Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Chemically Modified Chitosan Supports for Phosphine-free Pd-catalyzed Crosscoupling Reaction of Arylboronic Acids with Acid Chlorides

Author(s): Hyoung-Jun Kong, Do-Won Bang, Minji Kim, Soo-Youl Park and Seung-Hoi Kim*

Volume 26, Issue 4, 2022

Published on: 05 April, 2022

Page: [418 - 425] Pages: 8

DOI: 10.2174/1385272826666220209115416

Price: $65

Abstract

Background: Phosphine-free Pd-catalytic platforms, i) combination with chitosan- Schiff base (CS-Py/Pd), ii) immobilized on chitosan-Schiff base (CS-Py@Pd), and iii) anchored to modified carbon nanotube support (CNT@CS-Py@Pd),

Methods: They were evaluated regarding a novel pathway for the cross-coupling reaction of arylboronic acids with acid chlorides.

Results: The CS-Py@Pd platform had the highest catalytic efficiency of the three platforms, yielding moderate to excellent yields of diaryl ketones.

Conclusion: The catalytic activity of the Pd-catalyst was highly dependent upon the manufacturing process and type of support.

Keywords: Phosphine-free Pd-catalyst, Chitosan-Schiff base@Pd, CNT@chitosan-Schiff base@Pd, arylboronic acids, diaryl ketones, coupling reaction.

« Previous
Graphical Abstract
[1]
Romines, K.R.; Freeman, G.A.; Schaller, L.T.; Cowan, J.R.; Gonzales, S.S.; Tidwell, J.H.; Andrews, C.W., III; Stammers, D.K.; Hazen, R.J.; Ferris, R.G.; Short, S.A.; Chan, J.H.; Boone, L.R. Structure-activity relationship studies of novel benzophenones leading to the discovery of a potent, next generation HIV nonnucleoside reverse tran-scriptase inhibitor. J. Med. Chem., 2006, 49(2), 727-739.
[http://dx.doi.org/10.1021/jm050670l] [PMID: 16420058]
[2]
Compere, D.; Marazano, C.; Das, B.C. Enantioselective Access to Lobelia Alkaloids. J. Org. Chem., 1999, 64, 4528-4532.
[http://dx.doi.org/10.1021/jo981912a]
[3]
Deng, Y.; Chin, Y.W.; Chai, H.; Keller, W.J.; Kinghorn, A.D. Anthraquinones with quinone reductase-inducing activity and benzophenones from Morinda citrifolia (noni) roots. J. Nat. Prod., 2007, 70(12), 2049-2052.
[http://dx.doi.org/10.1021/np070501z] [PMID: 18076142]
[4]
Storm, J.P.; Andersson, C.M. Iron-mediated synthetic routes to unsymmetrically substituted, sterically congested benzophenones. J. Org. Chem., 2000, 65(17), 5264-5274.
[http://dx.doi.org/10.1021/jo000421z] [PMID: 10993355]
[5]
Olah, G.A. Freidel-Crafts Chemistry, (Interscience monographs on organic chemistry); Wiley & Sons: New York, 1973.
[6]
Khedkar, M.V.; Sasaki, T.; Bhanage, B.M. Efficient, recyclable and phosphine-free carbonylative Suzuki coupling reaction using immobilized palladium ion-containing ionic liquid: Synthesis of aryl ketones and heteroaryl ketones. RSC Advances, 2013, 3, 7791-7797.
[http://dx.doi.org/10.1039/c3ra40730f]
[7]
Khedkar, M.V.; Tambade, P.J.; Qureshi, Z.S.; Bhanage, B.M. Pd/C: An efficient, heterogeneous and reusable catalyst for phosphane-free carbonylative suzuki coupling reactions of aryl and heteroaryl Iodides. Eur. J. Org. Chem., 2010, 6981-6986.
[http://dx.doi.org/10.1002/ejoc.201001134]
[8]
Cai, M.; Zheng, G.; Zha, L.; Peng, J. Carbonylative Suzuki–Miyaura Coupling of Arylboronic Acids with Aryl Iodides Catalyzed by the MCM-41- Supported Bidentate Phosphane Palladium(II) Complex. Eur. J. Org. Chem., 2009, 1585-1591.
[http://dx.doi.org/10.1002/ejoc.200801253]
[9]
Neumann, H.; Brennfhrer, A.; Beller, M. An efficient and practical sequential one-pot synthesis of Suprofen, Ketoprofen and other 2-Arylpropionic Acids. Adv. Synth. Catal., 2008, 350, 2437-2442.
[http://dx.doi.org/10.1002/adsc.200800415]
[10]
Li, J.J.; Gribble, G.N. Palladium in Heterocyclic Chemistry: A Guide for the Synthetic Chemist, 2nd ed; Elsevier, 2016.
[11]
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of Organoboron compounds. Chem. Rev., 1995, 95, 2457-2483.
[http://dx.doi.org/10.1021/cr00039a007]
[12]
Amaike, K.; Muto, K.; Yamaguchi, J.; Itami, K. Decarbonylative C-H coupling of azoles and aryl esters: Unprecedented nickel catalysis and application to the synthesis of muscoride A. J. Am. Chem. Soc., 2012, 134(33), 13573-13576.
[http://dx.doi.org/10.1021/ja306062c] [PMID: 22870867]
[13]
Huihui, K.M.M.; Caputo, J.A.; Melchor, Z.; Olivares, A.M.; Spiewak, A.M.; Johnson, K.A.; DiBenedetto, T.A.; Kim, S.; Ackerman, L.K.G.; Weix, D.J. Decarboxylative cross-electrophile coupling of N-Hydroxyphthalimide Esters with Aryl Iodides. J. Am. Chem. Soc., 2016, 138(15), 5016-5019.
[http://dx.doi.org/10.1021/jacs.6b01533] [PMID: 27029833]
[14]
Muto, K.; Yamaguchi, J.; Itami, K. Nickel-catalyzed C-H/C-O coupling of azoles with phenol derivatives. J. Am. Chem. Soc., 2012, 134(1), 169-172.
[http://dx.doi.org/10.1021/ja210249h] [PMID: 22148419]
[15]
Hie, L.; Fine Nathel, N.F.; Hong, X.; Yang, Y.F.; Houk, K.N.; Garg, N.K. Nickel-catalyzed activation of Acyl C-O bonds of methyl esters. Angew. Chem. Int. Ed. Engl., 2016, 55(8), 2810-2814.
[http://dx.doi.org/10.1002/anie.201511486] [PMID: 26804615]
[16]
Cornella, J.; Edwards, J.T.; Qin, T.; Kawamura, S.; Wang, J.; Pan, C.M.; Gianatassio, R.; Schmidt, M.; Eastgate, M.D.; Baran, P.S. Practical Ni-catalyzed Aryl-Alkyl cross-coupling of secondary redox-active esters. J. Am. Chem. Soc., 2016, 138(7), 2174-2177.
[http://dx.doi.org/10.1021/jacs.6b00250] [PMID: 26835704]
[17]
Yu, B.; Sun, H.; Xie, Z.; Zhang, G.; Xu, L.W.; Zhang, W.; Gao, Z. Privilege ynone synthesis via palladium-catalyzed alkynylation of “super-active esters”. Org. Lett., 2015, 17(13), 3298-3301.
[http://dx.doi.org/10.1021/acs.orglett.5b01466] [PMID: 26065590]
[18]
LaBerge, N.A.; Love, J.A. Nickel-catalyzed decarbonylative coupling of aryl esters and arylboronic acids. Eur. J. Org. Chem., 2015, 5538-5546.
[19]
Muto, K.; Hatakeyama, T.; Itami, K.; Yamaguchi, J. Palladium-catalyzed decarbonylative cross-coupling of azinecarboxylates with arylboronic acids. Org. Lett., 2016, 18(19), 5106-5109.
[http://dx.doi.org/10.1021/acs.orglett.6b02556] [PMID: 27673382]
[20]
Guo, L.; Chatupheeraphat, A.; Rueping, M. Decarbonylative Silylation of esters by combined nickel and copper catalysis for the synthesis of Arylsilanes and Het-eroarylsilanes. Angew. Chem. Int. Ed. Engl., 2016, 55(39), 11810-11813.
[http://dx.doi.org/10.1002/anie.201604696] [PMID: 27560460]
[21]
Pu, X.; Hu, J.; Zhao, Y.; Shi, Z. Nickel-catalyzed decarbonylative borylation and silylation of esters. ACS Catal., 2016, 6, 6692-6698.
[http://dx.doi.org/10.1021/acscatal.6b01956]
[22]
Guo, L.; Rueping, M. Functional group interconversion: Decarbonylative borylation of esters for the synthesis of organoboronates. Chemistry, 2016, 22(47), 16787-16790.
[http://dx.doi.org/10.1002/chem.201604504] [PMID: 27717095]
[23]
Desnoyer, A.N.; Friese, F.W.; Chiu, W.; Drover, M.W.; Patrick, B.O.; Love, J.A. Exploring regioselective bond cleavage and cross-coupling reactions using a low-valent Nickel Complex. Chemistry, 2016, 22(12), 4070-4077.
[http://dx.doi.org/10.1002/chem.201504959] [PMID: 26879766]
[24]
Ben Halima, T.; Zhang, W.; Yalaoui, I.; Hong, X.; Yang, Y.F.; Houk, K.N.; Newman, S.G. Palladium-catalyzed Suzuki-Miyaura coupling of Aryl Esters. J. Am. Chem. Soc., 2017, 139(3), 1311-1318.
[http://dx.doi.org/10.1021/jacs.6b12329] [PMID: 28001393]
[25]
Goossen, L.J.; Ghosh, K. Palladium-Catalyzed Synthesis of Aryl Ketones from Boronic Acids and Carboxylic Acids or Anhydrides We thank M. Rössig and L. Winkel for technical assistance, Prof. Dr. M. T. Reetz for generous support and constant encouragement, and the DFG for financial support. Angew. Chem. Int. Ed. Engl., 2001, 40(18), 3458-3460.
[http://dx.doi.org/10.1002/1521-3773(20010917)40:18<3458::AIDANIE3458>3.0.CO;2-0] [PMID: 11592170]
[26]
Goossen, L.J.; Koley, D.; Hermann, H.L.; Thiel, W. The palladium-catalyzed cross-coupling reaction of carboxylic anhydrides with arylboronic acids: A DFT study. J. Am. Chem. Soc., 2005, 127(31), 11102-11114.
[http://dx.doi.org/10.1021/ja052435y] [PMID: 16076218]
[27]
Xin, B.; Zhang, Y.; Cheng, K. Phosphine-free cross-coupling reaction of arylboronic acids with carboxylic anhydrides or acyl chlorides in aqueous media. J. Org. Chem., 2006, 71(15), 5725-5731.
[http://dx.doi.org/10.1021/jo060749d] [PMID: 16839154]
[28]
Chen, Q.; Fan, X.H.; Zhang, L.P.; Yang, L.M. Nickel-catalyzed cross-coupling of carboxylic anhydrides with arylboronic acids. RSC Advances, 2014, 4, 53885-53890.
[http://dx.doi.org/10.1039/C4RA11520A]
[29]
Liebeskind, L.S.; Srogl, J. Thiol Ester-Boronic Acid Coupling. A mechanistically unprecedented and general ketone synthesis. J. Am. Chem. Soc., 2000, 122, 11260-11261.
[http://dx.doi.org/10.1021/ja005613q]
[30]
Wittenberg, R.; Srogl, J.; Egi, M.; Liebeskind, L.S. Ketone synthesis under neutral conditions. Cu(I) diphenylphosphinate-mediated, palladium-catalyzed coupling of thiol esters and organostannanes. Org. Lett., 2003, 5(17), 3033-3035.
[http://dx.doi.org/10.1021/ol034962x] [PMID: 12916974]
[31]
Tokuyama, H.; Yokoshima, S.; Yamashita, T.; Fukuyama, T. A novel ketone synthesis by a palladium-catalyzed reaction of thiol esters and organozinc reagents. Tetrahedron Lett., 1998, 39, 3189-3192.
[http://dx.doi.org/10.1016/S0040-4039(98)00456-0]
[32]
Prokopcová, H.; Kappe, C.O. The Liebeskind-Srogl C-C cross-coupling reaction. Angew. Chem. Int. Ed. Engl., 2009, 48(13), 2276-2286.
[http://dx.doi.org/10.1002/anie.200802842] [PMID: 19067446]
[33]
Weires, N.A.; Baker, E.L.; Garg, N.K. Nickel-catalysed Suzuki-Miyaura coupling of amides. Nat. Chem., 2016, 8(1), 75-79.
[http://dx.doi.org/10.1038/nchem.2388] [PMID: 26673267]
[34]
Li, X.; Zou, G. Acylative Suzuki coupling of amides: Acyl-nitrogen activation via synergy of independently modifiable activating groups. Chem. Commun. (Camb.), 2015, 51(24), 5089-5092.
[http://dx.doi.org/10.1039/C5CC00430F] [PMID: 25712409]
[35]
Meng, G.; Szostak, M. Sterically Controlled Pd-catalyzed chemoselective ketone synthesis via N-C cleavage in twisted amides. Org. Lett., 2015, 17(17), 4364-4367.
[http://dx.doi.org/10.1021/acs.orglett.5b02209] [PMID: 26284604]
[36]
Shi, S.; Szostak, M. Efficient synthesis of Diaryl Ketones by Nickel-Catalyzed Negishi Cross-Coupling of amides by carbon-nitrogen bond cleavage at room temperature accelerated by a solvent effect. Chemistry, 2016, 22(30), 10420-10424.
[http://dx.doi.org/10.1002/chem.201602202] [PMID: 27304392]
[37]
Shi, S.; Meng, G.; Szostak, M. Synthesis of Biaryls through Nickel-Catalyzed Suzuki-Miyaura Coupling of Amides by Carbon-Nitrogen Bond Cleavage. Angew. Chem. Int. Ed. Engl., 2016, 55(24), 6959-6963.
[http://dx.doi.org/10.1002/anie.201601914] [PMID: 27101428]
[38]
Meng, G.; Szostak, M. Palladium-catalyzed Suzuki-Miyaura coupling of amides by carbon-nitrogen cleavage: General strategy for amide N-C bond activation. Org. Biomol. Chem., 2016, 14(24), 5690-5707.
[http://dx.doi.org/10.1039/C6OB00084C] [PMID: 26864384]
[39]
Meng, G.; Szostak, M. General Olefin Synthesis by the Palladium-Catalyzed Heck Reaction of Amides: Sterically Controlled Chemoselective N-C Activation. Angew. Chem. Int. Ed. Engl., 2015, 54(48), 14518-14522.
[http://dx.doi.org/10.1002/anie.201507776] [PMID: 26458248]
[40]
Baker, E.L.; Yamano, M.M.; Zhou, Y.; Anthony, S.M.; Garg, N.K. A two-step approach to achieve secondary amide transamidation enabled by nickel catalysis. Nat. Commun., 2016, 7, 11554.
[http://dx.doi.org/10.1038/ncomms11554] [PMID: 27199089]
[41]
Simmons, B.J.; Weires, N.A.; Dander, J.E.; Garg, N.K. Nickel-Catalyzed Alkylation of Amide Derivatives. ACS Catal., 2016, 6(5), 3176-3179.
[http://dx.doi.org/10.1021/acscatal.6b00793] [PMID: 32257581]
[42]
Hie, L.; Fine Nathel, N.F.; Shah, T.K.; Baker, E.L.; Hong, X.; Yang, Y.F.; Liu, P.; Houk, K.N.; Garg, N.K. Conversion of amides to esters by the nickel-catalysed activa-tion of amide C-N bonds. Nature, 2015, 524(7563), 79-83.
[http://dx.doi.org/10.1038/nature14615] [PMID: 26200342]
[43]
Hu, J.; Zhao, Y.; Liu, J.; Zhang, Y.; Shi, Z. Nickel-Catalyzed Decarbonylative Borylation of Amides: Evidence for Acyl C-N Bond Activation. Angew. Chem. Int. Ed. Engl., 2016, 55(30), 8718-8722.
[http://dx.doi.org/10.1002/anie.201603068] [PMID: 27258597]
[44]
Meng, G.; Shi, S.; Szostak, M. Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling of Amides via Site-Selective N–C Bond Cleavage by Cooperative Catalysis. ACS Catal., 2016, 6, 7335-7339.
[http://dx.doi.org/10.1021/acscatal.6b02323]
[45]
Prabhu, R.N.; Ramesh, R. Synthesis and structural characterization of Pd(II) thiosemicarbazonato complex: Catalytic evaluation in synthesis of diaryl ketones from aryl aldehydes and arylboronic acids. Tetrahedron Lett., 2017, 58, 405-409.
[http://dx.doi.org/10.1016/j.tetlet.2016.12.032]
[46]
Weng, F.; Wang, C.; Xu, B. Direct C–H bond arylation of 2-hydroxybenzaldehydes with arylboronic acids via ligand-free palladium catalysis. Tetrahedron Lett., 2010, 51, 2593-2595.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.166]
[47]
Kuriyama, M.; Hamaguchi, N.; Sakata, K.; Onomura, O. One-Pot Synthesis of Heteroaryl and Diheteroaryl Ketones through Palladium-Catalyzed 1,2-Addition and Oxidation. Eur. J. Org. Chem., 2013, 3378-3385.
[http://dx.doi.org/10.1002/ejoc.201300269]
[48]
Xia, Y.; Wang, J.; Dong, G. Suzuki-miyaura coupling of simple ketones via activation of unstrained carbon-carbon bonds. J. Am. Chem. Soc., 2018, 140(16), 5347-5351.
[http://dx.doi.org/10.1021/jacs.8b02462] [PMID: 29652498]
[49]
Bykov, V.V.; Korolev, D.N.; Bumagin, N.A. Palladium-catalyzed reactions of organoboron compounds with acyl chlorides. Russ. Chem. Bull. Int. Ed, 1997, 46, 1631-1638.
[50]
Haddach, M.; McCarthy, J.R. A new method for the synthesis of ketones: The palladium-catalyzed cross-coupling of acid chlorides with arylboronic acids. Tetrahedron Lett., 1999, 40, 3109-3112.
[http://dx.doi.org/10.1016/S0040-4039(99)00476-1]
[51]
Bumagin, N.A.; Korolev, D.N. Synthesis of unsymmetric ketones via ligandless Pd-catalyzed reaction of acyl chlorides with organoboranes. Tetrahedron Lett., 1999, 40, 3057-3060.
[http://dx.doi.org/10.1016/S0040-4039(99)00364-0]
[52]
Urawa, Y.; Ogura, K. A convenient method for preparing aromatic ketones from acyl chlorides and arylboronic acids via Suzuki–Miyaura type coupling reaction. Tetrahedron Lett., 2003, 44, 271-277.
[http://dx.doi.org/10.1016/S0040-4039(02)02501-7]
[53]
Chen, H.; Deng, M.Z. A novel stereocontrolled synthesis of 1,2-trans cyclopropyl ketones via suzuki-type coupling of acid chlorides with cyclopropylboronic acids. Org. Lett., 2000, 2(12), 1649-1651.
[http://dx.doi.org/10.1021/ol000013h] [PMID: 10880192]
[54]
Nishihara, Y.; Inoue, Y.; Fujisawa, M.; Takai, K. Room-temperature palladium-catalyzed and Copper(I)-mediated coupling reactions of acid Chlorides with Boronic Acids under neutral conditions. Synlett, 2005, 2309-2312.
[http://dx.doi.org/10.1055/s-2005-872661]
[55]
Bandgar, B.P.; Patil, A.V. A rapid solvent-free ligandless and mild method for preparing aromatic ketones from acyl chlorides and arylboronic acids via a Suzuki–Miyaura type of coupling reaction. Tetrahedron Lett., 2005, 46, 7627-7630.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.111]
[56]
Xin, B.; Zhang, Y.; Cheng, K. The surfactant-promoted cross-coupling reactions of Arylboronic Acids with Carboxylic Anhydrides or Acyl Chlorides in water. Synthesis, 2007, 1970-1978.
[57]
Ekoue-Kovi, K.; Xu, H.; Wolf, C. Palladium-phosphinous acid-catalyzed cross-coupling of aliphatic and aromatic acyl chlorides with boronic acids. Tetrahedron Lett., 2008, 49, 5773-5776.
[http://dx.doi.org/10.1016/j.tetlet.2008.07.115]
[58]
Rafiee, F.; Hajipour, A.R. A versatile method for the synthesis of diaryl and alkyl aryl ketones via palladium-catalysed cross-coupling reaction of arylboronic acids with acyl chlorides. Appl. Organomet. Chem., 2015, 29, 181-184.
[http://dx.doi.org/10.1002/aoc.3269]
[59]
Mondala, M.; Bora, U. Eco-friendly Suzuki–Miyaura coupling of arylboronic acids to aromatic ketones catalyzed by the oxime-palladacycle in biosolvent 2-MeTHF. New J. Chem., 2016, 40, 3119-3123.
[http://dx.doi.org/10.1039/C5NJ02734A]
[60]
Zang, L.; Wu, J.; Shi, L.; Xia, C.; Li, F. Ionically tagged benzimidazole palladium(II) complex: Preparation and catalytic application in cross-coupling reactions. Tetrahedron Lett., 2011, 52, 3897-3901.
[http://dx.doi.org/10.1016/j.tetlet.2011.05.079]
[61]
Semler, M. Štěpnička, P. Synthesis of aromatic ketones by Suzuki-Miyaura cross-coupling of acyl chlorides with boronic acids mediated by palladium catalysts depos-ited over donor-functionalized silica gel. Catal. Today, 2015, 243, 128-133.
[http://dx.doi.org/10.1016/j.cattod.2014.06.017]
[62]
Movassagh, B.; Hajizadeh, F.; Mohammadi, E. Polystyrene-supported Pd (II)–N-heterocyclic carbene complex as a heterogeneous and recyclable precatalyst for cross-coupling of acyl chlorides with arylboronic acids. Appl. Organomet. Chem., 2018, 32, e3982.
[http://dx.doi.org/10.1002/aoc.3982]
[63]
Mohammadi, E.; Hajilou, Z.; Movassagh, B. Multiwalled carbon nanotubes supported Pd (II)-Salen complex: An effective, phosphorous-free, and reusable heterogene-ous precatalyst for the synthesis of Diaryl Ketones. Helv. Chim. Acta, 2016, 99, 747-752.
[http://dx.doi.org/10.1002/hlca.201600161]
[64]
Mondal, M.; Bora, U. Ligandless heterogeneous palladium: An efficient and recyclable catalyst for Suzuki-type cross-coupling reaction. Appl. Organomet. Chem., 2014, 28, 354-358.
[http://dx.doi.org/10.1002/aoc.3135]
[65]
Muniyappan, N.; Sabiah, S. Synthesis, structure, and characterization of picolyl- and benzyl-linked biphenyl palladium N-heterocyclic carbene complexes and their catalytic activity in acylative cross-coupling reactions. Appl. Organometal. Chem., 2020, 2020, e5421.
[66]
There are several examples using chitosan@Pd catalytic systems for the performance of traditional coupling of boronic acid with halo(pseudo) compounds; see, Baran, T.; Baran, N.Y.; Menteş A. Sustainable chitosan/starch composite material for stabilization of palladium nanoparticles: Synthesis, characterization and investigation of catalytic behaviour of Pd@chitosan/starch nanocomposite in Suzuki–Miyaura reaction. Appl. Organomet. Chem., 2018, 32, e4075.
[67]
Hardy, J.J.E.; Hubert, S.; Macquarrie, D.J.; Wilson, A.J. Chitosan-based heterogeneous catalysts for Suzuki and Heck reactions. Green Chem., 2004, 6, 53-56.
[http://dx.doi.org/10.1039/b312145n]
[68]
Joo, S.R.; Kwon, G.T.; Park, S.Y.; Kim, S.H. Chemically modified chitosan as a biopolymer support in Copper-catalyzed ipso-Hydroxylation of Arylboronic acids in water. Bull. Korean Chem. Soc., 2019, 40, 465-468.
[http://dx.doi.org/10.1002/bkcs.11708]
[69]
Zhang, G.; Li, Y.; Liu, J. Acid-promoted metal-free protodeboronation of arylboronic acids. RSC Advances, 2017, 7, 34959-34962.
[http://dx.doi.org/10.1039/C7RA05979E]
[70]
de Meijere, A.; Diederich, F. Metal-Catalyzed Cross-Coupling Reactions, 2nd ed; Wiley-VCH Verlag GmbH & Co.: Weinheim, 2004.
[http://dx.doi.org/10.1002/9783527619535]
[71]
Joo, S.R.; Kim, S.H.; Shin, U.S.; Kim, H.S. Pd-catalyst anchored on Schiff base-modified chitosan-CNT nanohybrid for the Suzuki–Miyaura coupling reaction. Curr. Org. Chem., 2020, 24, 2383-2390.
[http://dx.doi.org/10.2174/138527282499920091712294]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy