shankaraiah, N.; Reddy, D.R. Recent advances in the solid-phase combinatorial synthetic strategies for the benzodiazepine based privileged structures. Mini Rev. Med. Chem., 2006, 6(1), 53-69.
[http://dx.doi.org/10.2174/138955706775197875] [PMID: 16457632]
[12]
Kamal, A.; Reddy, K.L.; Devaiah, V.; Shankaraiah, N.; Rao, M.V. Recent advances in the solid-phase combinatorial synthetic strategies for the quinoxaline, quinazoline and benzimidazole based privileged structures. Mini Rev. Med. Chem., 2006, 6(1), 71-89.
[http://dx.doi.org/10.2174/138955706775197839] [PMID: 16457633]
[13]
Kamal, A.; Azeeza, S.; Bharathi, E.V.; Malik, M.S.; Shetti, R.V.C.R.N.C. Search for new and novel chemotherapeutics for the treatment of human malignancies. Mini Rev. Med. Chem., 2010, 10(5), 405-435.
[http://dx.doi.org/10.2174/138955710791330918] [PMID: 20370699]
[14]
Fu, J. Zanoni, G.; Anderson, E.A.; Bi, X. α-Substituted vinyl azides: An emerging functionalized alkene. Chem. Soc. Rev., 2017, 46(23), 7208-7228.
[http://dx.doi.org/10.1039/C7CS00017K] [PMID: 29125611]
[15]
Xi, W.; Scott, T.F.; Kloxin, C.J.; Bowman, C.N. Click chemistry in materials science. Adv. Funct. Mater., 2014, 24(18), 2572-2590.
[http://dx.doi.org/10.1002/adfm.201302847]
[16]
Stanovnik, B. Application of organic azides in the synthesis of heterocyclic systems. Adv. Heterocycl. Chem., 2020, 130, 145-194.
[http://dx.doi.org/10.1016/bs.aihch.2019.10.005]
[17]
Arora, N.; Dhiman, P.; Kumar, S.; Singh, G.; Monga, V. Recent advances in synthesis and medicinal chemistry of benzodiazepines. Bioorg. Chem., 2020, 97, 103668.
[http://dx.doi.org/10.1016/j.bioorg.2020.103668] [PMID: 32106040]
[18]
Tornieporth-Oetting, I.C.; Klapotke, T.M. Covalent inorganic azides. Angew. Chem. Int. Ed. Engl., 1995, 34(5), 511-520.
[http://dx.doi.org/10.1002/anie.199505111]
[19]
Schock, M.; Bräse, S. Reactive & efficient: Organic azides as cross-linkers in material sciences. Molecules, 2020, 25(4), 1009.
[http://dx.doi.org/10.3390/molecules25041009] [PMID: 32102403]
[20]
(a) Goswami, M.; Bruin, B. Metal-catalyzed azidation of organic molecules. Eur. J. Org. Chem., 2017, 2017(8), 1152-1176.
[http://dx.doi.org/10.1002/ejoc.201601390]
(b) Hayashi, H.; Kaga, A.; Chiba, S. Application of vinyl azides in chemical synthesis: A recent update J. Org. Chem., 2017, 82(23), 11981-11989.
[http://dx.doi.org/10.1021/acs.joc.7b02455] [PMID: 29091436]
[21]
Amantini, D.; Fringuelli, F.; Pizza, F.; Vaccaro, L. Selected methods for the reduction of the azido group. Org. Prep. Proced. Int., 2002, 34(2), 109-147.
[http://dx.doi.org/10.1080/00304940209355751]
[22]
(a) Huisgen, R. Cycloaddition mechanism and the solvent dependence of rate. Pure Appl. Chem., 1980, 52(10), 2283-2302.
[http://dx.doi.org/10.1351/pac198052102283]
(b) Truong, T.N. Solvent effects on structure and reaction mechanism: A theoretical study of [2+2] polar cycloaddition between ketene and imine. J. Phys. Chem. B, 1998, 102(40), 7877-7881.
[http://dx.doi.org/10.1021/jp9816263]
[23]
Shankaraiah, N.; Sakla, A.P.; Laxmikeshav, K.; Tokala, R. Reliability of click chemistry on drug discovery: A personal account. Chem. Rec., 2020, 20(4), 253-272.
[http://dx.doi.org/10.1002/tcr.201900027] [PMID: 31419056]
[24]
da Costa, G.P.; Bach, M.F.; de Moraes, M.C.; Barcellos, T.; Lenardão, E.J.; Silvaa, M.S.; Alvesa, D. Sequential organocatalytic synthesis of [1,2,3]triazolo[1,5-a]quinolines. Adv. Synth. Catal., 2020, 362(22), 5044-5055.
[http://dx.doi.org/10.1002/adsc.202000887]
[25]
Dimroth, O. About synthesis of derivatives of 1,2,3-triazoles. Eur. J. Inorg. Chem., 1902, 35, 1029-1038.
[26]
Swamy, K.C.K.; Kumar, N.N.B.; Balaraman, E.; Kumar, K.V. Mitsunobu and related reactions: Advances and applications. Chem. Rev., 2009, 109(6), 2551-2651.
[http://dx.doi.org/10.1021/cr800278z] [PMID: 19382806]
[27]
Cenini, S.; Ragaini, F.; Gallo, E.; Caselli, A. Synthesis of heterocycles by intramolecular cyclization of organic azides. Curr. Org. Chem., 2011, 15(10), 1578-1592.
[http://dx.doi.org/10.2174/138527211795378164]
[28]
Gomes, R.S.; Jardim, G.A.M.; Carvalho, R.L.; Araujo, M.H.; Junior, E.N.D.S. Beyond copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition: Synthesis and mechanism insights. Tetrahedron, 2019, 75(27), 3697-3712.
[http://dx.doi.org/10.1016/j.tet.2019.05.046]
[29]
Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J., 2011, 6(10), 2696-2718.
[http://dx.doi.org/10.1002/asia.201100432] [PMID: 21954075]
[30]
Soni, J.P.; Kadagathur, M.; Shankaraiah, N. Recent updates on azido-reductive cyclization approaches: Syntheses of aza-heterocyclic frameworks. Asian J. Org. Chem., 2021, 10(12), 3186-3200.
[http://dx.doi.org/10.1002/ajoc.202100621]
[31]
(a) Barbui, C.; Cipriani, A.; Patel, V.; Ayuso-Mateos, J.L.; van Ommeren, M. Efficacy of antidepressants and benzodiazepines in minor depression: Systematic review and meta-analysis. Br. J. Psychiatry, 2011, 198(1), 11-16, 1.
[http://dx.doi.org/10.1192/bjp.bp.109.076448] [PMID: 21200071]
(b) Leimgruber, W. Stefanović V.; Schenker, F.; Karr, A.; Berger, J. Isolation and characterization of anthramycin, a new antitumor antibiotic. J. Am. Chem. Soc., 1965, 87(24), 5791-5793.
[http://dx.doi.org/10.1021/ja00952a050] [PMID: 5845427]
[32]
(a) Kamal, A.; Rao, M.V.; Laxman, N.; Ramesh, G.; Reddy, G.S. Recent developments in the design, synthesis and structure-activity relationship studies of pyrrolo[2,1-c][1,4]benzodiazepines as DNA-interactive antitumour antibiotics. Curr. Med. Chem. Anticancer Agents, 2002, 2(2), 215-254.
[http://dx.doi.org/10.2174/1568011023354119] [PMID: 12678745]
(b) Annor-Gyamfi, J.K.; Jarrett, J.M.; Osazee, J.O.; Bialonska, D.; Whitted, C.; Palau, V.E.; Shilabin, A.G. Synthesis and biological activity of fused tetracyclic pyrrolo[2,1-c][1,4]benzodiazepines. Heliyon, 2018, 4(2), e00539.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00539] [PMID: 29560454]
(c) Antonow, D.; Thurston, D.E. Synthesis of DNA-interactive pyrrolo[2,1-c][1,4]benzodiazepines (PBDs). Chem. Rev., 2011, 111(4), 2815-2864.
[http://dx.doi.org/10.1021/cr100120f] [PMID: 21166464]
[33]
Kamal, A.; Reddy, B.P.; Reddy, B.N. Synthesis of pyrrolo[2,1-c][1,4]benzodiazepine via azido reductive cyclization with HMDST. Tetrahedron Lett., 1996, 37(37), 6803-6806.
[http://dx.doi.org/10.1016/S0040-4039(96)01484-0]
[34]
Kamal, A.; Damayanthi, Y.; Reddy, B.P.; Reddy, B.N. Novel biocatalytic reduction of aryl azides: Chemoenzymatic synthesis of pyrrolo[2,1-c][1,4]benzodiazepine antibiotics. Chem. Commun. (Camb.), 1997, 11(11), 1015-1016.
[http://dx.doi.org/10.1039/a701249g]
[35]
(a)Langley, D.R.; Thurston, D.E. A versatile and efficient synthesis of carbinolamine-containing pyrrolo[1,4]benzodiazepines via the cyclization of N-(2-aminobenzoyl)pyrrolidine-2-carboxaldehyde diethyl thioacetals: Total synthesis of prothracarcin. J. Org. Chem., 1987, 52(1), 91-97.
[http://dx.doi.org/10.1021/jo00377a016]
(b)Kamal, A.; Reddy, B.P.; Reddy, B.N. A new facile procedure for the preparation of pyrrolo[2,1-c][1,4]benzodiazepines: Synthesis of antibiotic DC-81 and its thio analogue. Tetrahedron Lett., 1996, 37(13), 2281-2284.
[http://dx.doi.org/10.1016/0040-4039(96)00243-2]
(c)Thurston, D.E.; Bose, D.S. Synthesis of DNA-interactive pyrrolo[2,1- c][1,4]benzodiazepines. Chem. Rev., 1994, 94(2), 433-465.
[http://dx.doi.org/10.1021/cr00026a006]
[36]
Kamal, A.; Reddy, B.N. A mild and facile reduction of azides to amines by N,N-dimethylhydrazine and catalytic ferric chloride. Chem. Lett., 1998, 7(7), 593-594.
[http://dx.doi.org/10.1246/cl.1998.593]
[37]
Kamal, A.; Rao, N.V.; Laxman, E. Iodotrimethylsilane: A mild and efficient reagent for the reduction of azides to amines. Tetrahedron Lett., 1997, 38(39), 6945-6948.
[http://dx.doi.org/10.1016/S0040-4039(97)01628-6]
[38]
Kamal, A.; Laxman, E.; Laxman, N.; Rao, N.V. Synthesis of pyrrolo[2,1-c[1,4]benzodiazepines via reductive cyclization of ω-azido carbonyl compounds by TMSI: An efficient preparation of antibiotic DC-81 and its dimers. Bioorg. Med. Chem. Lett., 2000, 10(20), 2311-2313.
[http://dx.doi.org/10.1016/S0960-894X(00)00468-6] [PMID: 11055345]
[39]
Malm, J.; Hornfeldt, A.B.; Gronowitz, S. On the synthesis of thieno[c]-fused 1,5-naphthyridine-9-oxides and 5-oxides. Heterocycles, 1993, 35(1), 245-262.
[http://dx.doi.org/10.3987/COM-92-S10]
[40]
Kamal, A.; Laxman, E.; Arifuddin, M. An efficient reduction of azides to amines: Synthesis of DNA-interactive pyrrolo[2,1-c][1,4]benzodiazepines. Tetrahedron Lett., 2000, 41(40), 7743-7746.
[http://dx.doi.org/10.1016/S0040-4039(00)01319-8]
[41]
Kamal, A.; Laxman, E.; Reddy, P.S. Reductive cyclization of ω-azido/nitro carbonyl compounds by samarium iodide: A facile preparation of DNA-binding pyrrolo[2,1-c][1,4]benzodiazepine and its dimers. Tetrahedron Lett., 2000, 41(44), 8631-8634.
[http://dx.doi.org/10.1016/S0040-4039(00)01524-0]
[42]
Kamal, A.; Reddy, G.S.; Reddy, K.L. Efficient reduction of aromatic nitro/azido groups on solid support employing indium: Synthesis of pyrrolo[2,1-c][1,4]benzodiazepine-5,11-diones. Tetrahedron Lett., 2001, 42(39), 6969-6971.
[http://dx.doi.org/10.1016/S0040-4039(01)01435-6]
[43]
Kamal, A.; Reddy, P.S.; Reddy, D.R. Simple and facile reduction of azides to amines: Synthesis of DNA interactive pyrrolo[2,1-c][1,4]benzodiazepines. Tetrahedron Lett., 2002, 43(37), 6629-6631.
[http://dx.doi.org/10.1016/S0040-4039(02)01453-3]
[44]
Kamal, A.; Reddy, K.L.; Devaiah, V.; Reddy, G.S. Facile reduction of aromatic nitro/azido functionality on solid support employing Al/NiCl2·6H2O and Al/NH4Cl: Synthesis of pyrrolo[2,1-c][1,4]benzodiazepines. Tetrahedron Lett., 2003, 44(25), 4741-4745.
[http://dx.doi.org/10.1016/S0040-4039(03)01049-9]
[45]
Kamal, A.; Reddy, K.S.; Prasad, B.R.; Babu, A.H.; Ramana, A.V. Microwave enhanced reduction of nitro and azido arenes to N-arylformamides employing Zn-HCOONH4: Synthesis of 4(3H)-quinazolinones and pyrrolo[2,1-c][1,4]benzodiazepines. Tetrahedron Lett., 2004, 45(34), 6517-6521.
[http://dx.doi.org/10.1016/j.tetlet.2004.06.112]
[46]
Kamal, A.; Shankaraiah, N.; Markandeya, N.; Reddy, C.S. An efficient selective reduction of aromatic azides to amines employing BF3·OEt2/NaI: Synthesis of pyrrolo-benzodiazepines. Synlett, 2008, 2008(9), 1297-1300.
[http://dx.doi.org/10.1055/s-2008-1072742]
[47]
Kamal, A.; Ramana, A.V.; Reddy, K.S.; Ramana, K.V.; Babu, A.H.; Prasad, B.R. One pot conversion of azido arenes to N-arylacetamides and N-arylformamides: Synthesis of 1,4-benzodiazepine-2,5-diones and fused [2,1-b]quinazolinones. Tetrahedron Lett., 2004, 45(44), 8187-8190.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.046]
[48]
Shankaraiah, N.; Markandeya, N.; Espinoza-Moraga, M.; Arancibia, C.; Kamal, A.; Santos, L.S. One-pot microwave-assisted selective azido reduction/tandem cyclization in condensed and solid phase with nickel boride, synthesis. ChemInform, 2009, 40(50), 2163-2170.
[49]
Kamal, A.; Babu, A.H.; Ramana, A.V.; Ramana, K.V.; Bharathi, E.V.; Kumar, M.S. Synthesis of pyrrolo[2,1-c][1,4]benzodiazepines and their conjugates by azido reduc-tive cyclization strategy as potential DNA-binding agents. Bioorg. Med. Chem. Lett., 2005, 15(10), 2621-2623.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.051] [PMID: 15863329]
[50]
Kamal, A.; Shankaraiah, N.; Reddy, K.L.; Devaiah, V. Selective reduction of aromatic azides in solution/solid phase and resin cleavage by employing BF3·Oet2/EtSH: Preparation of DC-81. Tetrahedron Lett., 2006, 47(25), 4253-4257.
[http://dx.doi.org/10.1016/j.tetlet.2006.04.025]
[51]
Kamal, A.; Shankaraiah, N.; Markandeya, N.; Reddy, K.L.; Reddy, C.S. A facile intramolecular azido/amido reductive cyclization approach: Synthesis of pyrrolobenzo-diazepines and their dimers. Tetrahedron Lett., 2008, 49(9), 1465-1468.
[http://dx.doi.org/10.1016/j.tetlet.2008.01.004]
[52]
Kamal, A.; Markandeya, N.; Shankaraiah, N.; Reddy, C.R.; Prabhakar, S.; Reddy, C.S.; Eberlin, M.N.; Silva Santos, L. Chemoselective aromatic azido reduction with concomitant aliphatic azide employing Al/Gd triflates/NaI and ESI-MS mechanistic studies. Chemistry, 2009, 15(29), 7215-7224.
[http://dx.doi.org/10.1002/chem.200900853] [PMID: 19544509]
[53]
Markandeya, N.; Shankaraiah, N.; Reddy, C.S.; Santos, L.S.; Kamal, A. Asymmetric syntheses of piperidino-benzodiazepines through ‘cation-pool’ host/guest supramo-lecular approach and their DNA-binding studies. Tetrahedron Asymmet., 2010, 21(21-22), 2625-2630.
[http://dx.doi.org/10.1016/j.tetasy.2010.10.030]
[54]
Shankaraiah, N.; Markandeya, N.; Srinivasulu, V.; Sreekanth, K.; Reddy, C.S.; Santos, L.S.; Kamal, A. A one-pot azido reductive tandem mono-N-alkylation employing dialkylboron triflates: Online ESI-MS mechanistic investigation. J. Org. Chem., 2011, 76(17), 7017-7026.
[http://dx.doi.org/10.1021/jo200931m] [PMID: 21776991]
[55]
Kamal, A.; Prabhakar, S.; Shankaraiah, N.; Markandeya, N.; Reddy, P.V.; Srinivasulu, V.; Sathish, M. AlCl3-NaI assisted cleavage of polymer-bound esters with concomi-tant amine coupling and azido-reductive cyclization: Synthesis of pyrrolobenzodiazepine derivatives. Tetrahedron Lett., 2013, 54(33), 4435-4441.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.033]
[56]
Kamal, A.; Reddy, K.L.; Devaiah, V.; Shanakraiah, N.; Reddy, Y.N. A new approach solid-phase synthesis of pyrrolo[2,1-c][1,4]benzodiazepines involving reductive cleavage. Tetrahedron Lett., 2004, 45(41), 7667-7669.
[http://dx.doi.org/10.1016/j.tetlet.2004.08.090]
[57]
Kamal, A.; Shankaraiah, N.; Prabhakar, S.; Reddy, C.R.; Markandeya, N.; Reddy, K.L.; Devaiah, V. Solid-phase synthesis of new pyrrolobenzodiazepine-chalcone conju-gates: DNA-binding affinity and anticancer activity. Bioorg. Med. Chem. Lett., 2008, 18(7), 2434-2439.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.047] [PMID: 18325766]
[58]
More, S.S.; Shanmughapriya, D.; Lingam, Y.; Patel, N.B. First total synthesis of (Z)-11-(2-oxopropylidene)-2,3,11,11a-tetrahydro-1H-benzo[e]pyrrolo-[2,1-a][1,4]diazepin-5(10H)-one. Synth. Commun., 2009, 39(11), 2058-2066.
[http://dx.doi.org/10.1080/00397910802638537]
[59]
Kamal, A.; Reddy, K.L.; Devaiah, V.; Shankaraiah, N.; Reddy, G.S.K.; Raghavan, S. Solid-phase synthesis of a library of pyrrolo[2,1-c][1,4]benzodiazepine-5,11-diones with potential antitubercular activity. J. Comb. Chem., 2007, 9(1), 29-42.
[http://dx.doi.org/10.1021/cc0501458] [PMID: 17206830]
[60]
Gil, C.; Bräse, S. Efficient solid-phase synthesis of highly functionalized 1,4-benzodiazepin-5-one derivatives and related compounds by intramolecular aza-Wittig reactions. Chemistry, 2005, 11(9), 2680-2688.
[http://dx.doi.org/10.1002/chem.200401112] [PMID: 15736275]
[61]
Ma, X.; Zhang, X.; Awad, J.M.; Xie, G.; Qiu, W.; Muriph, R.E.; Zhang, W. Sequential decarboxylative [3+2] cycloaddition and Staudinger/aza-Wittig reactions for dia-stereoselective synthesis of tetrahydro-pyrroloquinazolines and tetrahedro-pyrrolobenzodiazepines. Tetrahedron Lett., 2020, 61(2), 151392.
[http://dx.doi.org/10.1016/j.tetlet.2019.151392]
[62]
(a) Alagarsamy, V.; Chitra, K.; Saravanan, G.; Solomon, V.R.; Sulthana, M.T.; Narendhar, B. An overview of quinazolines: Pharmacological significance and recent developments. Eur. J. Med. Chem., 2018, 151, 628-685.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.076] [PMID: 29656203]
(b) He, D.; Wang, M.; Zhao, S.; Shu, Y.; Zeng, H.; Xiao, C.; Lu, C.; Liu, Y. Pharmaceutical prospects of naturally occurring quinazolinone and its derivatives. Fitoterapia, 2017, 119, 136-149.
[http://dx.doi.org/10.1016/j.fitote.2017.05.001] [PMID: 28495308]
[63]
Kamal, A.; Ramana, K.V.; Ankati, H.B.; Ramana, A.V. Mild and efficient reduction of azides to amines: Synthesis of fused [2,1-b]quinazolin ones. Tetrahedron Lett., 2002, 43(38), 6861-6863.
[http://dx.doi.org/10.1016/S0040-4039(02)01454-5]
[64]
(a) Eguchi, S.; Suzuki, T.; Okawa, T.; Matsushita, Y.; Yashima, E.; Okamoto, Y. Synthesis of optically active vasicinone based on intramolecular aza- Wittig reaction and asymmetric oxidation. J. Org. Chem., 1996, 61(21), 7316-7319.
[http://dx.doi.org/10.1021/jo9609283] [PMID: 11667656]
(b) Takeuchi, H.; Hagiwara, S.; Eguchi, S. A new efficient synthesis of imidazolinones and quinazolinone by intramolecular aza-Wittig reaction. Tetrahedron, 1989, 45(20), 6375-6386.
[http://dx.doi.org/10.1016/S0040-4020(01)89515-6]
[65]
Kamal, A.; Ramana, K.V.; Rao, M.V. Chemoenzymatic synthesis of pyrrolo[2,1-b]quinazolinones: Lipase-catalyzed resolution of vasicinone. J. Org. Chem., 2001, 66(3), 997-1001.
[http://dx.doi.org/10.1021/jo0011484] [PMID: 11430123]
[66]
Kamal, A.; Devaiah, V.; Shankaraiah, N.; Reddy, K.L. A polymer-assisted solution-phase strategy for the synthesis of fused [2,1-b]quinazolinones and the preparation of optically active vasicinone. Synlett, 2006, 16(16), 2609-2612.
[http://dx.doi.org/10.1055/s-2006-951482]
[67]
Kamal, A.; Shankaraiah, N.; Devaiah, V.; Reddy, K.L. Solid-phase synthesis of fused [2,1-b]quinazolinone alkaloids. Tetrahedron Lett., 2006, 47(51), 9025-9028.
[http://dx.doi.org/10.1016/j.tetlet.2006.10.123]
[68]
Son, J.K.; Chang, H.W.; Jahng, Y. Progress in studies on rutaecarpine: Synthesis and structure-biological activity relationship. Molecules, 2015, 20(6), 10800-10821.
[http://dx.doi.org/10.3390/molecules200610800] [PMID: 26111170]
[69]
Kamal, A.; Reddy, M.K.; Reddy, T.S.; Santos, L.S.; Shankaraiah, N. Total synthesis of rutaecarpine and analogues by tandem azido reductive cyclization assisted by microwave irradiation. Synlett, 2011, 2011(1), 61-64.
[http://dx.doi.org/10.1055/s-0030-1259095]
[70]
Jia, F.C.; Xu, C.; Zhou, Z.W.; Cai, Q.; Li, D.K.; Wu, A.X. Consecutive cycloaddition/SNAr/reduction/cyclization/oxidation sequences: A copper-catalyzed multi-component synthesis of fused N-heterocycles. Org. Lett., 2015, 17(11), 2820-2823.
[http://dx.doi.org/10.1021/acs.orglett.5b01242] [PMID: 25996444]
[71]
Li, T.; Chen, M.; Yang, L.; Xiong, Z.; Wang, Y.; Li, F.; Chen, D. Copper-catalyzed consecutive reaction to construct quinazolin-4(3H)-ones and pyrido[2,3-d]pyrimidin-4(3H)-ones. Tetrahedron, 2016, 72(6), 868-874.
[http://dx.doi.org/10.1016/j.tet.2015.12.059]
[72]
(a) Xiong, J.; Wei, X.; Yan, Y.M.; Ding, M.W. One-pot and regioselective synthesis of 3,4-dihydroquinazolines by sequential Ugi/Staudinger/aza- Wittig reaction starting from functionalized isocyanides. Tetrahedron, 2017, 73(38), 5720-5724.
[http://dx.doi.org/10.1016/j.tet.2017.08.011]
(b) Xiong, J.; Wei, X.; Wan, Y.C.; Ding, M.W. One-pot and regioselective synthesis of polysubstituted 3,4-dihydroquinazolines and 4,5-dihydro-3H- 1,4-benzodiazepin-3-ones by sequential Ugi/Staudinger/aza-Wittig reaction. Tetrahedron, 2019, 75(8), 1072-1078.
[http://dx.doi.org/10.1016/j.tet.2019.01.014]
(c) Sun, M.; Yu, Y.L.; Zhao, L.; Ding, M.W. One-pot and divergent synthesis of furo[3,2-c]quinolines and quinazolin-4(3H)-ones via sequential isocyanide- based three-component/Staudinger/aza-Wittig reaction. Tetrahedron, 2021, 80, 131868.
[http://dx.doi.org/10.1016/j.tet.2020.131868]
[73]
(a) Pati, B.; Banerjee, S. Importance of piperidine moiety in medicinal chemistry research: A review. J. Pharma Res., 2012, 5, 5493-5409.
(b) Ghashghaei, O.; Masdeu, C.; Alonso, C.; Palacios, F.; Lavilla, R. Recent advances of the Povarov reaction in medicinal chemistry. Drug Discov. Today. Technol., 2018, 29, 71-79.
[http://dx.doi.org/10.1016/j.ddtec.2018.08.004] [PMID: 30471676]
[74]
(a) Asolkar, R.N.; Schröder, D.; Heckmann, R.; Lang, S.; Wagner-Döbler, I.; Laatsch, H. Helquinoline, a new tetrahydroquinoline antibiotic from Janibacter limosus Hel 1+. J. Antibiot. (Tokyo), 2004, 57(1), 17-23.
[http://dx.doi.org/10.7164/antibiotics.57.17] [PMID: 15032481]
(b) Pagliero, R.J.; Lusvarghi, S.; Pierini, A.B.; Brun, R.; Mazzieri, M.R. Synthesis, stereoelectronic characterization and antiparasitic activity of new 1- benzenesulfonyl-2-methyl-1,2,3,4-tetrahydroquinolines. Bioorg. Med. Chem., 2010, 18(1), 142-150.
[http://dx.doi.org/10.1016/j.bmc.2009.11.010] [PMID: 19942439]
(c) Kristensen, I.; Larsen, P.O.; Sørensen, H. Free amino acids and γ- glutamyl peptides in seeds of Fagus silvatica. Phytochemistry, 1974, 13(12), 2803-2811.
[http://dx.doi.org/10.1016/0031-9422(74)80245-1]
(d) Chavan, S.P.; Kalbhor, D.B.; Gonnade, R.G. Divergent approach to the synthesis of (-)-balanol heterocycle and cis-3-hydroxypipecolic acid based on chiral 2-aminoalkanol equivalent. Tetrahedron, 2021, 80, 131773.
[http://dx.doi.org/10.1016/j.tet.2020.131773]
[75]
Kamal, A.; Prasad, B.R.; Ramana, A.V.; Babu, A.H.; Reddy, K.S. FeCl3-NaI mediated reactions of aryl azides with 3,4-dihydro-2H-pyran: A convenient synthesis of pyranoquinolines. Tetrahedron Lett., 2004, 45(17), 3507-3509.
[http://dx.doi.org/10.1016/j.tetlet.2004.02.146]
[76]
Zhang, H.; Wang, Y.; Zhou, Z. Bifunctional thiophosphinamide catalyzed highly enantioselective Michael addition of acetone to (E)-2-azido-β-nitrostyrenes and the subsequent reductive cyclization. Tetrahedron, 2018, 74(41), 6071-6077.
[http://dx.doi.org/10.1016/j.tet.2018.08.052]
[77]
Fuhrmann, U.; Bause, E.; Legler, G.; Ploegh, H. Novel mannosidase inhibitor blocking conversion of high mannose to complex oligosaccharides. Nature, 1984, 307(5953), 755-758.
[http://dx.doi.org/10.1038/307755a0] [PMID: 6230538]
[78]
Pino, M.S.G.; Ona, N. Synthesis of intermediates in the formation of hydroxy piperidines and 2-azido lactones from D-erythrose. Tetrahedron Asymmetry, 2008, 19(6), 721-729.
[http://dx.doi.org/10.1016/j.tetasy.2008.02.003]
[79]
Pawar, V.U.; Chavan, S.T.; Sabharwal, S.G.; Shinde, V.S. Intramolecular reductive cyclization strategy to the synthesis of (-)-6-methyl-3-hydroxy-piperidine-2-carboxylic acid, (+)-6-methyl-(2-hydroxymethyl)-piperidine-3-ol and their glycosidase inhibitory activity. Bioorg. Med. Chem., 2010, 18(22), 7799-7803.
[http://dx.doi.org/10.1016/j.bmc.2010.09.055] [PMID: 20971014]
[80]
Pino, M.S.G.; Assiego, C.; Ona, N. Studies on reactivity of azidoamides, intermediates in the synthesis of tetrahydroxypipecolic acid derivatives. Tetrahedron Asymmetry, 2008, 19(8), 932-937.
[http://dx.doi.org/10.1016/j.tetasy.2008.03.018]
[81]
Devalankar, D.A.; Sudalai, A. A concise synthesis of (+)-deoxoprosophylline via Co(III)(salen)-catalyzed two stereocentered HKR of racemic azido epoxides. Tetrahedron Lett., 2012, 53(26), 3213-3215.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.067]
[82]
Kasture, V.M.; Kalamkar, N.B.; Nair, R.J.; Joshi, R.S.; Sabharwal, S.G.; Dhavale, D.D. Synthesis, conformational study, glycosidase inhibitory activity and molecular docking studies of dihydroxylated 4- and 5-amino-iminosugars. Carbohydr. Res., 2015, 408, 25-32.
[http://dx.doi.org/10.1016/j.carres.2015.03.004] [PMID: 25839136]
[83]
Azad, C.S.; Saxena, A.K. Stereoconvergent synthesis of 1-deoxynojirimycin isomers by using the 3 component 4 centered Ugi reaction. Org. Chem. Front., 2015, 2(6), 665-669.
[http://dx.doi.org/10.1039/C5QO00019J]
[84]
(a) Dhameja, M.; Gupta, P. Synthetic heterocyclic candidates as promising α- glucosidase inhibitors: An overview. Eur. J. Med. Chem., 2019, 176, 343-377.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.025] [PMID: 31112894]
(b) Gholap, S.S. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur. J. Med. Chem., 2016, 110, 13-31.
(c) Ahmad, S.; Alam, O.; Naim, M.J.; Shaquiquzzaman, M.; Alam, M.M.; Iqbal, M. Pyrrole: An insight into recent pharmacological advances with structure activity rela-tionship. Eur. J. Med. Chem., 2018, 157, 527-561.
[85]
(a) Takayama, S.; Martin, R.; Wu, J.; Laslo, K.; Siuzdak, G.; Wong, C.H. Chemoenzymatic preparation of novel cyclic imine sugars and rapid biological activity evaluation using electrospray mass spectrometry and kinetic analysis. J. Am. Chem. Soc., 1997, 119(35), 8146-8151.
[http://dx.doi.org/10.1021/ja971695f]
(b) Schaerer, O.D.; Ortholand, J.Y.; Ganesan, A.; Ezaz-Nikpay, K.; Verdine, G.L. Specific binding of the DNA repair enzyme AlkA to a pyrrolidinebased inhibitor. J. Am. Chem. Soc., 1995, 117(24), 6623-6624.
[http://dx.doi.org/10.1021/ja00129a039]
[86]
(a) Babu, I.R.; Ganesh, K.N. Enhanced triple helix stability of collagen peptides with 4R-aminoprolyl (Amp) residues: Relative roles of electrostatic and hydrogen bonding effects. J. Am. Chem. Soc., 2001, 123(9), 2079-2080.
[http://dx.doi.org/10.1021/ja002165d] [PMID: 11456840]
(b) Fache, F.; Schulz, E.; Tommasino, M.L.; Lemaire, M. Nitrogen-containing ligands for asymmetric homogeneous and heterogeneous catalysis. Chem. Rev., 2000, 100(6), 2159-2232.
[http://dx.doi.org/10.1021/cr9902897] [PMID: 11749286]
(c) List, B.; Lerner, R.A.; Barbas, C.F. Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc., 2000, 122(10), 2395-2396.
[http://dx.doi.org/10.1021/ja994280y]
[87]
Sun, H.; Abboud, K.A.; Horenstein, N.A. A new route into hexahydro-cyclopenta[b]pyrrole-cis-3a,6-diols: Synthesis of constrained bicyclic analogues of pyrrolidine azasugars. Tetrahedron, 2005, 61(44), 10462-10469.
[http://dx.doi.org/10.1016/j.tet.2005.08.055]
[88]
Mezhnev, V.V.; Dutov, D.M.; Shevelev, S.A. New efficient method for the preparation of 2-aryl-4,6-dinitroindoles: Reductive cyclization of E-1-(2-azido-4,6-dinitrophenyl)-2-arylethenes. Lett. Org. Chem., 2008, 5(3), 202-204.
[http://dx.doi.org/10.2174/157017808783955907]
[89]
Kalamkar, N.B.; Puranik, V.G.; Dhavale, D.D. Synthesis of C1- and C8a-epimers of (+)-castanospermine from D-glucose derived γ,δ-epoxyazide: Intramolecular 5-endo epoxide opening approach. Tetrahedron, 2011, 67(15), 2773-2778.
[http://dx.doi.org/10.1016/j.tet.2011.02.030]
[90]
Reddi, R.N.; Prasad, P.K.; Kalshetti, R.G.; Sudalai, A. A concise enantioselective synthesis of 1,4-dideoxy-1,4-imino-d-arabinitol using Co(III)(salen)-catalyzed hydro-lytic kinetic resolution of a two-stereocentered anti-azido epoxide. Tetrahedron Asymmetry, 2017, 28(1), 162-165.
[http://dx.doi.org/10.1016/j.tetasy.2016.10.013]
[91]
Gavale, K.S. Chavan, S.R.; Kumbhar, N.; Kawade, S.; Doshi, P.; Khan, A.; Dhavale, D.D. α-Geminal disubstituted pyrrolidine iminosugars and their C-4-fluoro ana-logues: Synthesis, glycosidase inhibition and molecular docking studies. Bioorg. Med. Chem., 2017, 25(19), 5148-5159.
[http://dx.doi.org/10.1016/j.bmc.2017.07.026] [PMID: 28751199]
[92]
Ivanov, K.L.; Villemson, E.V.; Budynina, E.M.; Ivanova, O.A.; Trushkov, I.V.; Melnikov, M.Y. Ring opening of donor-acceptor cyclopropanes with the azide ion: A tool for construction of N-heterocycles. Chemistry, 2015, 21(13), 4975-4987.
[http://dx.doi.org/10.1002/chem.201405551] [PMID: 25573783]
[93]
Liu, Z.; Yoshihara, A.; Jenkinson, S.F.; Wormald, M.R.; Kelly, C.; Heap, J.T.; Marqvorsen, M.H.; Estevez, R.J.; Fleet, G.W.; Nakagawa, S.; Izumori, K.; Nash, R.J.; Kato, A. Hanessian-Hullar reaction in the synthesis of highly substituted trans-3,4-dihydroxypyrrolidines: Rhamnulose iminosugar mimics inhibit α-glucosidase. Tetrahedron, 2020, 76(1), 130758.
[http://dx.doi.org/10.1016/j.tet.2019.130758]
[94]
De Angelis, M.; Primitivo, L.; Lucarini, C.; Agostinelli, S.; Sappino, C.; Ricelli, A.; Righi, G. Stereocontrolled total synthesis of iminosugar 1,4-dideoxy-1,4-imino-D-iditol. Carbohydr. Res., 2020, 492, 108028.
[http://dx.doi.org/10.1016/j.carres.2020.108028] [PMID: 32413728]
[95]
John Pal, A.P.; Kadigachalam, P.; Mallick, A.; Doddi, V.R.; Vankar, Y.D. Synthesis of sugar-derived spiroaminals via lactamization and metathesis reactions. Org. Biomol. Chem., 2011, 9(3), 809-819.
[http://dx.doi.org/10.1039/C0OB00555J] [PMID: 21107447]
[96]
Paraskar, A.S.; Sudalai, A. Co-catalyzed reductive cyclization of azido and cyano substituted α,β-unsaturated esters with NaBH4: Enantioselective synthesis of (R)-baclofen and (R)-rolipram. Tetrahedron, 2006, 62(20), 4907-4916.
[http://dx.doi.org/10.1016/j.tet.2006.03.017]
[97]
Lee, S.J.; Youn, S.H.; Cho, C.W. Organocatalytic enantioselective formal synthesis of bromopyrrole alkaloids via aza-Michael addition. Org. Biomol. Chem., 2011, 9(22), 7734-7741.
[http://dx.doi.org/10.1039/c1ob06078c] [PMID: 21952717]
[98]
Heo, I.J.; Lee, S.J.; Cho, C.W. Direct lactamization of azido amides via Staudinger-type reductive cyclization. Bull. Korean Chem. Soc., 2012, 33(1), 333-336.
[http://dx.doi.org/10.5012/bkcs.2012.33.1.333]
[99]
Lee, S.J.; Heo, I.J.; Cho, C.W. One-pot synthesis of five-, six-, and seven-membered lactams via Bu3SnH-mediated reductive cyclization of azido amides. Bull. Korean Chem. Soc., 2012, 33(2), 739-741.
[http://dx.doi.org/10.5012/bkcs.2012.33.2.739]
[100]
(a) Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
(b) Li, J.; Ye, Y.; Zhang, Y. Cycloaddition/annulation strategies for the construction of multisubstituted pyrrolidines and their applications in natural product synthesis. Org. Chem. Front., 2018, 5(5), 864-892.
[http://dx.doi.org/10.1039/C7QO01077J]
[101]
Boichenko, M.A.; Ivanova, O.A.; Andreev, I.A.; Chagarovskiy, A.O.; Levina, I.I.; Rybakov, V.B.; Skvortsov, D.A.; Trushkov, I.V. Convenient approach to polyoxygenat-ed dibenzo[c,e]pyrrolo[1,2-a]azepines from donor–acceptor cyclopropanes. Org. Chem. Front., 2018, 5(19), 2829-2834.
[http://dx.doi.org/10.1039/C8QO00742J]
[102]
Chaveriat, L.; Stasik, I.; Demailly, G.; Beaupere, D. Improved synthesis of 6-amino-6-deoxy-D-galactono-1,6-lactam and D-mannono-1,6-lactam from corresponding unprotected D-hexono-1,4-lactones. Tetrahedron, 2004, 60(9), 2079-2081.
[http://dx.doi.org/10.1016/j.tet.2003.12.062]
[103]
Gireaud, L.; Chaveriat, L.; Stasik, I.; Wadouachi, A.; Beaupere, D. Synthesis of 6-amino-6-deoxy-D-gulono-1,6-lactam and L-gulono-1,6-lactam derived from corre-sponding 5,6-O-sulfinyl hexono-1,4-lactones. Tetrahedron, 2006, 62(31), 7455-7458.
[http://dx.doi.org/10.1016/j.tet.2006.05.017]
[104]
Barbosa, Y.A.; Hart, D.J.; Magomedov, N.A. Spiroquinazoline support studies: Methods for the preparation of imidazoloindolines from oxindoles. Tetrahedron, 2006, 62(37), 8748-8754.
[http://dx.doi.org/10.1016/j.tet.2006.06.103]
[105]
Trost, B.M.; Osipov, M.; Krüger, S.; Zhang, Y. A catalytic asymmetric total synthesis of (-)-perophoramidine. Chem. Sci. (Camb.), 2015, 6(1), 349-353.
[http://dx.doi.org/10.1039/C4SC01826E] [PMID: 25485074]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy