Research Article

Identification of Prognostic Biomarkers in Papillary Thyroid Cancer and Developing Non-Invasive Diagnostic Models Through Integrated Bioinformatics Analysis

Author(s): Afsaneh Arefi Oskouie, Mohammad Saeed Ahmadi and Amir Taherkhani*

Volume 11, Issue 1, 2022

Published on: 10 March, 2022

Page: [73 - 87] Pages: 15

DOI: 10.2174/2211536611666220124115445

Price: $65

Abstract

Background: Papillary thyroid cancer (PTC) is the most frequent subtype of thyroid carcinoma, mainly detected in patients with benign thyroid nodules (BTN). Due to the invasiveness of accurate diagnostic tests, there is a need to discover applicable biomarkers for PTC. So, in this study, we aimed to identify the genes associated with prognosis in PTC. Besides, we performed a machine learning tool to develop a non-invasive diagnostic approach for PTC.

Methods: For the study purposes, the miRNA dataset GSE130512 was downloaded from the GEO database and then analyzed to identify the common differentially expressed miRNAs in patients with non-metastatic PTC (nm-PTC)/metastatic PTC (m-PTC) compared with BTNs. The SVM was also applied to differentiate patients with PTC from those patients with BTN using the common DEMs. A protein-protein interaction network was also constructed based on the targets of the common DEMs. Next, functional analysis was performed, the hub genes were determined, and survival analysis was then executed.

Results: A total of three common miRNAs were found to be differentially expressed among patients with nm-PTC/m-PTC compared with BTNs. In addition, it was established that the autophagosome maturation, ciliary basal body-plasma membrane docking, antigen processing as ubiquitination & proteasome degradation, and class I MHC mediated antigen processing & presentation are associated with the pathogenesis of PTC. Furthermore, it was illustrated that RPS6KB1, CCNT1, SP1, and CHD4 might serve as new potential biomarkers for PTC prognosis.

Conclusion: RPS6KB1, CCNT1, SP1, and CHD4 may be considered new potential biomarkers used for prognostic aims in PTC. However, performing validation tests is inevitable in the future.

Keywords: Biomarkers, machine learning, miRNAs, papillary thyroid cancer, prognosis, protein interaction maps.

« Previous
Graphical Abstract
[1]
van der Zwan JM, Mallone S, van Dijk B, et al. Carcinoma of endocrine organs: results of the RARECARE project. Eur J Cancer 2012; 48(13): 1923-31.
[http://dx.doi.org/10.1016/j.ejca.2012.01.029] [PMID: 22361014]
[2]
Kim WB, Kim TY, Kwon HS, et al. Management guidelines for patients with thyroid nodules and thyroid cancer. J Korean Endocrine Soc 2007; 22(3): 157-87.
[http://dx.doi.org/10.3803/jkes.2007.22.3.157]
[3]
Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JW, Wiersinga W. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol 2006; 154(6): 787-803.
[http://dx.doi.org/10.1530/eje.1.02158] [PMID: 16728537]
[4]
Lu C-H, Liu Y-W, Hua S-C, Yu H-I, Chang Y-P, Lee Y-R. Autophagy induction of reversine on human follicular thyroid cancer cells. Biomed Pharmacother 2012; 66(8): 642-7.
[http://dx.doi.org/10.1016/j.biopha.2012.08.001] [PMID: 23089471]
[5]
Hegedus L. The thyroid nodule: clinical practice. N Engl J Med 2004; 351(17): 1764-71.
[http://dx.doi.org/10.1056/NEJMcp031436] [PMID: 15496625]
[6]
Abdullah MI, Junit SM, Ng KL, Jayapalan JJ, Karikalan B, Hashim OH. Papillary thyroid cancer: genetic alterations and molecular biomarker investigations. Int J Med Sci 2019; 16(3): 450-60.
[http://dx.doi.org/10.7150/ijms.29935] [PMID: 30911279]
[7]
Lin JS, Williams SB, Morrison CC. Screening for thyroid cancer: A systematic evidence review for the US Preventive Services Task Force. AHRQ 2017.
[8]
Rahman MM, Ali MI, Karim MA, Arafat MS, Hanif M, Tarafder KH. Frequency of malignancy in multinodular goitre. Bangladesh J Otorhinolaryngol 2014; 20(2): 75-9.
[http://dx.doi.org/10.3329/bjo.v20i2.22022]
[9]
Todaro M, Bonventre S. Role of IL-4 and IL-10 cytokines in the pathogenic mechanism of thyroid cancer. Trends in Thyroid Cancer Research New York: Nova Science Publishers Inc 2007; 37: 33.
[10]
LiVolsi VA. Papillary thyroid carcinoma: an update. Mod Pathol 2011; 24(2)(Suppl. 2): S1-9.
[http://dx.doi.org/10.1038/modpathol.2010.129] [PMID: 21455196]
[11]
Leite AKN, Cavalheiro BG, Kulcsar MA, et al. Deaths related to differentiated thyroid cancer: a rare but real event. Arch Endocrinol Metab 2017; 61(3): 222-7.
[http://dx.doi.org/10.1590/2359-3997000000261] [PMID: 28699989]
[12]
Moley JF, DeBenedetti MK. Patterns of nodal metastases in palpable medullary thyroid carcinoma: recommendations for extent of node dissection. Ann Surg 1999; 229(6): 880-7.
[http://dx.doi.org/10.1097/00000658-199906000-00016] [PMID: 10363903]
[13]
Schlumberger M, Jarzab B, Cabanillas ME, et al. A phase II trial of the multitargeted tyrosine kinase inhibitor lenvatinib (E7080) in advanced medullary thyroid cancer. Clin Cancer Res 2016; 22(1): 44-53.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1127] [PMID: 26311725]
[14]
Jendrzejewski J, Thomas A, Liyanarachchi S, et al. PTCSC3 is involved in papillary thyroid carcinoma development by modulating S100A4 gene expression. J Clin Endocrinol Metab 2015; 100(10): E1370-7.
[http://dx.doi.org/10.1210/jc.2015-2247] [PMID: 26274343]
[15]
Dong A, Zhang J, Sun W, Hua H, Sun Y. Upregulation of miR-421 predicts poor prognosis and promotes proliferation, migration, and invasion of papillary thyroid cancer cells. J Chin Med Assoc: JCMA 2020; 83(11): 991-6.
[http://dx.doi.org/10.1097/JCMA.0000000000000426] [PMID: 32881717]
[16]
Liang M, Yu S, Tang S, et al. A panel of plasma exosomal mirnas as potential biomarkers for differential diagnosis of thyroid nodules. Front Genet 2020; 11: 449.
[http://dx.doi.org/10.3389/fgene.2020.00449] [PMID: 32508877]
[17]
Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA 2006; 295(18): 2164-7.
[http://dx.doi.org/10.1001/jama.295.18.2164] [PMID: 16684987]
[18]
Haugen BR, Alexander EK, Bible KC, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016; 26(1): 1-133.
[http://dx.doi.org/10.1089/thy.2015.0020] [PMID: 26462967]
[19]
Al-Salamah SM, Kamran Khalid F, Bismar HA. CAES C. nodular goiter. Saudi Med J 2002; 23(8): 947-52.
[PMID: 12235469]
[20]
Hao RT, Zheng C, Wu CY, et al. NECTIN4 promotes papillary thyroid cancer cell proliferation, migration, and invasion and triggers EMT by activating AKT. Cancer Manag Res 2019; 11: 2565-78.
[http://dx.doi.org/10.2147/CMAR.S190332] [PMID: 31114323]
[21]
Deiuliis JA. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int J Obes 2016; 40(1): 88-101.
[http://dx.doi.org/10.1038/ijo.2015.170] [PMID: 26311337]
[22]
Holley CL, Topkara VK. An introduction to small non-coding RNAs: miRNA and snoRNA. Cardiovasc Drugs Ther 2011; 25(2): 151-9.
[http://dx.doi.org/10.1007/s10557-011-6290-z] [PMID: 21573765]
[23]
Portius D, Sobolewski C, Foti M. MicroRNAs-dependent regulation of PPARs in metabolic diseases and cancers. Ppar Research 2017; 2017
[http://dx.doi.org/10.1155/2017/7058424]
[24]
Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC. Expression of Arabidopsis MIRNA genes. Plant Physiol 2005; 138(4): 2145-54.
[http://dx.doi.org/10.1104/pp.105.062943] [PMID: 16040653]
[25]
Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis. RNA 2019; 25(1): 1-16.
[http://dx.doi.org/10.1261/rna.068692.118] [PMID: 30333195]
[26]
de la Chapelle A, Jazdzewski K. MicroRNAs in thyroid cancer. J Clin Endocrinol Metab 2011; 96(11): 3326-36.
[http://dx.doi.org/10.1210/jc.2011-1004] [PMID: 21865360]
[27]
Aragon Han P, Weng CH, Khawaja HT, et al. MicroRNA expression and association with clinicopathologic features in papillary thyroid cancer: a systematic review. Thyroid : Official American Thyroid Assoc 2015; 25(12): 1322-9.
[http://dx.doi.org/10.1089/thy.2015.0193]
[28]
Lee JC, Gundara JS, Glover A, Serpell J, Sidhu SB. MicroRNA expression profiles in the management of papillary thyroid cancer. Oncologist 2014; 19(11): 1141-7.
[http://dx.doi.org/10.1634/theoncologist.2014-0135] [PMID: 25323484]
[29]
Wang T, Xu H, Qi M, Yan S, Tian X. miRNA dysregulation and the risk of metastasis and invasion in papillary thyroid cancer: a systematic review and meta-analysis. Oncotarget 2017; 9(4): 5473-9.
[http://dx.doi.org/10.18632/oncotarget.16681] [PMID: 29435194]
[30]
Erler P, Keutgen XM, Crowley MJ, et al. Dicer expression and microRNA dysregulation associate with aggressive features in thyroid cancer. Surgery 2014; 156(6): 1342-50.
[http://dx.doi.org/10.1016/j.surg.2014.08.007] [PMID: 25456905]
[31]
Chou C-K, Liu R-T, Kang H-Y. MicroRNA-146b: a novel biomarker and therapeutic target for human papillary thyroid cancer. Int J Mol Sci 2017; 18(3): 636.
[http://dx.doi.org/10.3390/ijms18030636] [PMID: 28294980]
[32]
Huang Y, Liao D, Pan L, et al. Expressions of miRNAs in papillary thyroid carcinoma and their associations with the BRAFV600E mutation. Eur J Endocrinol 2013; 168(5): 675-81.
[http://dx.doi.org/10.1530/EJE-12-1029] [PMID: 23416953]
[33]
Cui M, Wang H, Yao X, et al. Circulating MicroRNAs in cancer: Potential and challenge. Front Genet 2019; 10: 626.
[http://dx.doi.org/10.3389/fgene.2019.00626] [PMID: 31379918]
[34]
Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105(30): 10513-8.
[http://dx.doi.org/10.1073/pnas.0804549105] [PMID: 18663219]
[35]
Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 2011; 108(12): 5003-8.
[http://dx.doi.org/10.1073/pnas.1019055108] [PMID: 21383194]
[36]
Cheng G. Circulating miRNAs: roles in cancer diagnosis, prognosis and therapy. Adv Drug Deliv Rev 2015; 81: 75-93.
[http://dx.doi.org/10.1016/j.addr.2014.09.001] [PMID: 25220354]
[37]
Wang H, Peng R, Wang J, Qin Z, Xue L. Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin Epigenetics 2018; 10(1): 59.
[http://dx.doi.org/10.1186/s13148-018-0492-1] [PMID: 29713393]
[38]
Zhang L, Zhang Y, Zhao Y, Wang Y, Ding H, Xue S, et al. Circulating miRNAs as biomarkers for early diagnosis of coronary artery disease. Expert Opin Ther Pat 2018; 28(8): 591-601.
[http://dx.doi.org/10.1080/13543776.2018.1503650]
[39]
Jin X, Chen Y, Chen H, et al. Evaluation of tumor-derived exosomal miRNA as potential diagnostic biomarkers for early-stage non–small cell lung cancer using next-generation sequencing. Clin Cancer Res 2017; 23(17): 5311-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0577] [PMID: 28606918]
[40]
Yang Q, Tian GL, Qin JW, et al. Coupling bootstrap with synergy self-organizing map-based orthogonal partial least squares discriminant analysis: Stable metabolic biomarker selection for inherited metabolic diseases. Talanta 2020; 219: 121370.
[http://dx.doi.org/10.1016/j.talanta.2020.121370] [PMID: 32887087]
[41]
Swan AL, Mobasheri A, Allaway D, Liddell S, Bacardit J. Application of machine learning to proteomics data: classification and biomarker identification in postgenomics biology. OMICS 2013; 17(12): 595-610.
[http://dx.doi.org/10.1089/omi.2013.0017] [PMID: 24116388]
[42]
Mahadevan S, Shah SL, Marrie TJ, Slupsky CM. Analysis of metabolomic data using support vector machines. Anal Chem 2008; 80(19): 7562-70.
[http://dx.doi.org/10.1021/ac800954c] [PMID: 18767870]
[43]
Hao L, Greer T, Page D, et al. In-depth characterization and validation of human urine metabolomes reveal novel metabolic signatures of lower urinary tract symptoms. Sci Rep 2016; 6(1): 30869.
[http://dx.doi.org/10.1038/srep30869] [PMID: 27502322]
[44]
Junker BH, Schreiber F. Analysis of biological networks. John Wiley & Sons 2011.
[45]
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: Archive for functional genomics data sets-update. Nucleic Acids Res 2013; 41(Database issue): D991-5.
[PMID: 23193258]
[46]
Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 2015; 12(8): 697.
[http://dx.doi.org/10.1038/nmeth.3485] [PMID: 26226356]
[47]
Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 2013; 41(Database issue): D377-86.
[PMID: 23193289]
[48]
Bayat Z, Farhadi Z, Taherkhani A. Identification of potential biomarkers associated with poor prognosis in oral squamous cell carcinoma through integrated bioinformatics analysis: A pilot study. Gene Rep 2021; 24: 101243.
[http://dx.doi.org/10.1016/j.genrep.2021.101243]
[49]
Jassal B, Matthews L, Viteri G, et al. The reactome pathway knowledgebase. Nucleic Acids Res 2020; 48(D1): D498-503.
[PMID: 31691815]
[50]
Bindea G, Mlecnik B, Hackl H, et al. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009; 25(8): 1091-3.
[http://dx.doi.org/10.1093/bioinformatics/btp101] [PMID: 19237447]
[51]
Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017; 45(W1): W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[52]
Aalen O, Borgan O, Gjessing H. Survival and event history analysis: a process point of view. Springer Sci Rev 2008.
[53]
Rich JT, Neely JG, Paniello RC, Voelker CC, Nussenbaum B, Wang EW. A practical guide to understanding Kaplan-Meier curves. Otolaryngol Head Neck Surg 2010; 143(3): 331-6.
[http://dx.doi.org/10.1016/j.otohns.2010.05.007] [PMID: 20723767]
[54]
Neki N, Kazal H. Solitary thyroid nodule-an insight. J Ind Acad Clin Med 2006; 7(4): 328-.
[55]
Mizushima N. Autophagy: process and function. Genes Dev 2007; 21(22): 2861-73.
[http://dx.doi.org/10.1101/gad.1599207] [PMID: 18006683]
[56]
Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol 2007; 9(10): 1102-9.
[http://dx.doi.org/10.1038/ncb1007-1102] [PMID: 17909521]
[57]
Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol 2010; 221(1): 3-12.
[http://dx.doi.org/10.1002/path.2697] [PMID: 20225336]
[58]
Kundu M, Thompson CB. Autophagy: basic principles and relevance to disease. Annu Rev Pathol Mech Dis 2008.
[59]
Netea-Maier RT, Klück V, Plantinga TS, Smit JW. Autophagy in thyroid cancer: present knowledge and future perspectives. Front Endocrinol (Lausanne) 2015; 6: 22.
[http://dx.doi.org/10.3389/fendo.2015.00022] [PMID: 25741318]
[60]
Cuervo AM. Autophagy: in sickness and in health. Trends Cell Biol 2004; 14(2): 70-7.
[http://dx.doi.org/10.1016/j.tcb.2003.12.002] [PMID: 15102438]
[61]
Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 2004; 23(16): 2891-906.
[http://dx.doi.org/10.1038/sj.onc.1207521] [PMID: 15077152]
[62]
Ogier-Denis E, Codogno P. Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta 2003; 1603(2): 113-28.
[PMID: 12618311]
[63]
Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006; 124(3): 471-84.
[http://dx.doi.org/10.1016/j.cell.2006.01.016] [PMID: 16469695]
[64]
Souza EC, Ferreira AC, Carvalho DP. The mTOR protein as a target in thyroid cancer. Expert Opin Ther Targets 2011; 15(9): 1099-112.
[http://dx.doi.org/10.1517/14728222.2011.594044] [PMID: 21702716]
[65]
Lin C-I, Whang EE, Abramson MA, et al. Autophagy: a new target for advanced papillary thyroid cancer therapy. Surgery 2009; 146(6): 1208-14.
[http://dx.doi.org/10.1016/j.surg.2009.09.019] [PMID: 19958950]
[66]
Lin C-I, Whang EE, Donner DB, et al. Autophagy induction with RAD001 enhances chemosensitivity and radiosensitivity through Met inhibition in papillary thyroid cancer. Mol Cancer Res 2010; 8(9): 1217-26.
[http://dx.doi.org/10.1158/1541-7786.MCR-10-0162] [PMID: 20736296]
[67]
Wishart DS, Knox C, Guo AC, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 2008; 36(Database issue)(Suppl. 1): D901-6.
[http://dx.doi.org/10.1093/nar/gkm958] [PMID: 18048412]
[68]
Loureiro J, Ploegh HL. Antigen presentation and the ubiquitin-proteasome system in host-pathogen interactions. Adv Immunol 2006; 92: 225-305.
[http://dx.doi.org/10.1016/S0065-2776(06)92006-9] [PMID: 17145306]
[69]
Hearn A, York IA, Bishop C, Rock KL. Characterizing the specificity and cooperation of aminopeptidases in the cytosol and endoplasmic reticulum during MHC class I antigen presentation. J Immunol 2010; 184(9): 4725-32.
[http://dx.doi.org/10.4049/jimmunol.0903125] [PMID: 20351195]
[70]
Kloetzel P-M, Ossendorp F. Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 2004; 16(1): 76-81.
[http://dx.doi.org/10.1016/j.coi.2003.11.004] [PMID: 14734113]
[71]
Croft D, O’Kelly G, Wu G, et al. Reactome: A database of reactions, pathways and biological processes. Nucleic Acids Res 2011; 39(Database issue)(Suppl. 1): D691-7.
[http://dx.doi.org/10.1093/nar/gkq1018] [PMID: 21067998]
[72]
Li J, Wang Y, Wang X, Yang Q. CDK1 and CDC20 overexpression in patients with colorectal cancer are associated with poor prognosis: Evidence from integrated bioinformatics analysis. World J Surg Oncol 2020; 18(1): 50.
[http://dx.doi.org/10.1186/s12957-020-01817-8] [PMID: 32127012]
[73]
Ma Y, Zhao M, Zhong J, et al. Proteomic profiling of proteins associated with lymph node metastasis in colorectal cancer. J Cell Biochem 2010; 110(6): 1512-9.
[http://dx.doi.org/10.1002/jcb.22726] [PMID: 20524204]
[74]
Shaik S, Nucera C, Inuzuka H, et al. SCF(β-TRCP) suppresses angiogenesis and thyroid cancer cell migration by promoting ubiquitination and destruction of VEGF receptor 2. J Exp Med 2012; 209(7): 1289-307.
[http://dx.doi.org/10.1084/jem.20112446] [PMID: 22711876]
[75]
Sridharan S, Basu A. Distinct Roles of mTOR Targets S6K1 and S6K2 in Breast Cancer. Int J Mol Sci 2020; 21(4): E1199.
[http://dx.doi.org/10.3390/ijms21041199] [PMID: 32054043]
[76]
Um SH, D’Alessio D, Thomas G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 2006; 3(6): 393-402.
[http://dx.doi.org/10.1016/j.cmet.2006.05.003] [PMID: 16753575]
[77]
Liu J, Li H-Q, Zhou F-X, Yu J-W, Sun L, Han Z-H. Targeting the mTOR pathway in breast cancer. Tumour Biol 2017; 39(6): 1010428317710825.
[http://dx.doi.org/10.1177/1010428317710825] [PMID: 28639903]
[78]
Piccart M, Hortobagyi GN, Campone M, et al. Everolimus plus exemestane for hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: Overall survival results from BOLERO-2. Ann Oncol 2014; 25(12): 2357-62.
[http://dx.doi.org/10.1093/annonc/mdu456] [PMID: 25231953]
[79]
Fasolo A, Sessa C. Targeting mTOR pathways in human malignancies. Curr Pharm Des 2012; 18(19): 2766-77.
[http://dx.doi.org/10.2174/138161212800626210] [PMID: 22475451]
[80]
Sabatini DM. mTOR and cancer: Insights into a complex relationship. Nat Rev Cancer 2006; 6(9): 729-34.
[http://dx.doi.org/10.1038/nrc1974] [PMID: 16915295]
[81]
Li S, Brown MS, Goldstein JL. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc Natl Acad Sci USA 2010; 107(8): 3441-6.
[http://dx.doi.org/10.1073/pnas.0914798107] [PMID: 20133650]
[82]
Pearce LR, Alton GR, Richter DT, et al. Characterization of PF-4708671, a novel and highly specific inhibitor of p70 ribosomal S6 kinase (S6K1). Biochem J 2010; 431(2): 245-55.
[http://dx.doi.org/10.1042/BJ20101024] [PMID: 20704563]
[83]
Minna E, Romeo P, Dugo M, et al. miR-451a is underexpressed and targets AKT/mTOR pathway in papillary thyroid carcinoma. Oncotarget 2016; 7(11): 12731-47.
[http://dx.doi.org/10.18632/oncotarget.7262] [PMID: 26871295]
[84]
Minna E, Romeo P, De Cecco L, et al. miR-199a-3p displays tumor suppressor functions in papillary thyroid carcinoma. Oncotarget 2014; 5(9): 2513-28.
[http://dx.doi.org/10.18632/oncotarget.1830] [PMID: 24810336]
[85]
Ahmed M, Hussain AR, Bavi P, et al. High prevalence of mTOR complex activity can be targeted using Torin2 in papillary thyroid carcinoma. Carcinogenesis 2014; 35(7): 1564-72.
[http://dx.doi.org/10.1093/carcin/bgu051] [PMID: 24583924]
[86]
Faustino A, Couto JP, Pópulo H, et al. mTOR pathway overactivation in BRAF mutated papillary thyroid carcinoma. J Clin Endocrinol Metab 2012; 97(7): E1139-49.
[http://dx.doi.org/10.1210/jc.2011-2748] [PMID: 22549934]
[87]
Li X, Li Z, Song Y, Liu W, Liu Z. The mTOR kinase inhibitor cz415 inhibits human papillary thyroid carcinoma cell growth. Cell Physiol Biochem 2018; 46(2): 579-90.
[http://dx.doi.org/10.1159/000488625] [PMID: 29617677]
[88]
Zhang W, Chen B, Zhang Y, et al. The anti-hepatocellular carcinoma cell activity by a novel mTOR kinase inhibitor CZ415. Biochem Biophys Res Commun 2017; 487(3): 494-9.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.156] [PMID: 28366631]
[89]
Yin G, Fan J, Zhou W, et al. ERK inhibition sensitizes CZ415-induced anti-osteosarcoma activity in vitro and in vivo. Oncotarget 2017; 8(47): 82027-36.
[http://dx.doi.org/10.18632/oncotarget.18303] [PMID: 29137241]
[90]
Cansfield AD, Ladduwahetty T, Sunose M, et al. CZ415, a highly selective mTOR inhibitor showing in vivo efficacy in a collagen induced arthritis model. ACS Med Chem Lett 2016; 7(8): 768-73.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00149] [PMID: 27563401]
[91]
Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 1997; 13(1): 261-91.
[http://dx.doi.org/10.1146/annurev.cellbio.13.1.261] [PMID: 9442875]
[92]
Nigg EA. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. BioEssays 1995; 17(6): 471-80.
[http://dx.doi.org/10.1002/bies.950170603] [PMID: 7575488]
[93]
Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 2003; 36(3): 131-49.
[http://dx.doi.org/10.1046/j.1365-2184.2003.00266.x] [PMID: 12814430]
[94]
Chao S-H, Fujinaga K, Marion JE, et al. Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J Biol Chem 2000; 275(37): 28345-8.
[http://dx.doi.org/10.1074/jbc.C000446200] [PMID: 10906320]
[95]
Bagella L, MacLachlan TK, Buono RJ, Pisano MM, Giordano A, De Luca A. Cloning of murine CDK9/PITALRE and its tissue-specific expression in development. J Cell Physiol 1998; 177(2): 206-13.
[http://dx.doi.org/10.1002/(SICI)1097-4652(199811)177:2<206::AID-JCP2>3.0.CO;2-R] [PMID: 9766517]
[96]
Romano G, Giordano A. Role of the cyclin-dependent kinase 9-related pathway in mammalian gene expression and human diseases. Cell Cycle 2008; 7(23): 3664-8.
[http://dx.doi.org/10.4161/cc.7.23.7122] [PMID: 19029809]
[97]
Krasnov AN, Mazina MY, Nikolenko JV, Vorobyeva NE. On the way of revealing coactivator complexes cross-talk during transcriptional activation. Cell Biosci 2016; 6(1): 15.
[http://dx.doi.org/10.1186/s13578-016-0081-y] [PMID: 26913181]
[98]
Franco LC, Morales F, Boffo S, Giordano A. CDK9: A key player in cancer and other diseases. J Cell Biochem 2018; 119(2): 1273-84.
[http://dx.doi.org/10.1002/jcb.26293] [PMID: 28722178]
[99]
Hussain A, Verma CK, Chouhan U. Identification of novel inhibitors against cyclin dependent kinase 9/cyclin t1 complex as: anti cancer agent. Saudi J Biol Sci 2017; 24(6): 1229-42.
[http://dx.doi.org/10.1016/j.sjbs.2015.10.003] [PMID: 28855816]
[100]
Baumli S, Endicott JA, Johnson LN. Halogen bonds form the basis for selective P-TEFb inhibition by DRB. Chem Biol 2010; 17(9): 931-6.
[http://dx.doi.org/10.1016/j.chembiol.2010.07.012] [PMID: 20851342]
[101]
Wang S, Griffiths G, Midgley CA, et al. Discovery and characterization of 2-anilino-4- (thiazol-5-yl)pyrimidine transcriptional CDK inhibitors as anticancer agents. Chem Biol 2010; 17(10): 1111-21.
[http://dx.doi.org/10.1016/j.chembiol.2010.07.016] [PMID: 21035734]
[102]
Kryštof V, Cankař P, Frysová I, et al. 4-arylazo-3,5-diamino-1H-pyrazole CDK inhibitors: SAR study, crystal structure in complex with CDK2, selectivity, and cellular effects. J Med Chem 2006; 49(22): 6500-9.
[http://dx.doi.org/10.1021/jm0605740] [PMID: 17064068]
[103]
Bettayeb K, Baunbæk D, Delehouze C, et al. CDK inhibitors roscovitine and CR8 trigger Mcl-1 down-regulation and apoptotic cell death in neuroblastoma cells. Genes Cancer 2010; 1(4): 369-80.
[http://dx.doi.org/10.1177/1947601910369817] [PMID: 21779453]
[104]
Berberich N, Uhl B, Joore J, et al. Roscovitine blocks leukocyte extravasation by inhibition of cyclin-dependent kinases 5 and 9. Br J Pharmacol 2011; 163(5): 1086-98.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01309.x] [PMID: 21391976]
[105]
Kryštof V, Rárová L, Liebl J, et al. The selective P-TEFb inhibitor CAN508 targets angiogenesis. Eur J Med Chem 2011; 46(9): 4289-94.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.035] [PMID: 21777997]
[106]
Black AR, Black JD, Azizkhan-Clifford J. Sp1 and krüppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 2001; 188(2): 143-60.
[http://dx.doi.org/10.1002/jcp.1111] [PMID: 11424081]
[107]
Bouwman P, Philipsen S. Regulation of the activity of Sp1-related transcription factors. Mol Cell Endocrinol 2002; 195(1-2): 27-38.
[http://dx.doi.org/10.1016/S0303-7207(02)00221-6] [PMID: 12354670]
[108]
Kaczynski J, Cook T, Urrutia R. Sp1- and Krüppel-like transcription factors. Genome Biol 2003; 4(2): 206.
[http://dx.doi.org/10.1186/gb-2003-4-2-206] [PMID: 12620113]
[109]
Cawley S, Bekiranov S, Ng HH, et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 2004; 116(4): 499-509.
[http://dx.doi.org/10.1016/S0092-8674(04)00127-8] [PMID: 14980218]
[110]
Oleaga C, Welten S, Belloc A, et al. Identification of novel Sp1 targets involved in proliferation and cancer by functional genomics. Biochem Pharmacol 2012; 84(12): 1581-91.
[http://dx.doi.org/10.1016/j.bcp.2012.09.014] [PMID: 23018034]
[111]
Gilmour J, Assi SA, Jaegle U, et al. A crucial role for the ubiquitously expressed transcription factor Sp1 at early stages of hematopoietic specification. Development 2014; 141(12): 2391-401.
[http://dx.doi.org/10.1242/dev.106054] [PMID: 24850855]
[112]
Beishline K, Azizkhan-Clifford J. Sp1 and the ‘hallmarks of cancer’. FEBS J 2015; 282(2): 224-58.
[http://dx.doi.org/10.1111/febs.13148] [PMID: 25393971]
[113]
Ding W, Zhao S, Shi Y, Chen S. Positive feedback loop SP1/SNHG1/miR-199a-5p promotes the malignant properties of thyroid cancer. Biochem Biophys Res Commun 2020; 522(3): 724-30.
[http://dx.doi.org/10.1016/j.bbrc.2019.11.075] [PMID: 31791587]
[114]
Kim MS, Chung NG, Kang MR, Yoo NJ, Lee SH. Genetic and expressional alterations of CHD genes in gastric and colorectal cancers. Histopathology 2011; 58(5): 660-8.
[http://dx.doi.org/10.1111/j.1365-2559.2011.03819.x] [PMID: 21447119]
[115]
Li Y, Liu Q, McGrail DJ, Dai H, Li K, Lin SY. CHD4 mutations promote endometrial cancer stemness by activating TGF-beta signaling. Am J Cancer Res 2018; 8(5): 903-14.
[PMID: 29888111]
[116]
Masoodi T, Siraj AK, Siraj S, et al. Whole-exome sequencing of matched primary and metastatic papillary thyroid cancer. Thyroid: official journal of the American Thyroid Association 2020; 30(1): 42-56.
[http://dx.doi.org/10.1089/thy.2019.0052]
[117]
Mazzaferri EL, Kloos RT. Clinical review 128: Current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab 2001; 86(4): 1447-63.
[http://dx.doi.org/10.1210/jcem.86.4.7407] [PMID: 11297567]
[118]
Melmed S, Polonsky K, Larsen P, Kronenberg H. Williams Textbook of Endocrinology. Philadelphia: Saunders Elsevier 2011.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy