Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

The Medicinal Chemistry of Chalcones as Anti-Mycobacterium tuberculosis Agents

Author(s): Cristhian N. Rodríguez-Silva, Igor Muccilo Prokopczyk and Jean Leandro Dos Santos*

Volume 22, Issue 16, 2022

Published on: 28 March, 2022

Page: [2068 - 2080] Pages: 13

DOI: 10.2174/1389557522666220214093606

Price: $65

Abstract

Tuberculosis (TB), a highly fatal infectious disease, is caused by Mycobacterium tuberculosis (Mtb) that has inflicted mankind for several centuries. In 2019, the staggering number of new cases reached 10 million resulting in 1.2 million deaths. The emergence of multidrug-resistance- Mycobacterium tuberculosis (MDR-TB) and extensively drug-resistant-Mycobacterium tuberculosis (XDR-TB) is a global concern that requires the search for novel, effective, and safer short-term therapies. Nowadays, among the few alternatives available to treat resistant-Mtb strains, the majority have limitations, which include drug-drug interactions, long-term treatment, and chronic induced toxicities. Therefore, it is mandatory to develop new anti-Mtb agents to achieve health policy goals to mitigate the disease by 2035. Among the several bioactive anti-Mtb compounds, chalcones have been described as the privileged scaffold useful for drug design. Overall, this review explores and analyzes 37 chalcones that exhibited anti-Mtb activity described in the literature up to April 2021 with minimum inhibitory concentration (MIC90) values inferior to 20 μM and selective index superior to 10. In addition, the correlation of some properties for most active compounds was evaluated, and the main targets for these compounds were discussed.

Keywords: 1, 3-Diphenylpropenones, antitubercular drugs, chalcones, chalconoids, medicinal chemistry, Mycobacterium tuberculosis infection, Mycobacterium tuberculosis H37Rv, pharmaceutical design.

Graphical Abstract
[1]
World Health Organization: Global tuberculosis report, 2020. Available from: http://who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf (Accessed on Jan 05, 2021).
[2]
Organización Mundial de la Salud: Directrices sobre la atención de la infección tuberculosa latente., 2021. Available from: http://www.who.int/about/licensing// (Accessed Jan 05, 2021).
[3]
Tiberi, S.; Muñoz-Torrico, M.; Duarte, R.; Dalcolmo, M.; D’Ambrosio, L.; Migliori, G.B. New drugs and perspectives for new anti-tuberculosis regimens. Pulmonology, 2018, 24(2), 86-98.
[http://dx.doi.org/10.1016/j.rppnen.2017.10.009] [PMID: 29487031]
[4]
Lahiri, N.; Shah, R.R.; Layre, E.; Young, D.; Ford, C.; Murray, M.B.; Fortune, S.M.; Moody, D.B. Rifampin resistance mutations are associated with broad chemical remodeling of Mycobacterium tuberculosis. J. Biol. Chem., 2016, 291(27), 14248-14256.
[http://dx.doi.org/10.1074/jbc.M116.716704] [PMID: 27226566]
[5]
Vilchèze, C.; Jacobs, W.R.J.R. Jr Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis: Genes, mutations, and causalities. Microbiol. Spectr. 2014, 2(4) MGM2-MGM0014,2013
[http://dx.doi.org/10.1128/microbiolspec.MGM2-0014-2013] [PMID: 26104204]
[6]
Gajdács, M. The concept of an ideal antibiotic: Implications for drug design. Molecules, 2019, 24(5), 892.
[http://dx.doi.org/10.3390/molecules24050892] [PMID: 30832456]
[7]
Cole, S.T.; Brosch, R.; Parkhill, J.; Garnier, T.; Churcher, C.; Harris, D.; Gordon, S.V.; Eiglmeier, K.; Gas, S.; Barry, C.E., III; Tekaia, F.; Badcock, K.; Basham, D.; Brown, D.; Chillingworth, T.; Connor, R.; Davies, R.; Devlin, K.; Feltwell, T.; Gentles, S.; Hamlin, N.; Holroyd, S.; Hornsby, T.; Jagels, K.; Krogh, A.; McLean, J.; Moule, S.; Murphy, L.; Oliver, K.; Osborne, J.; Quail, M.A.; Rajandream, M-A.; Rogers, J.; Rutter, S.; Seeger, K.; Skelton, J.; Squares, R.; Squares, S.; Sulston, J.E.; Taylor, K.; Whitehead, S.; Barrell, B.G. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393(6685), 537-544.
[http://dx.doi.org/10.1038/31159] [PMID: 9634230]
[8]
Singh, V.; Mizrahi, V. Identification and validation of novel drug targets in Mycobacterium tuberculosis. Drug Discov. Today, 2017, 22(3), 503-509.
[http://dx.doi.org/10.1016/j.drudis.2016.09.010] [PMID: 27649943]
[9]
Hoagland, D.T.; Liu, J.; Lee, R.B.; Lee, R.E. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv. Drug Deliv. Rev., 2016, 102, 55-72.
[http://dx.doi.org/10.1016/j.addr.2016.04.026] [PMID: 27151308]
[10]
Calvert, M.B.; Furkert, D.P.; Cooper, C.B.; Brimble, M.A. Synthetic approaches towards bedaquiline and its derivatives. Bioorg. Med. Chem. Lett., 2020, 30(12), 127172.
[http://dx.doi.org/10.1016/j.bmcl.2020.127172] [PMID: 32291133]
[11]
Blakemore, D.C.; Castro, L.; Churcher, I.; Rees, D.C.; Thomas, A.W.; Wilson, D.M.; Wood, A. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem., 2018, 10(4), 383-394.
[http://dx.doi.org/10.1038/s41557-018-0021-z] [PMID: 29568051]
[12]
Koul, A.; Arnoult, E.; Lounis, N.; Guillemont, J.; Andries, K. The challenge of new drug discovery for tuberculosis. Nature, 2011, 469(7331), 483-490.
[http://dx.doi.org/10.1038/nature09657] [PMID: 21270886]
[13]
Gaonkar, S.L.; Vignesh, U.N. Synthesis and pharmacological properties of chalcones: A review. Res. Chem. Intermed., 2017, 43(11), 6043-6077.
[http://dx.doi.org/10.1007/s11164-017-2977-5]
[14]
Gomes, M.N.; Muratov, E.N.; Pereira, M.; Peixoto, J.C.; Rosseto, L.P.; Cravo, P.V.L.; Andrade, C.H.; Neves, B.J. Chalcone derivatives: Promising starting points for drug design. Molecules, 2017, 22(8), 1210.
[http://dx.doi.org/10.3390/molecules22081210] [PMID: 28757583]
[15]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[16]
Xu, M.; Wu, P.; Shen, F.; Ji, J.; Rakesh, K.P. Chalcone derivatives and their antibacterial activities: Current development. Bioorg. Chem., 2019, 91, 103133.
[http://dx.doi.org/10.1016/j.bioorg.2019.103133] [PMID: 31374524]
[17]
Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem., 2014, 85, 758-777.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.033] [PMID: 25137491]
[18]
Dan, W.; Dai, J. Recent developments of chalcones as potential antibacterial agents in medicinal chemistry. Eur. J. Med. Chem., 2020, 187, 111980.
[http://dx.doi.org/10.1016/j.ejmech.2019.111980] [PMID: 31877539]
[19]
Park, S.; Kim, E.H.; Kim, J.; Kim, S.H.; Kim, I. Biological evaluation of indolizine-chalcone hybrids as new anticancer agents. Eur. J. Med. Chem., 2018, 144, 435-443.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.056] [PMID: 29288944]
[20]
Shaik, A.; Bhandare, R.R.; Palleapati, K.; Nissankararao, S.; Kancharlapalli, V.; Shaik, S. Antimicrobial, antioxidant, and anticancer activities of some novel isoxazole ring containing chalcone and dihydropyrazole derivatives. Molecules, 2020, 25(5), 1047.
[http://dx.doi.org/10.3390/molecules25051047] [PMID: 32110945]
[21]
Safdar, M.H.; Hasan, H.; Afzal, S.; Hussain, Z. Exploring promising immunomodulatory potential of natural and synthetic 1,3-diphenyl-2-propen-1-one analogs: A review of mechanistic insight. Mini Rev. Med. Chem., 2018, 18(12), 1047-1063.
[http://dx.doi.org/10.2174/1389557517666171123212039] [PMID: 29173165]
[22]
Pai, M.; Behr, M.A.; Dowdy, D.; Dheda, K.; Divangahi, M.; Boehme, C.C.; Ginsberg, A.; Swaminathan, S.; Spigelman, M.; Getahun, H.; Menzies, D.; Raviglione, M. Tuberculosis. Nat. Rev. Dis. Primers, 2016, 2(1), 16076.
[http://dx.doi.org/10.1038/nrdp.2016.76] [PMID: 27784885]
[23]
Wang, C.; Wu, P.; Shen, X.L.; Wei, X.Y.; Jiang, Z.H. Synthesis, cytotoxic activity and drug combination study of tertiary amine derivatives of 20,40-dihydroxyl-60-methoxyl-30,50-dimethylchalcone. RSC Advances, 2017, 7, 48031.
[http://dx.doi.org/10.1039/C7RA08639C]
[24]
Salehi, B.; Quispe, C.; Chamkhi, I.; El Omari, N.; Balahbib, A.; Sharifi-Rad, J.; Bouyahya, A.; Akram, M.; Iqbal, M.; Docea, A.O.; Caruntu, C.; Leyva-Gómez, G.; Dey, A.; Martorell, M.; Calina, D.; López, V.; Les, F. Pharmacological properties of chalcones: A review of preclinical including molecular mechanisms and clinical evidence. Front. Pharmacol., 2021, 11, 592654.
[http://dx.doi.org/10.3389/fphar.2020.592654] [PMID: 33536909]
[25]
de Freitas Silva, M.; Pruccoli, L.; Morroni, F.; Sita, G.; Seghetti, F.; Viegas, C.; Tarozzi, A. The Keap1/Nrf2-ARE pathway as a pharmacological target for chalcones. Molecules, 2018, 23(7), 1803.
[http://dx.doi.org/10.3390/molecules23071803] [PMID: 30037040]
[26]
Rammohan, A.; Reddy, J.S.; Sravya, G.; Rao, C.N.; Zyryanov, G.V. Chalcone synthesis, properties and medicinal applications: A review. Environ. Chem. Lett., 2020, 18(1), 346520772.
[http://dx.doi.org/10.1007/s10311-019-00959-w]
[27]
Gomes, M.N.; Braga, R.C.; Grzelak, E.M.; Neves, B.J.; Muratov, E.; Ma, R.; Klein, L.L.; Cho, S.; Oliveira, G.R.; Franzblau, S.G.; Andrade, C.H. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. Eur. J. Med. Chem., 2017, 137, 126-138.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.026] [PMID: 28582669]
[28]
Ajay, A.; Singh, V.; Singh, S.; Pandey, S.; Gunjan, S.; Dubey, D.; Sinha, S.K.; Singh, B.N.; Chaturvedi, V.; Tripathi, R.; Ramchandran, R.; Tripathi, R.P. Synthesis and bio-evaluation of alkylaminoaryl phenyl cyclopropyl methanones as antitubercular and antimalarial agents. Bioorg. Med. Chem., 2010, 18(23), 8289-8301.
[http://dx.doi.org/10.1016/j.bmc.2010.09.071] [PMID: 21041091]
[29]
Talele, T.T. The “Cyclopropyl Fragment” is a versatile player that frequently appears in preclinical/clinical drug molecules. J. Med. Chem., 2016, 59(19), 8712-8756.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00472] [PMID: 27299736]
[30]
Xiang, Y.; Fan, X.; Cai, P.J.; Yu, Z.X. Understanding regioselectivities of corey–chaykovsky reactions of Dimethylsulfoxonium Methylide (DMSOM) and Dimethylsulfonium Methylide (DMSM) toward enones: A DFT study. Eur. J. Org. Chem., 2019, 582-590.
[http://dx.doi.org/10.1002/ejoc.201801216]
[31]
Ahmad, I.; Thakur, J.P.; Chanda, D.; Saikia, D.; Khan, F.; Dixit, S.; Kumar, A.; Konwar, R.; Negi, A.S.; Gupta, A. Syntheses of lipophilic chalcones and their conformationally restricted analogues as antitubercular agents. Bioorg. Med. Chem. Lett., 2013, 23(5), 1322-1325.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.096] [PMID: 23369537]
[32]
Chiaradia, L.D.; Mascarello, A.; Purificação, M.; Vernal, J.; Cordeiro, M.N.S.; Zenteno, M.E.; Villarino, A.; Nunes, R.J.; Yunes, R.A.; Terenzi, H. Synthetic chalcones as efficient inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase PtpA. Bioorg. Med. Chem. Lett., 2008, 18(23), 6227-6230.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.105] [PMID: 18930396]
[33]
Mascarello, A.; Chiaradia, L.D.; Vernal, J.; Villarino, A.; Guido, R.V.; Perizzolo, P.; Poirier, V.; Wong, D.; Martins, P.G.; Nunes, R.J.; Yunes, R.A.; Andricopulo, A.D.; Av-Gay, Y.; Terenzi, H. Inhibition of Mycobacterium tuberculosis tyrosine phosphatase PtpA by synthetic chalcones: kinetics, molecular modeling, toxicity and effect on growth. Bioorg. Med. Chem., 2010, 18(11), 3783-3789.
[http://dx.doi.org/10.1016/j.bmc.2010.04.051] [PMID: 20462762]
[34]
Chiaradia, L.D.; Martins, P.G.A.; Cordeiro, M.N.S.; Guido, R.V.C.; Ecco, G.; Andricopulo, A.D.; Yunes, R.A.; Vernal, J.; Nunes, R.J.; Terenzi, H. Synthesis, biological evaluation, and molecular modeling of chalcone derivatives as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatases (PtpA and PtpB). J. Med. Chem., 2012, 55(1), 390-402.
[http://dx.doi.org/10.1021/jm2012062] [PMID: 22136336]
[35]
Tariq, S.; Somakala, K.; Amir, M. Quinoxaline: An insight into the recent pharmacological advances. Eur. J. Med. Chem., 2018, 143, 542-557.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.064] [PMID: 29207337]
[36]
Marrakchi, H.; Lanéelle, M-A.; Daffé, M. Mycolic acids: structures, biosynthesis, and beyond. Chem. Biol., 2014, 21(1), 67-85.
[http://dx.doi.org/10.1016/j.chembiol.2013.11.011] [PMID: 24374164]
[37]
Ramalingam, P.; Ganapaty, S.; Rao, ChB. In vitro antitubercular and antimicrobial activities of 1-substituted quinoxaline-2,3(1H,4H)-diones. Bioorg. Med. Chem. Lett., 2010, 20(1), 406-408.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.026] [PMID: 19962890]
[38]
Muradás, T.C.; Abbadi, B.L.; Villela, A.D.; Macchi, F.S.; Bergo, P.F.; de Freitas, T.F.; Sperotto, N.D.M.; Timmers, L.F.S.M.; Norberto de Souza, O.; Picada, J.N.; Fachini, J.; da Silva, J.B.; de Albuquerque, N.C.P.; Habenschus, M.D.; Carrão, D.B.; Rocha, B.A.; Barbosa, Junior F.; de Oliveira, A.R.M.; Mascarello, A.; Neuenfeldf, P.; Nunes, R.J.; Morbidoni, H.R.; Campos, M.M.; Basso, L.A.; Rodrigues-Junior, V.S. Pre-clinical evaluation of quinoxaline-derived chalcones in tuberculosis. PLoS One, 2018, 13(8), e0202568.
[http://dx.doi.org/10.1371/journal.pone.0202568] [PMID: 30114296]
[39]
Solo, E.S.; Nakajima, C.; Kaile, T.; Bwalya, P.; Mbulo, G.; Fukushima, Y.; Chila, S.; Kapata, N.; Shah, Y.; Suzuki, Y. Mutations in rpoB and katG genes and the inhA operon in multidrug-resistant Mycobacterium tuberculosis isolates from Zambia. J. Glob. Antimicrob. Resist., 2020, 22, 302-307.
[http://dx.doi.org/10.1016/j.jgar.2020.02.026] [PMID: 32169686]
[40]
Desai, V.; Desai, S.; Gaonkar, S.N.; Palyekar, U.; Joshi, S.D.; Dixit, S.K. Novel quinoxalinyl chalcone hybrid scaffolds as enoyl ACP reductase inhibitors: Synthesis, molecular docking and biological evaluation. Bioorg. Med. Chem. Lett., 2017, 27(10), 2174-2180.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.059] [PMID: 28372908]
[41]
Hassan, N.W.; Saudi, M.N.; Abdel-Ghany, Y.S.; Ismail, A.; Elzahhar, P.A.; Sriram, D.; Nassra, R.; Abdel-Aziz, M.M.; El-Hawash, S.A. Novel pyrazine based anti-tubercular agents: Design, synthesis, biological evaluation and in silico studies. Bioorg. Chem., 2020, 96, 103610.
[http://dx.doi.org/10.1016/j.bioorg.2020.103610] [PMID: 32028062]
[42]
Fanzani, L.; Porta, F.; Meneghetti, F.; Villa, S.; Gelain, A.; Lucarelli, A.P.; Parisini, E. Mycobacterium tuberculosis low molecular weight phosphatases (MPtpA and MPtpB): From biological insight to inhibitors. Curr. Med. Chem., 2015, 22(27), 3110-3132.
[http://dx.doi.org/10.2174/0929867322666150812150036] [PMID: 26264920]
[43]
Kucerova-Chlupacova, M.; Kunes, J.; Buchta, V.; Vejsova, M.; Opletalova, V. Novel pyrazine analogs of chalcones: synthesis and evaluation of their antifungal and antimycobacterial activity. Molecules, 2015, 20(1), 1104-1117.
[http://dx.doi.org/10.3390/molecules20011104] [PMID: 25587786]
[44]
Anand, N.; Singh, P.; Sharma, A.; Tiwari, S.; Singh, V.; Singh, D.K.; Srivastava, K.K.; Singh, B.N.; Tripathi, R.P. Synthesis and evaluation of small libraries of triazolylmethoxy chalcones, flavanones and 2-aminopyrimidines as inhibitors of mycobacterial FAS-II and PknG. Bioorg. Med. Chem., 2012, 20(17), 5150-5163.
[http://dx.doi.org/10.1016/j.bmc.2012.07.009] [PMID: 22854194]
[45]
Kucerova-Chlupacova, M.; Vyskovska-Tyllova, V.; Richterova-Finkova, L.; Kunes, J.; Buchta, V.; Vejsova, M.; Paterova, P.; Semelkova, L.; Jandourek, O.; Opletalova, V. Novel halogenated pyrazine-based chalcones as potential antimicrobial drugs. Molecules, 2016, 21(11), 1421.
[http://dx.doi.org/10.3390/molecules21111421] [PMID: 27801810]
[46]
Bhat, Z.S.; Ul Lah, H.; Rather, M.A.; Maqbool, M.; Ara, T.; Ahmad, Z.; Yousuf, S.K. Synthesis and in vitro evaluation of substituted 3-cinnamoyl-4-hydroxy-pyran-2-one (CHP) in pursuit of new potential antituberculosis agents. MedChemComm, 2017, 9(1), 165-172.
[http://dx.doi.org/10.1039/C7MD00366H] [PMID: 30108910]
[47]
Shelke, S.N.; Mhaske, G.R.; Bonifácio, V.D.; Gawande, M.B. Green synthesis and anti-infective activities of fluorinated pyrazoline derivatives. Bioorg. Med. Chem. Lett., 2012, 22(17), 5727-5730.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.072] [PMID: 22832312]
[48]
Marrapu, V.K.; Chaturvedi, V.; Singh, S.; Singh, S.; Sinha, S.; Bhandari, K. Novel aryloxy azolyl chalcones with potent activity against Mycobacterium tuberculosis H37Rv. Eur. J. Med. Chem., 2011, 46(9), 4302-4310.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.037] [PMID: 21764184]
[49]
Sivasankerreddy, L.; Nagamani, B.; Rajkumar, T.; Babu, M.S.; Subbaiah, N.Y.; Harika, M.S.; Nageswarao, R. Novel diazenyl containing phenyl styryl ketone derivatives as antimicrobial agents. Antiinfect. Agents, 2019, 17(1), 28-38.
[http://dx.doi.org/10.2174/2211352516666180927111546] [PMID: 31328083]
[50]
Kaur, H.; Singh, J.; Narasimhan, B. Antimicrobial, antioxidant and cytotoxic evaluation of diazenyl chalcones along with insights to mechanism of interaction by molecular docking studies. BMC Chem., 2019, 13(1), 87.
[http://dx.doi.org/10.1186/s13065-019-0596-5] [PMID: 31384834]
[51]
Gupta, R.A.; Kaskhedikar, S.G. Synthesis, antitubercular activity, and QSAR analysis of substituted nitroaryl analogs: Chalcone, pyrazole, isoxazole, and pyrimidines. Med. Chem. Res., 2013, 22(8), 3863-3880.
[http://dx.doi.org/10.1007/s00044-012-0385-3]
[52]
Anandam, R.; Jadav, S.S.; Ala, V.B.; Ahsan, M.J.; Bollikolla, H.B. Synthesis of new C-dimethylated chalcones as potent antitubercular agents. Med. Chem. Res., 2018, 27(6), 1690-1704.
[http://dx.doi.org/10.1007/s00044-018-2183-z]
[53]
Sharma, M.; Chaturvedi, V.; Manju, Y.K.; Bhatnagar, S.; Srivastava, K.; Puri, S.K.; Chauhan, P.M. Substituted quinolinyl chalcones and quinolinyl pyrimidines as a new class of anti-infective agents. Eur. J. Med. Chem., 2009, 44(5), 2081-2091.
[http://dx.doi.org/10.1016/j.ejmech.2008.10.011] [PMID: 19028410]
[54]
Shaik, A.B.; Bhandare, R.R.; Nissankararao, S.; Edis, Z.; Tangirala, N.R.; Shahanaaz, S.; Rahman, M.M. Design, facile synthesis and characterization of dichloro substituted chalcones and dihydropyrazole derivatives for their antifungal, antitubercular and antiproliferative activities. Molecules, 2020, 25(14), 3188.
[http://dx.doi.org/10.3390/molecules25143188] [PMID: 32668655]
[55]
Castaño, L.F.; Cuartas, V.; Bernal, A.; Insuasty, A.; Guzman, J.; Vidal, O.; Rubio, V.; Puerto, G.; Lukáč, P.; Vimberg, V.; Balíková-Novtoná, G.; Vannucci, L.; Janata, J.; Quiroga, J.; Abonia, R.; Nogueras, M.; Cobo, J.; Insuasty, B. New chalcone-sulfonamide hybrids exhibiting anticancer and antituberculosis activity. Eur. J. Med. Chem., 2019, 176, 50-60.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.013] [PMID: 31096118]
[56]
Burmaoglu, S.; Algul, O.; Gobek, A.; Aktas Anil, D.; Ulger, M.; Erturk, B.G.; Kaplan, E.; Dogen, A.; Aslan, G. Design of potent fluoro-substituted chalcones as antimicrobial agents. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 490-495.
[http://dx.doi.org/10.1080/14756366.2016.1265517] [PMID: 28118738]
[57]
Hans, R.H.; Guantai, E.M.; Lategan, C.; Smith, P.J.; Wan, B.; Franzblau, S.G.; Gut, J.; Rosenthal, P.J.; Chibale, K. Synthesis, antimalarial and antitubercular activity of acetylenic chalcones. Bioorg. Med. Chem. Lett., 2010, 20(3), 942-944.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.062] [PMID: 20045640]
[58]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[59]
Fernandes, T.B.; Segretti, M.C.F.; Polli, M.C.; Parise-Filho, R. Analysis of the applicability and use of Lipinski’s rule for central nervous system drugs. Lett. Drug Des. Discov., 2016, 13(10), 999-1006.
[http://dx.doi.org/10.2174/1570180813666160622092839]
[60]
Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods, 2000, 44(1), 235-249.
[http://dx.doi.org/10.1016/S1056-8719(00)00107-6] [PMID: 11274893]
[61]
Fernandes, G.F.D.S.; Man Chin, C.; Dos Santos, J.L. Advances in drug discovery of new antitubercular multidrug-resistant compounds. Pharmaceuticals (Basel), 2017, 10(2), 51.
[http://dx.doi.org/10.3390/ph10020051] [PMID: 28587160]
[62]
Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx, 2005, 2(4), 541-553.
[http://dx.doi.org/10.1602/neurorx.2.4.541] [PMID: 16489364]
[63]
Surade, S.; Blundell, T.L. Structural biology and drug discovery of difficult targets: The limits of ligandability. Chem. Biol., 2012, 19(1), 42-50.
[http://dx.doi.org/10.1016/j.chembiol.2011.12.013] [PMID: 22284353]
[64]
Barret, L. Importance and evaluation of the polar surface area (PSA and TPSA) In: Medicinal Chemistry: Fundaments; Barret, L., Ed.; ISTE Press: Elsevier, , 2018; 1, pp. 89-95.
[65]
Wagner-Wysiecka, E.; Łukasik, N.; Biernat, J.F.; Luboch, E. Azo group (s) in selected macrocyclic compounds. J. Incl. Phenom. Macrocycl. Chem., 2018, 90(3), 189-257.
[http://dx.doi.org/10.1007/s10847-017-0779-4] [PMID: 29568230]
[66]
Ali, Y.; Hamid, S.A.; Rashid, U. Biomedical applications of aromatic azo compounds. Mini Rev. Med. Chem., 2018, 18(18), 1548-1558.
[http://dx.doi.org/10.2174/1389557518666180524113111] [PMID: 29792144]
[67]
Dinkova-Kostova, A.T.; Massiah, M.A.; Bozak, R.E.; Hicks, R.J.; Talalay, P. Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc. Natl. Acad. Sci. USA, 2001, 98(6), 3404-3409.
[http://dx.doi.org/10.1073/pnas.051632198] [PMID: 11248091]
[68]
Bukhari, S.N.; Franzblau, S.G.; Jantan, I.; Jasamai, M. Current prospects of synthetic curcumin analogs and chalcone derivatives against Mycobacterium tuberculosis. Med. Chem., 2013, 9(7), 897-903.
[http://dx.doi.org/10.2174/1573406411309070002] [PMID: 23305394]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy